Дисперсионный анализ позволяет оценить. Многофакторный дисперсионный анализ. III этап. Расчет дисперсий

Дисперсионный анализ – анализ изменчивости результативного признака под влиянием каких-либо контролируемых переменных факторов. (В зарубежной литературе именуется ANOVA – «Analisis of Variance»).

Результативный признак называют также зависимым признаком, а влияющие факторы – независимыми признаками.

Ограничение метода: независимые признаки могут измеряться по номинальной, порядковой или метрической шкале, зависимые – только по метрической. Для проведения дисперсионного анализа выделяют несколько градаций факторных признаков, а все элементы выборки группируют в соответствии с этими градациями.

Формулировка гипотез в дисперсионном анализе.

Нулевая гипотеза: «Средние величины результативного признака во всех условиях действия фактора (или градациях фактора) одинаковы».

Альтернативная гипотеза: «Средние величины результативного признака в разных условиях действия фактора различны».

Дисперсионный анализ можно подразделить на несколько категорий в зависимости:

от количества рассматриваемых независимых факторов;

от количества результативных переменных, подверженных действию факторов;

от характера, природы получения и наличия взаимосвязи сравниваемых выборок значений.

При наличии одного фактора, влияние которого исследуется, дисперсионный анализ именуется однофакторным, и распадается на две разновидности:

- Анализ несвязанных (то есть – различных) выборок . Например, одна группа респондентов решает задачу в условиях тишины, вторая – в шумной комнате. (В этом случае, к слову, нулевая гипотеза звучала бы так: «среднее время решения задач такого-то типа будет одинаково в тишине и в шумном помещении», то есть не зависит от фактора шума.)

- Анализ связанных выборок , то есть, двух замеров, проведенных на одной и той же группе респондентов в разных условиях. Тот же пример: в первый раз задача решалась в тишине, второй – сходная задача – в условиях шумовых помех. (На практике к подобным опытам следует подходить с осторожностью, поскольку в действие может вступить неучтенный фактор «научаемость», влияние которого исследователь рискует приписать изменению условий, а именно, - шуму.)

В случае если исследуется одновременное воздействие двух или более факторов, мы имеем дело с многофакторным дисперсионным анализом, который также можно подразделить по типу выборки.

Если же воздействию факторов подвержено несколько переменных, - речь идет о многомерном анализе . Проведение многомерного дисперсионного анализа предпочтительнее одномерного только в том случае, когда зависимые переменные не являются независимыми друг от друга и коррелируют между собой.

Обобщенно задача дисперсионного анализа состоит в том, чтобы из общей вариативности признака выделить три частные вариативности:

    вариативность, обусловленную действием каждой из исследуемых независимых переменных (факторов).

    вариативность, обусловленную взаимодействием исследуемых независимых переменных.

    вариативность случайную, обусловленную всеми неучтенными обстоятельствами.

Для оценки вариативности, обусловленной действием исследуемых переменных и их взаимодействием вычисляется отношение соответствующего показателя вариативности и случайной вариативности. Показателем этого соотношения является F – критерий Фишера.

Чем в большей степени вариативность признака обусловлена действием влияющих факторов или их взаимодействием, тем выше эмпирические значения критерия .

В формулу расчета критерия входят оценки дисперсий, и, следовательно, этот метод относится к разряду параметрических.

Непараметрическим аналогом однофакторного дисперсионного анализа для независимых выборок является критерий Краскела-Уоллеса. Он подобен критерию Манна-Уитни для двух независимых выборок, за тем исключением, что он суммирует ранги для каждой из групп.

Кроме этого, в дисперсионном анализе может быть применен медианный критерий. При его использовании для каждой группы определяются число наблюдений, которые превышают медиану, вычисленную по всем группам, и число наблюдений, которые меньше медианы, после чего строится двумерная таблица сопряженности.

Критерий Фридмана является непараметрическим обобщением парного t-критерия для случая выборок с повторными измерениями, когда количество сравниваемых переменных больше двух.

В отличие от корреляционного анализа, в дисперсионном анализе исследователь исходит из предположения, что одни переменные выступают как влияющие (именуемые факторами или независимыми переменными), а другие (результативные признаки или зависимые переменные) – подвержены влиянию этих факторов. Хотя такое допущение и лежит в основе математических процедур расчета, оно, однако, требует осторожности при выводах о причине и следствии.

Например, если мы выдвигаем гипотезу о зависимости успешности работы должностного лица от фактора Н (социальной смелости по Кэттелу), то не исключено обратное: социальная смелость респондента как раз и может возникнуть (усилиться) вследствие успешности его работы – это с одной стороны. С другой: следует отдать себе отчет в том, как именно измерялась «успешность»? Если за ее основу взяты были не объективные характеристики (модные нынче «объемы продаж» и проч.), а экспертные оценки сослуживцев, то имеется вероятность того, что «успешность» может быть подменена поведенческими или личностными характеристиками (волевыми, коммуникативными, внешними проявлениями агрессивности etc.).

5.1. Что такое дисперсионный анализ?

Дисперсионный анализ разработан в 20-х годах XX века английским математиком и генетиком Рональдом Фишером. По данным опроса среди ученых, где выяснялось, кто сильнее всего повлиял на биологию XX века, первенство получил именно сэр Фишер (за свои заслуги он был награжден рыцарским званием - одним из высших отличий в Великобритании); в этом отношении Фишер сравним с Чарльзом Дарвином, оказавшим наибольшее влияние на биологию XIX века.

Дисперсионный анализ (Analis of variance) является сейчас отдельной отраслью статистики. Он основан на открытом Фишером факте, что меру изменчивости изучаемой величины можно разложить на части, соответствующие влияющим на эту величину факторам и случайным отклонениям.

Чтобы понять суть дисперсионного анализа, мы выполним однотипные расчеты дважды: «вручную» (с калькулятором) и с помощью программы Statistica. Для упрощения нашей задачи мы будем работать не с результатами действительного описания разнообразия зеленых лягушек, а с вымышленным примером, который касается сравнения женщин и мужчин у людей. Рассмотрим разнообразие роста 12 взрослых человек: 7 женщин и 5 мужчин.

Таблица 5.1.1. Пример для однофакторного дисперсионного анализа: данные о поле и росте 12 людей

Проведем однофакторный дисперсионный анализ: сравним, статистически значимо или нет отличаются ли мужчины и женщины в охарактеризованной группе по росту.

5.2. Тест на нормальность распределения

Дальнейшие рассуждения основываются на том, что распределение в рассматриваемой выборке нормальное или близкое к нормальному. Если распределение далеко от нормального, дисперсия (варианса) не является адекватной мерой его его изменчивости. Впрочем, дисперсионный анализ относительно устойчив к отклонениям распределения от нормальности.

Тест этих данных на нормальность можно провести двумя разными способами. Первый: Statistics / Basic Statistics/Tables / Descriptive statistics / Вкладка Normality. Во вкладке Normality можно выбрать используемые тесты нормальности распределения. При нажатии на кнопку Frequency tables появится частотная таблица, а кнопки Histograms - гистограмма. На таблице и гистограмме будут приведены результаты различных тестов.

Второй способ связан с использованием соответствующих возможнойтсей при построении гистограмм. В диалоге построения гистограмм (Grafs / Histograms...) следует выбрать вкладку Advanced. В ее нижней части есть блок Statistics. Отметим на ней Shapiro-Wilk test и Kolmogorov-Smirnov test, как это показано на рисунке.

Рис. 5.2.1. Статистические тесты на нормальность распределения в диалоге построения гистограмм

Как видно по гистограмме, распределение роста в нашей выборке отличается от нормального (в середине - «провал»).


Рис. 5.2.2. Гистограмма, построенная с параметрами, указанными на предыдущем рисунке

Третья строка в заголовке графика указывает параметры нормального распределения, к которому оказалось ближе всего наблюдаемое распределение. Генеральное среднее составляет 173, генеральное стандартное отклонение - 10,4. Внизу во врезке на графике указаны результаты тестов на нормальность. D - это критерий Колмогорова-Смирнова, а SW-W - Шапиро-Вилка. Как видно, для всех использованных тестов отличия распределения по росту от нормального распределения оказались статистически незначимыми (p во всех случаях больше, чем 0,05).

Итак, формально говоря, тесты на соответствие распределения нормальному не «запретили» нам использовать параметрический метод, основанный на предположении о нормальном распределении. Как уже сказано, дисперсионный анализ относительно устойчив к отклонениям от нормальности, поэтому мы им все-таки воспользуемся.

5.3. Однофакторный дисперсионный анализ: вычисления «вручную»

Для характеристики изменчивости роста людей в приведенном примере вычислим сумму квадратов отклонений (в английском обозначается как SS , Sum of Squares или ) отдельных значений от среднего: . Среднее значение для роста в приведенном примере составляет 173 сантиметра. Исходя из этого,

SS = (186–173) 2 + (169–173) 2 + (166–173) 2 + (188–173) 2 + (172–173) 2 + (179–173) 2 + (165–173) 2 + (174–173) 2 + (163–173) 2 + (162–173) 2 + (162–173) 2 + (190–173) 2 ;

SS = 132 + 42 + 72 + 152 + 12 + 62 + 82 + 12 + 102 + 112 + 112 + 172;

SS = 169 + 16 + 49 + 225 + 1 + 36 + 64 + 1 + 100 + 121 + 121 + 289 = 1192.

Полученная величина (1192) - мера изменчивости всей совокупности данных. Однако они состоят из двух групп, для каждой из которых можно выделить свою среднюю. В приведенных данных средний рост женщин - 168 см, а мужчин - 180 см.

Вычислим сумму квадратов отклонений для женщин:

SS f = (169–168) 2 + (166–168) 2 + (172–168) 2 + (179–168) 2 + (163–168) 2 + (162–168) 2 ;

SS f = 12 + 22 + 42 + 112 + 32 + 52 + 62 = 1 + 4 + 16 + 121 + 9 + 25 + 36 = 212.

Также вычислим сумму квадратов отклонений для мужчин:

SS m = (186–180) 2 + (188–180) 2 + (174–180) 2 + (162–180) 2 + (190–180) 2 ;

SS m = 62 + 82 + 62 + 182 + 102 = 36 + 64 + 36 + 324 + 100 = 560.

От чего зависит исследуемая величина в соответствии с логикой дисперсионного анализа?

Две вычисленные величины, SS f и SS m , характеризуют внутригрупповую вариансу, которую в дисперсионном анализе принято называть «ошибкой». Происхождение этого названия связано со следующей логикой.

От чего зависит рост человека в рассматриваемом примере? Прежде всего, от среднего роста людей вообще, вне зависимости от их пола. Во вторую очередь - от пола. Если люди одного пола (мужского) выше, чем другого (женского), это можно представить в виде сложения с «общечеловеческой» средней какой-то величины, эффекта пола. Наконец, люди одного пола отличаются по росту в силу индивидуальных отличий. В рамках модели, описывающей рост как сумму общечеловеческой средней и поправки на пол, индивидуальные отличия необъяснимы, и их можно рассматривать как «ошибку».

Итак, в соответствии с логикой дисперсионного анализа, исследуемая величина определяется следующим образом: , где x ij - i-тое значение изучаемой величины при j-том значении изучаемого фактора; - генеральное среднее; F j - влияние j-того значения изучаемого фактора; - «ошибка», вклад индивидуальности объекта, к которому относится величина x ij .

Межгрупповая сумма квадратов

Итак, SS ошибки = SS f + SS m = 212 + 560 = 772. Этой величиной мы описали внутригрупповую изменчивость (при выделении групп по полу). Но есть и вторая часть изменчивости - межгрупповая, которую мы назовем SS эффекта (поскольку речь идет об эффекте разделения совокупности рассматриваемых объектов на женщин и мужчин).

Среднее каждой группы отличается от общей средней. Вычисляя вклад этого отличия в общую меру изменчивости, мы должны умножить отличие групповой и общей средней на число объектов в каждой группе.

SS эффекта = = 7×(168–173) 2 + 5×(180–173) 2 = 7×52 + 5×72 = 7×25 + 5×49 = 175 + 245 = 420.

Здесь проявился открытый Фишером принцип постоянства суммы квадратов: SS = SS эффекта + SS ошибки , т.е. для данного примера, 1192 = 440 + 722.

Средние квадраты

Сравнивая в нашем примере межгрупповую и внутригрупповую суммы квадратов, мы можем увидеть, что первая связана с варьированием двух групп, а вторая - 12 величин в 2 группах. Количество степеней свободы (df ) для какого-то параметра может быть определено как разность количества объектов в группе и количества зависимостей (уравнений), которое связывает эти величины.

В нашем примере df эффекта = 2–1 = 1, а df ошибки = 12–2 = 10.

Мы можем разделить суммы квадратов на число их степеней свободы, получив средние квадраты (MS , Means of Squares). Сделав это, мы можем установить, что MS - ни что иное, как вариансы («дисперсии», результат деления суммы квадратов на число степеней свободы). После этого открытия мы можем понять структуру таблицы дисперсионного анализа. Для нашего примера она будет иметь следующий вид.

Эффект

Ошибка

МS эффекта и МS ошибки являются оценками межгрупповой и внутригрупповой вариансы, и, значит, их можно сравнить по критерию F (критерию Снедекора, названному в честь Фишера), предназначенному для сравнения варианс. Этот критерий представляет собой просто частное от деления большей вариансы на меньшую. В нашем случае это 420 / 77,2 = 5,440.

Определение статистической значимости критерия Фишера по таблицам

Если бы мы определяли статистическую значимость эффекта вручную, по таблицам, нам было бы необходимо сравнить полученное значение критерия F с критическим, соответствующим определенному уровню статистической значимости при заданных степенях свободы.


Рис. 5.3.1. Фрагмент таблицы с критическими значениями критерия F

Как можно убедиться, для уровня статистической значимости p=0,05 критическое значение критерия F составляет 4,96. Это означает, что в нашем примере действие изучавшегося пола зарегистрировано с уровнем статистической значимости 0,05.

Полученный результат можно интерпретировать так. Вероятность нулевой гипотезы, согласно которой средний рост женщин и мужчин одинаков, а зарегистрированная разница в их росте связана со случайностью при формировании выборок, составляет менее 5%. Это означает, что мы должны выбрать альтернативную гипотезу, заключающуюся в том, что средний рост женщин и мужчин отличается.

5.4. Однофакторный дисперсионный анализ ( ANOVA) в пакете Statistica

В тех случаях, когда расчеты производятся не вручную, а с помощью соответствующих программ (например, пакета Statistica) величина p определяется автоматически. Можно убедиться, что она несколько выше критического значения.

Чтобы проанализировать обсуждаемый пример с помощью простейшего варианта дисперсионного анализа, нужно запустить для файла с соответствующими данными процедуру Statistics / ANOVA и выбрать в окне Type of analysis вариант One-way ANOVA (однофакторный дисперсионный анализ), а в окне Specification method - вариант Quick specs dialog.


Рис. 5.4.1. Диалог General ANOVA/MANOVA (Дисперсионный анализ)

В открывшемся окне быстрого диалога в поле Variables нужно указать те столбцы, которые содержат данные, изменчивость которых мы изучаем (Dependent variable list; в нашем случае - столбец Growth), а также столбец, содержащие значения, разбивающие изучаемую величину на группы (Catigorical predictor (factor); в нашем случае - столбец Sex). В данном варианте анализа, в отличие от многофакторного анализа, может рассматриваться только один фактор.


Рис. 5.4.2. Диалог One-Way ANOVA (Однофакторный дисперсионный анализ)

В окне Factor codes следует указать те значения рассматриваемого фактора, которые нужно обрабатывать в ходе данного анализа. Все имеющиеся значения можно посмотреть с помощью кнопки Zoom; если, как в нашем примере, нужно рассматривать все значения фактора (а для пола в нашем примере их всего два), можно нажать кнопку All. Когда заданы обрабатываемые столбцы и коды фактора, можно нажать кнопку OK и перейти в окно быстрого анализа результатов: ANOVA Results 1, во вкладку Quick.

Рис. 5.4.3. Вкладка Quick окна результатов дисперсионного анализа

Кнопка All effects/Graphs позволяет увидеть, как соотносятся средние двух групп. Над графиком указывается число степеней свободы, а также значения F и p для рассматриваемого фактора.


Рис. 5.4.4. Графическое отображение результатов дисперсионного анализа

Кнопка All effects позволяет получить таблицу дисперсионного анализа, аналогичную описанной выше (с некоторыми существенными отличиями).


Рис. 5.4.5. Таблица с результатами дисперсионного анализа (сравните с аналогичной табличей, полученной "вручную")

В нижней строке таблицы указана сумма квадратов, количество степеней свободы и средние квадраты для ошибки (внутригрупповой изменчивости). На строку выше - аналогичные показатели для исследуемого фактора (в данном случае - признака Sex), a также критерий F (отношение средних квадратов эффекта к средним квадратам ошибки), и уровень его статистической значимости. То, что действие рассматриваемого фактора оказалось статистически значимым, показывает выделение красным цветом.

А в первой строке приведены данные по показателю «Intercept». Эта строка таблицы представляет загадку для пользователей, приобщающихся к пакету Statistica в его 6-й или более поздней версии. Величина Intercept (пересечение, перехват), вероятно, связана с разложением суммы квадратов всех значений данных (т.е. 1862 + 1692 … = 360340). Указанное для нее значение критерия F получено путем деления MS Intercept /MS Error = 353220 / 77,2 = 4575,389 и, естественно, дает очень низкое значение p . Интересно, что в Statistica-5 эта величина вообще не вычислялась, а руководства по использованию более поздних версий пакета никак не комментируют ее введение. Вероятно, лучшее, что может сделать биолог, работающий с пакетом Statistica-6 и последующих версий, это попросту игнорировать строку Intercept в таблице дисперсионного анализа.

5.5. ANOVA и критерии Стьюдента и Фишера: что лучше?

Как вы могли заметить, те данные, которые мы сравнивали с помощью однофакторного дисперсионного анализа, мы могли исследовать и с помощью критериев Стьюдента и Фишера. Сравним эти два метода. Для этого вычислим разницу в росте мужчин и женщин с использованием этих критериев. Для этого нам придется пройти по пути Statistics / Basic Statistics / t-test, independent, by groups. Естественно, Dependent variables - это переменная Growth, а Grouping variable - переменная Sex.


Рис. 5.5.1. Сравнение данных, обработанных с помощью ANOVA, по критериям Стьюдента и Фишера

Как можно убедиться, результат тот же самый, что и при использовании ANOVA. p = 0,041874 в обоих случаях, как показанном на рис. 5.4.5, так и показанном на рис. 5.5.2 (убедитесь в этом сами!).


Рис. 5.5.2. Результаты анализа (подробная расшифровка таблицы результатов - в пункте, посвященном критерию Стьюдента)

Важно подчеркнуть, что хотя критерий F с математической точки зрения в рассматриваемом анализе по критериям Стьюдента и Фишера тот же самый, что в ANOVA (и выражает отношение варианс), смысл его в результатах анализа, представляемых итоговой таблицей, совсем иной. При сравнении по критериям Стьюдента и Фишера сравнение средних значений выборок проводится по критерию Стьюдента, и сравнение их изменчивости проводится по критерию Фишера. В результатах анализа выводится не сама варианса, а ее квадратный корень - стандартное отклонение.

В дисперсионном анализе, напротив, критерий Фишера используется для сравнения средних разных выборок (как мы обсудили, это осуществляется с помощью разделения суммы квадратов на части и сравнения средней суммы квадратов, соответствующей меж- и внутригрупповой изменчивости).

Впрочем, приведенное отличие касается скорее представления результатов статистического исследования, чем его сути. Как указывает, например, Гланц (1999, с. 99), сравнение групп по критерию Стьюдента можно рассматривать как частный случай дисперсионного анализа для двух выборок.

Итак, сравнение выборок по критериям Стьюдента и Фишера имеет одно важное преимущество перед дисперсионным анализом: в нем можно сравнить выборки с точки зрения их изменчивости. Но преимущества дисперсионного анализа все равно весомее. К их числу, например, относится возможность одновременного сравнения нескольких выборок.

Как было уже отмечено, дисперсионный метод тесно связан со статистическими группировками и предполагает, что изучаемая совокупность подразделена на группы по факторным признакам, влияние которых должно быть изучено.

На основе дисперсионного анализа производится:

1. оценка достоверности различий в групповых средних по одному факторному признаку или нескольким;

2. оценка достоверности взаимодействий факторов;

3. оценка частных различий между парами средних.

В основе применения дисперсионного анализа лежит закон разложения дисперсий (вариаций) признака на составляющие.

Общая вариация D о результативного признака при группировке может быть разложена на следующие составные части:

1. на межгрупповую D м связанную с группировочным признаком;

2. на остаточную (внутригрупповую) D B , не связанную с группировочным признаком.

Соотношение между этими показателями выражается следующим образом:

D о = D м + D в. (1.30)

Рассмотрим применение дисперсионного анализа на примере.

Допустим, требуется доказать, влияют ли сроки посева на урожайность пшеницы. Исходные опытные данные для дисперсионного анализа представлены в табл. 8.

Таблица 8

В данном примере N = 32, K = 4, l = 8.

Определим общую суммарную вариацию урожайности, которая представляет собой сумму квадратов отклонений индивидуальных значений признака от общей средней:

где N – число единиц совокупности; Y i – индивидуальные значения урожайности; Y o – общая средняя урожайности по всей совокупности.

Для определения межгрупповой суммарной вариации, определяющей вариацию результативного признака за счет изучаемого фактора, необходимо знать средние значения результативного признака по каждой группе. Эта суммарная вариация равна сумме квадратов отклонений групповых средних величин от общей средней величины признака, взвешенной на число единиц совокупности в каждой из групп:

Внутригрупповая суммарная вариация равна сумме квадратов отклонений индивидуальных значений признака от групповых средних по каждой группе, суммированной по всем группам совокупности.

Влияние фактора на результативный признак проявляется в соотношении между D м и D в: чем сильнее влияние фактора на величину изучаемого признака, тем больше D м и меньше D в.

Для проведения дисперсионного анализа нужно установить источники варьирования признака, объем вариации по источникам, определить число степеней свободы для каждой компоненты вариации.

Объем вариации уже установлен, теперь необходимо определить число степеней свободы вариации. Число степеней свободы – это число независимых отклонений индивидуальных значений признака от его среднего значения. Общее число степеней свободы, соответствующее общей сумме квадратов отклонений в дисперсионном анализе, разлагается по составляющим вариации. Так, общей сумме квадратов отклонений D о соответствует число степеней свободы вариации, равное N – 1 = 31. Групповой вариации D м соответствует число степеней свободы вариации, равное K – 1 = 3. Внутригрупповой остаточной вариации соответствует число степеней свободы вариации, равное N – K = 28.


Теперь, зная суммы квадратов отклонений и число степеней свободы, можно определить дисперсии для каждой составляющей. Обозначим эти дисперсии: d м – групповые и d в – внутригрупповые.

После вычисления этих дисперсий приступим к установлению значимости влияния фактора на результативный признак. Для этого находим отношение: d M /d B = F ф,

Величина F ф, называемая критерием Фишера , сравнивается с табличным, F табл. Как уже было отмечено, если F ф > F табл, то влияние фактора на результативный признак доказано. Если F ф < F табл то можно утверждать, что различие между дисперсиями находится в пределах возможных случайных колебаний и, следовательно, не доказывает с достаточной вероятностью влияние изучаемого фактора.

Теоретическая величина связана с вероятностью, и в таблице ее значение приводится при определенном уровне вероятности суждения. В приложении имеется таблица, позволяющая установить возможную величину F при вероятности суждения, наиболее часто используемой: уровень вероятности «нулевой гипотезы» – 0,05. Вместо вероятностей «нулевой гипотезы» таблица может быть названа таблицей для вероятности 0,95 существенности влияния фактора. Повышение уровня вероятности требует для сравнения более высокого значения F табл.

Величина F табл зависит также от числа степеней свободы двух сравниваемых дисперсий. Если число степеней свободы стремится к бесконечности, то F табл стремится к единице.

Таблица значений F табл построена следующим образом: в столбцах таблицы указаны степени свободы вариации для большей дисперсии, а в строках – степени свободы для меньшей (внутригрупповой) дисперсии. Величина F находится на пересечении столбца и строки соответствующих степеней свободы вариации.

Так, в нашем примере F ф = 21,3/3,8 = 5,6. Табличное же значение F табл для вероятности 0,95 и степеней свободы, соответственно равных 3 и 28, F табл = 2,95.

Значение F ф полученное в опыте, превышает теоретическое значение даже для вероятности 0,99. Следовательно, опыт с вероятностью более 0,99 доказывает влияние изучаемого фактора на урожайность, т. е. опыт можно считать надежным, доказанным, а значит, сроки посева оказывают существенное влияние на урожайность пшеницы. Оптимальным сроком посева следует считать период с 10 по 15 мая, так как именно при этом сроке посева получены наилучшие результаты урожайности.

Нами рассмотрена методика дисперсионного анализа при группировке по одному признаку и случайному распределению повторностей внутри группы. Однако часто бывает так, что опытный участок имеет какие-то различия в плодородии почвы и т. д. Поэтому может возникнуть такая ситуация, что большее число делянок одного из вариантов попадет на лучшую часть, и его показатели будут завышены, а другого варианта – на худшую часть, и результаты в этом случае, естественно, будут хуже, т. е. занижены.

Чтобы исключить варьирование, которое вызывается не относящимися к опыту причинами, надо из внутригрупповой (остаточной) дисперсии вычленить дисперсию, рассчитанную по повторностям (блокам).

Общая сумма квадратов отклонений подразделяется в этом случае уже на 3 составляющие:

D о = D м + D повт + D ост. (1.33)

Для нашего примера сумма квадратов отклонений, вызванная повторностями, будет равна:

Стало быть, собственно случайная сумма квадратов отклонений будет равна:

D ост = D в – D повт; D ост = 106 – 44 = 62.

Для остаточной дисперсии число степеней свободы будет равно 28 – 7 = 21. Результаты дисперсионного анализа представлены в табл. 9.

Таблица 9

Поскольку фактические значения F-критерия для вероятности 0,95 превышают табличные, то влияние сроков посева и повторностей на урожайность пшеницы следует считать существенным. Рассмотренный способ построения опыта, когда участок предварительно делится на блоки с относительно выровненными условиями, а проверяемые варианты распределяются внутри блока в случайном порядке, называется способом рендомизированных блоков.

С помощью анализа дисперсионным методом можно изучить влияние не только одного фактора на результат, а двух и более. Дисперсионный анализ в этом случае будет называться многофакторным дисперсионным анализом .

Двухфакторный дисперсионный анализ отличается от двух однофакторных тем, что он может ответить на следующие вопросы:

1. 1каково влияние обоих факторов вместе?

2. какова роль сочетания этих факторов?

Рассмотрим дисперсионный анализ опыта, в котором следует выявить влияние не только сроков посева, но и сортов на урожайность пшеницы (табл. 10).

Таблица 10. Данные опыта по влиянию сроков посева и сортов на урожайность пшеницы

– это сумма квадратов отклонений индивидуальных значений от общей средней.

Вариация по совместному влиянию сроков посева и сорта

– это сумма квадратов отклонений средних по подгруппам от общей средней, взвешенных на число повторностей, т. е. на 4.

Вычисление вариации по влиянию только сроков посева:

Остаточная вариация определяется как разность между общей вариацией и вариацией по совместному влиянию изучаемых факторов:

D ост = D о – D пс = 170 – 96 = 74.

Все расчеты можно оформить в виде таблицы (табл. 11).

Таблица 11. Результаты дисперсионного анализа

Результаты дисперсионного анализа показывают, что влияние изучаемых факторов, т. е. сроков посева и сорта, на урожайность пшеницы существенно, так как F-критерии фактические по каждому из факторов значительно превышают табличные, найденные для соответствующих степеней свободы, и при этом с достаточно высокой вероятностью (р = 0,99). Влияние же сочетания факторов в данном случае отсутствует, так как факторы независимы друг от друга.

Анализ влияния трех факторов на результат ведется по такому же принципу, что и для двух факторов, только в этом случае будет три дисперсии по факторам и четыре дисперсии по сочетанию факторов. С увеличением числа факторов резко увеличивается объем расчетных работ и, кроме того, становится затруднительно оформлять исходную информацию в комбинационную таблицу. Поэтому вряд ли целесообразно изучать влияние многих факторов на результат с использованием дисперсионного анализа; лучше взять меньшее их число, но выбрать наиболее существенные факторы с точки зрения экономического анализа.

Нередко исследователю приходится иметь дело с так называемыми непропорциональными дисперсионными комплексами, т. е. такими, в которых не соблюдается пропорциональность численностей вариантов.

В таких комплексах вариация суммарного действия факторов не равна сумме вариации по факторам и вариации сочетания факторов. Она отличается на величину, зависящую от степени связей между отдельными факторами, возникающих вследствие нарушения пропорциональности.

В этом случае возникают трудности при определении степени влияния каждого фактора, так как сумма частных влияний не равна суммарному влиянию.

Одним из способов приведения непропорционального комплекса к единой структуре является способ его замены пропорциональным комплексом, в котором частоты усреднены по группам. Когда такая замена произведена, задача решается по принципам пропорциональных комплексов.

Средние квадраты и s R 2 представляют собой несмещенные оценки зависимой переменной, обусловленных соответственно регрессией или объясняющей переменной х и воздействием неучтенных случайных факторов и ошибок; m – число оцениваемых параметров регрессии, n – число наблюдений. При отсутствии линейной зависимости между зависимой и объясняющей (факторной) переменной случайные величины и s R 2 имеют 2 – распределение соответственно с m-1 и n-m степенями свободы, а их отношение F – распределение с теми же степенями свободы. Поэтому, уравнение регрессии значимо на уровне , если фактически наблюдаемое значение статистики превышает табличное:

(5.11),

где - табличное значение F – критерия Фишера – Снедекора, определенное на уровне значимости при k1 = m-1 и k2 = n-m степенях свободы.

Учитывая смысл величин и s R 2 , можно сказать, что значение F показывает, в какой мере регрессия лучше оценивает значение зависимой переменной по сравнению с ее средней.

В случае парной линейной регрессии m = 2, и уравнение регрессии значимо на уровне , если

(5.12)

Мерой значимости линии регрессии может служить следующее соотношение:

где ŷ i -i-e выравненное значение; -средняя арифметическая значений y i ; σ y.x -средняя квадратическая ошибка (ошибка аппроксимации) регрессионного уравнения, вычисляемая по известной формуле; n-число сравниваемых пар значений признаков; m-число факторных признаков.

Действительно, связь тем больше, чем значительнее мера рассеяния признака, обусловленная регрессией, превосходит меру рассеяния отклонений фактических значений от выравненных.

Данное соотношение позволяет решить вопрос о значимости уравнения регрессии в целом, то есть о наличии реально существующей статистической зависимости между переменными. Уравнение регрессия значимо, т. е. между признаками существует статистическая связь, если для данного уровня значимости расчетное значение критерия Фишера F превышает критическое значение F кр , стоящее на пересечении m-го столбца и -й строки специальной статистической таблицы, которая так и называется «Таблица значений F-критерия Фишера».

Пример. Воспользуемся критерием Фишера для оценки значимости уравнения регрессии, построенного на прошлой лекции, то есть уравнения, выражающего зависимость между сбором урожая и размером посева на душу населения.

Подставив в формулу для расчета критерия Фишера, данные предыдущего примера, получим

Обращаясь к таблице F-распределения для Р=0,95 (α=1-Р=0,5) и учитывая, что n-2=21, m-1 =1, в таблице значений F-критерия на пересечения 1-го столбца и 21-й строки находим критическое значение F кр, равное 4,32 при степени надежности Р=0,95. Поскольку расчетное значение F-критерия существенно превосходит по величине F кр, то обнаруженная линейная связь существенна, т. е. априорная гипотеза о наличии линейной связи подтвердилась. Вывод сделан при степени надежности P=0,95. Можно проверить, что вывод в данном случае останется прежним, если надежность повысить до Р=0,99 (соответствующее значение F кр =8,02 для уровня значимости α=0,01).


Коэффициент детерминации. С помощью F-критерия мы установили, что существует линейная зависимость между величиной сбора хлеба и величиной посева на душу. Следовательно, можно утверждать, что величина сбора хлеба, приходящегося на душу, линейно зависит от величины посева на душу. Теперь уместно поставить уточняющий вопрос - в какой степени величина посева на душу определяет величину сбора хлеба на душу? На этот вопрос можно ответить, рассчитав, какая часть вариации результативного признака может быть объяснена влиянием факторного признака. Этой цели служит индекс (или коэффициент) детерминации R 2 , который позволяет оценить долю разброса, учитываемого регрессией, в общем разбросе результативного признака. Коэффициент детерминации , равный отношению факторной вариации к полной вариации признака, позволяет судить о том, насколько «удачно» выбран вид функции, описывающей реальную статистическую зависимость.

Если известен коэффициент детерминации R 2 , то критерий значимости уравнения регрессии или самого коэффициента детерминации (критерий Фишера) может быть записан в виде:

Критерий Фишера позволяет также оценивать полезность включения дополнительных факторов в модель для уравнения множественной линейной регрессии.

В эконометрике, помимо общего критерия Фишера, используется также понятие частного критерия . Частный F-критерий показывает степень влияния дополнительной независимой переменной на результативный признак и может использоваться при решении вопроса о добавлении в уравнение или исключении из него этой независимой переменной.

Разброс признака, объясняемый уравнением двухфакторной регрессии, построенным ранее, можно разложить на два вида: 1) разброс признака, обусловленный независимой переменной х 1 , и 2) разброс признака, обусловленный независимой переменной x 2 , когда х 1 уже включена в уравнение. Первой составляющей соответствует разброс признака, объясняемый уравнением, включающим только переменную х 1 . Разность между разбросом признака, обусловленным уравнением парной линейной регрессии, и разбросом признака, обусловленным уравнением двухфакторной линейной регрессии, определит ту часть разброса, которая объясняется дополнительной независимой переменной x 2 .

Отношение указанной разности к разбросу признака, регрессией не объясняемому, представляет собой значениечастного критерия. Частный F-критерий называется также последовательным, если статистические характеристики строятся при последовательном добавлении переменных в регрессионное уравнение.

Пример. Оценить полезность включения в уравнение регрессии дополнительной переменной «урожайность» (по данным и результатам ранее рассмотренных примеров).

Разброс признака, объясняемый уравнением множественной регрессии и рассчитываемый как сумма квадратов разностей выравненных значений и их средней, равен 1623,8815. Разброс признака, объясняемый уравнением простой регрессии, составляет 1545,1331.

Разброс признака, регрессией не объясняемый, определяется квадратом средней квадратической ошибки уравнения и равен 10,9948.

Воспользовавшись этими характеристиками, рассчитаем частный F-критерий

С уровнем надежности 0,95 (α=0,05) табличное значение F (1,20), т. е. значение, стоящее на пересечении 1-го столбца и 20-й строки табл. 4А приложения, равно 4,35. Рассчитанное значение F-критерия значительно превосходит табличное, и, следовательно, включение в уравнение переменной «урожайность» имеет смысл.

Таким образом, выводы, сделанные ранее относительно коэффициентов регрессии, вполне правомерны.

учебный вопрос. Оценка значимости отдельных параметров уравнения регрессии с помощью критерия Стьюдента.

Очень часто в эконометрике требуется оценить значимость коэффициента корреляции r , то есть определить, насколько существенно отличие коэффициента корреляции от нуля (например, при анализе мультиколлинеарности и оценке парных коэффициентов корреляции между факторами в уравнении множественной регрессии).

При этом исходят из того, что при отсутствии корреляционной связи статистика t ,

имеет t -распределение Стьюдента с (n-2) степенями свободы.

Коэффициент корреляции r xy значим на уровне , (иначе – гипотеза Н 0 о равенстве генерального коэффициента корреляции нулю отвергается), если

(5.13),

Где -табличное значение t -критерия Стьюдента, определенное на уровне значимости a при числе степеней свободы (n-2).

В линейной регрессии обычно оценивается значимость не только уравнения в целом, но и отдельных его параметров. С этой целью по каждому из параметров определяется его стандартная ошибка. Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии; вычисляется значение t-критерия, его величина сравнивается с табличным значением при (n-2) степенях свободы. Проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Заключение. Итак, мы рассмотрели на данной лекции общие правила проверки статистических гипотез и их практическое применение при оценке значимости уравнений регрессии и их отдельных параметров с помощью критериев Фишера и Стьюдента.

ДИСПЕРСИОННЫЙ АНАЛИЗ

в математической статистике - статистический метод, предназначенный для выявления влияния отдельных факторов на результат эксперимента, а также для последующего планирования аналогичных экспериментов. Первоначально Д. а. был предложен Р. Фишером для обработки результатов агрономич. опытов по выявлению условий, при к-рых испытываемый сорт сельскохозяйственной культуры дает максимальный урожай. Современные приложения Д. а. охватывают широкий задач экономики, социологии, биологии и техники и трактуются обычно в терминах статистич. теории выявления систематич. различий между результатами непосредственных измерений, выполненных при тех пли иных меняющихся условиях.

Если значения неизвестных постоянных a 1 , ... , a I могут быть измерены с помощью различных методов или измерительных средств М 1 ,. .., M J , и в каждом случае систематич. ошибка b ij может, вообще говоря, зависеть как от выбранного метода Mj, так и от неизвестного измеряемого значения а i , то результаты таких измерений представляют собой суммы вида

где К- количество независимых измерений неизвестной величины а i методом M j , a у ijk - случайная ошибка k-го измерения величины а i методом M j (предполагается, что все y ijk - независимые одинаково распределенные случайные величины, имеющие нулевое математич. ожидание: Е у ijk =0). Такая линейная наз. двухфакторной схемой Д. а.; первый - истинное значение измеряемой величины, второй - метод измерения, причем в данном случае для каждой возможной комбинации значений первого и второго факторов осуществляется одинаковое количество Кнезависимых измерений (это допущение для целей Д. а. не является существенным и введено здесь лишь ради простоты изложения).

Примером подобной ситуации могут служить спортивные соревнования I спортсменов, мастерство к-рых оценивается J судьями, причем каждый участник соревнований выступает Краз (имеет К"попыток"). В этом случае а i - истинное значение показателя мастерства спортсмена с номером i, b ij - систематич. ошибка, вносимая в оценку мастерства i -го спортсмена судьей с номером j, x ijk - оценка, выставленная j -м судьей г-му спортсмену после выполнений последним k-й попытки, а y ijk - соответствующая случайная . Подобная типична для так наз. субъективной экспертизы качества нескольких объектов, осуществляемой группой независимых экспертов. Другой пример - статистич. исследование урожайности сельскохозяйственной культуры в зависимости от одного из J сортов почвы и J методов ее обработки, причем для каждого сорта г почвы и каждого метода обработки с номером J осуществляется kнезависимых экспериментов (в этом примере b ij - истинное значение урожайности для г-го сорта почвы при j-м способе обработки, x ijk - соответствующая экспериментально наблюдаемая урожайность в k-м опыте, а y ijk - ее случайная ошибка, возникающая из-за тех или иных случайных причин; что же касается величин а i , то в агрономич. опытах их разумно считать равными нулю).

Положим c ij =a i +b ij , и пусть с i *, с *j и с ** - результаты осреднений с ij по соответствующим индексам, т. е.

Пусть, кроме того, a=c ** , b i = с i* - с ** , g j = с *j -с ** и d ij = с ij - с i* - с *j +c ** . Идея Д. а. основана на очевидном тождестве

Если символом (c ij )обозначить размерности IJ , получаемый из матрицы ||с ij || порядка IXJ с помощью какого-либо заранее фиксированного способа упорядочивания ее элементов, то (1) можно записать в виде равенства где все векторы имеют IJ , причем a ij =a, b ij =b i , g ij =g j . Так как четыре вектора в правой части (2) ортогональны, то a ij =a - наилучшее приближение функции c ij от аргументов i и j постоянной величиной [в смысле минимальности суммы квадратов отклонений ]. В том же смысле a ij +b ij =a+b i - наилучшее c ij функцией, зависящей лишь от i, a ij +g ij =a+g j - наилучшее приближение c ij функцией, зависящей лишь от j, a a ij +b ij +g ij =a+b i +g j - наилучшее приближение c ij суммой функций, из к-рых одна (напр., a+b i ) зависит лишь от г, а другая - лишь от j. Этот факт, установленный Р. Фишером (см. ) в 1918, позднее послужил основой теории квадратичных приближений функций.

В примере, связанном со спортивными соревнованиями, d ij выражает "взаимодействие" г-го спортсмена и j-го судьи (положительное значение б/у означает "подсуживание", т. с. систематич. завышение /-м судьей оценки мастерства i-го спортсмена, а отрицательное значение б/у означает "засуживание", т. е. систематич. снижение оценки). Равенство всех б/у нулю - необходимое требование, к-рое надлежит предъявлять к работе группы экспертов. В случае же агрономич. опытов такое равенство рассматривается как гипотеза, подлежащая проверке по результатам экспериментов, поскольку основная цель здесь - отыскание таких значений i и j, при к-рых функция (1) достигает максимального значения. Если эта гипотеза верна, то

и значит, выявление наилучших "почвы" и "обработки" может быть осуществлено раздельно, что приводит к существенному сокращению числа экспериментов (напр., можно при каком-либо одном способе обработки испытать все Iсортов "почвы" и определить наилучший сорт, а затем на этом сорте опробовать все J способов "обработки" и найти наилучший способ; общее количество экспериментов с повторениями будет равно (I+J) К). Если же гипотеза {все d ij =0} неверна, то для определения max c ij необходим описанный выше "полный план", требующий при Кповторениях IJК экспериментов.

В ситуации спортивных соревнований функция g ij =g j может трактоваться как систематич. ошибка, допускаемая j-м судьей по отношению ко всем спортсменам. В конечном счете g j - характеристика "строгости" или "либеральности" j-го судьи. В идеале хотелось бы, чтобы все g j были нулевыми, но в реальных условиях приходится мириться с наличием ненулевых значений g j и учитывать это обстоятельство при подведении итогов экспертизы (напр., за основу сравнения мастерства спортсменов можно принять не последовательности истинных значений a+b 1 +g j , ..., a+b I +g j , a лишь результаты упорядочиваний этих чисел по их величине, поскольку при всех j=1, . . . , J такие упорядочивания будут одинаковыми). Наконец, сумма двух оставшихся функций a ij +b ij =a+b i зависит лишь от iи поэтому может быть использована для характеризации мастерства г-го спортсмена. Однако здесь нужно помнить, что Поэтому упорядочивание всех спортсменов по значениям a+b i (или по a+ + b i +g j при каждом фиксированном j) может не совпадать с упорядочиванием по значениям a i . При практической обработке экспертных оценок этим обстоятельством приходится пренебрегать, так как Упомянутый полный план экспериментов не позволяет оценивать отдельно a i и b i* . Таким образом, a+b i =a i + b i* характеризует не только мастерство i -го спортсмена, но и в той или иной мере экспертов к этому мастерству. Поэтому, напр., результаты субъективных экспертных оценок, осуществленных в разное время (в частности, на нескольких Олимпийских играх), едва ли можно считать сопоставимыми. В случае же агрономич. опытов подобные трудности не возникают, поскольку все a i =0 и значит, a+b i =b i* .

Истинные значения функций a, b i , g i и d ij неизвестны и выражаются в терминах неизвестных функций c ij . Поэтому первый этап Д. а. заключается в отыскании статистич. оценок для c ij по результатам наблюдений x ijk .Несмещенная и имеющая минимальную дисперсию для c ij выражается формулой

Так как a, b i , g j и d ij - линейные функции от элементов матрицы ||c ij ||, то несмещенные линейные оценки для этих функций, имеющие минимальную дисперсию, получаются в результате замены аргументов c ij соответствующими оценками, c ij , т. е. причем случайные векторы и определенные так же, как введенные выше (a ij ), (b ij ), (g ij ). и (d ij ), обладают свойством ортогональности, и значит, они представляют собой некоррелированные случайные векторы (иными словами, любые две компоненты, принадлежащие разным векторам, имеют нулевой корреляции). Кроме того, любая вида

некоррелирована с любой из компонент этих четырех векторов. Рассмотрим пять совокупностей случайных величин {x ijk }, {x ijk -x ij* }, Так как

то дисперсии эмпирич. распределений, соответствующих указанным совокупностям, выражаются формулами

Эти эмпирич. дисперсии представляют собой суммы квадратов случайных величин, любые две из к-рых некоррелированы, если только они принадлежат разным суммам; при этом относительно всех y ijk справедливо тождество

объясняющее происхождение термина "Д. а."" Пусть и пусть

в таком случае

где s 2 - дисперсия случайных ошибок y ijk .

На основе этих формул и строится второй этап Д. а., посвященный выявлению влияния первого и второго факторов на результаты эксперимента (в агрономич. опытах первый фактор - сорт "почвы", второй - способ "обработки"). Напр., если требуется проверить гипотезу отсутствия "взаимодействия" факторов, к-рая выражается равенствомто разумно вычислить дисперсионное отношение s 2 3 /s 2 0 = F 3 . Если это отношение значимо отличается от единицы, то проверяемая гипотеза отвергается. Точно так же для проверки гипотезы полезно отношение s 2 2 /s 2 0 = F 2 , к-рое надлежит также сравнить с единицей; если при этом известно, чтото вместо F 2 целесообразно сравнить с единицей отношение

Аналогичным образом можно построить статистику, позволяющую дать заключение о справедливости или ложности гипотезы

Точный смысл понятия значимого отличия указанных отношений от единицы может быть определен лишь с учетом закона распределения случайных ошибок y ijk . В Д. а. наиболее обстоятельно изучена ситуация, в к-рой все y ijk распределены нормально. В этом случае - независимые случайные векторы, а - независимые случайные величины, причем

отношения подчиняются нецентральным распределениям хи-квадрат с f m степенями свободы и параметрами нецентральности l т, m =0, 1, 2, 3, где

Если параметр нецентральности равен нулю, то нецентральное хи-квадрат совпадает с обычным распределением хи-квадрат. Поэтому в случае справедливости гипотезы l 3 =0 отношение подчиняется F-распре делению (распределению дисперсионного отношения) с параметрами f 3 и f 0 . Пусть х- такое число, для к-рого события {F 3 >x} равна заданному значению е, называемому уровнем значимости (таблицы функции х= х (e; f 3 , f 0) имеются в большинстве пособий по математич. статистике). Критерием для проверки гипотезы l 3 =0 служит правило, согласно к-рому эта гипотеза отвергается, если наблюдаемое значение F 3 превышает х;в противном случае гипотеза считается не противоречащей результатам наблюдений. Аналогичным образом конструируются критерии, основанные на статистиках F 2 и F* 2 .

Дальнейшие этапы Д. а. существенно зависят не только от реального содержания конкретной задачи, но также и от результатов статистич. проверки гипотез на втором этапе. Напр., в условиях агрономич. опытов справедливость гипотезы l 3 =0, как указано выше, позволяет более экономно спланировать аналогичные дальнейшие эксперименты (если помимо гипотезы l 3 =0 справедлива также и гипотеза l 2 =0, то это означает, что урожайность зависит лишь от сорта "почвы", и поэтому в дальнейших опытах можно воспользоваться схемой однофакторного Д. а.); если же гипотеза l 3 =0 отвергается, то разумно проверить, нет ли в данной задаче неучтенного третьего фактора? Если сорта "почвы" и способы ее "обработки" варьировались не в одном и том же месте, а в различных географич. зонах, то таким фактором могут быть климатич. или географич. условия, и "обработка" наблюдений потребует применения трехфакторного Д. а.

В случае экспертных оценок статистически подтвержденная справедливость гипотезы l 3 = 0 дает основание для упорядочивания сравниваемых объектов (напр., спортсменов) по значениям величин i=l, . .. , I.

Если же гипотеза l 3 =0 отвергается (в задаче о спортивных соревнованиях это означает статистич. обнаружение "взаимодействия" нек-рых спортсменов и судей), то естественно попытаться перевычнслить все результаты заново, предварительно исключив из рассмотрения x ijk с такими парами индексов (i, j ), для к-рых абсолютные значения статистич. оценок d ij превышают нек-рый заранее установленный допустимый уровень. Это означает, что из матрицы ||x ij* || вычеркиваются нек-рые элементы, и значит, план Д. а. становится неполным.

Модели современного Д. а. охватывают широкий круг реальных экспериментальных схем (напр., схемы неполных планов, со случайно или неслучайно отобранными элементами x ij* ). Соответствующие этим схемам статистич. выводы во многих случаях находятся в стадии разработки. В частности, еще (к 1978) далеки от окончательного решения те задачи, в к-рых результаты наблюдений x ijk =c ij +y ijk не являются одинаково распределенными случайными величинами; еще более трудная задача возникает в случае зависимости величин x ijk . Неизвестно проблемы выбора факторов (даже в линейном случае). Суть этой проблемы заключается в следующем: пусть с=с ( и, v )- и пусть u=u (z, w u=u (z, w )- какие-либо линейные функции от переменных г и w. Фиксируя значения z 1 , . .., z I и w 1 , . . ., w J , можно при каждом заданном выборе линейных функций ии u. определить c ij формулой и построить Д. а. этих величин по результатам соответствующих наблюдений x ijk . Проблема заключается в отыскании таких линейных функций u и u, к-рым соответствует минимальное значение суммы квадратов

где (предполагается, что функция с( и, v )неизвестна). В терминах Д. а. эта проблема сводится к статистич. отысканию таких факторов z=z (u, v w-w (u, v ), к-рым соответствует "наименьшее взаимодействие".

Лит. : Fisher R. A., Statistical methods for research workers, Edinburgh, 1925; Шеффе Г., Дисперсионный анализ, пер. с англ., М., 1963; Xальд А., Математическая с техническими приложениями, пер. с англ., М., 1956; Снедекор Д ж. У., Статистические методы в применении к исследованиям в сельском хозяйстве и биологии, пер. с англ., М., 1961.

Л. Н. Большее.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ДИСПЕРСИОННЫЙ АНАЛИЗ" в других словарях:

    Метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… … Википедия

    - (analysis of variance) Статистический метод, основанный на разложении общей дисперсии (variance) какой либо характеристики населения на составные части, коррелирующие с другими характеристиками, и остаточную вариацию (residual variation). В… … Экономический словарь

    Один из методов математической статистики, применяемый для анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, к рые не поддаются, как правило, количеств. описанию. Рассмотрим простейшую из задач Д. а. Пусть … Физическая энциклопедия

    Дисперсионный анализ - раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного, экономического эксперимента). Д.а. возник как средство обработки результатов… … Экономико-математический словарь

    дисперсионный анализ - — дисперсионный анализ Раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента (физического, производственного,… … Справочник технического переводчика