Протон состоит из кварков. Кварки. Элементарные частицы. Свойства кварков. Все только начинается

В котором есть информация о том, что все элементарные частицы, входящие в состав любого химического элемента, состоят из различного числа неделимых фантомных частичек По, мне стало интересно, почему же в докладе не говорится о кварках, ведь традиционно считается, что именно они являются структурными элементами элементарных частиц.

Теория кварков уже давно стала общепризнанной среди учёных, которые занимаются исследованиями микромира элементарных частиц. И хотя в самом начале введение понятия «кварк» было чисто теоретическим допущением, существование которого лишь предположительно подтвердилось экспериментально, на сегодняшний день этим понятием оперируют как непреклонной истинной. Учёный мир условился называть кварки фундаментальными частицами, и за несколько десятилетий это понятие стало центральной темой теоретических и экспериментальных изысканий в области физики высоких энергий. «Кварк» вошёл в программу обучения всех естественнонаучных ВУЗов мира. На исследования в данной области выделяются огромные средства - чего только стоит строительство Большого адронного коллайдера. Новые поколения учёных, изучая теорию кварков, воспринимают её в том виде, в каком она подана в учебниках, практически не интересуясь историей данного вопроса. Но давайте попробуем непредвзято и честно посмотреть в корень «кваркового вопроса».

Ко второй половине XX века, благодаря развитию технических возможностей ускорителей элементарных частиц - линейных и круговых циклотронов, а затем и синхротронов, учёным удалось открыть множество новых частиц. Однако что делать с этими открытиями они не понимали. Тогда была выдвинута идея, исходя из теоретических соображений, попытаться сгруппировать частицы в поисках некоего порядка (подобно периодической системе химических элементов - таблице Менделеева). Учёные условились тяжелые и средние по массе частицы назвать адронами , а в дальнейшем их разбить на барионы и мезоны . Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, назвали лептонами , они участвовали в электромагнитном и слабом взаимодействии . С тех пор физики пытались объяснить природу всех этих частиц, стараясь найти общую для всех модель, описывающую их поведение.

В 1964 году американские физики Мюррей Гелл-Ман (Лауреат Нобелевской премии по физике 1969 г.) и Джордж Цвейг независимо друг от друга предложили новый подход. Было выдвинуто чисто гипотетическое предположение, что все адроны состоят из трёх более мелких частиц и соответствующих им античастиц. И Гелл-Ман назвал эти новые частицы кварками. Занимательно, что само название он позаимствовал из романа Джеймса Джойса «Поминки по Финнегану», где герою во снах часто слышались слова о таинственных трёх кварках. То ли Гелл-Ман слишком эмоционально воспринял этот роман, то ли ему просто нравилось число три, но в своих научных трудах он предлагает ввести в физику элементарных частиц первые три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладающие дробным электрическим зарядом + 2 / 3 , — 1 / 3 и — 1 / 3 соответственно, а для антикварков принять, что их заряды противоположны по знаку.

Согласно данной модели протоны и нейтроны, из которых, как предполагают учёные, состоят все ядра химических элементов, составлены из трёх кварков: uud и udd соответственно (снова эти вездесущие три кварка). Почему именно из трёх и именно в таком порядке не пояснялось. Просто так придумали авторитетные научные мужи и всё тут. Попытки сделать теорию красивой не приближают к Истине, а лишь искривляют и без того кривое зеркало, в котором отражена Её частичка. Усложняя простое, мы отдаляемся от Истины. А всё так просто!

Вот так строится «высокоточная» общепризнанная официальная физика. И хотя изначально введение кварков предлагалось в качестве рабочей гипотезы, но спустя короткое время эта абстракция плотно вошла в теоретическую физику. С одной стороны, она позволила с математической точки зрения решить вопрос с упорядочиванием обширного ряда открытых частиц, с другой же, оставалась лишь теорией на бумаге. Как обычно это делается в нашем потребительском обществе, на экспериментальную проверку гипотезы существования кварков было направленно очень много человеческих сил и ресурсов. Средства налогоплательщиков расходуются, людям надо о чём-то рассказывать, отчёты показывать, говорить о своих «великих» открытиях, чтобы получить очередной грант. «Ну раз надо, значит сделаем», - говорят в таких случаях. И вот это случилось.

Коллектив исследователей Стэнфордского отделения Массачусетского технологического института (США) на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжёлый изотоп водорода, ядро которого содержит один протон и один нейтрон). При этом измерялись угол и энергия рассеяния электронов после столкновения. В случае малых энергий электронов рассеянные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман (Лауреат Нобелевской премии по физике 1965 г. и, кстати, один из создателей атомной бомбы в 1943-1945 годах в Лос-Аламосе) и Джеймс Бьёркен истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков .

Обратите, пожалуйста, внимание на этот ключевой момент. Экспериментаторы в ускорителях сталкивая пучки частиц (не единичные частицы, а пучки!!!), набирая статистику(!!!) увидели, что протон и нейтрон из чего-то там состоят. Но из чего? Они ведь не увидели кварки, да ещё и в числе трёх штук, это невозможно, они просто увидели распределение энергий и углы рассеяния пучка частиц. А поскольку единственной на то время теорией строения элементарных частиц, хоть и весьма фантастической, была теория кварков, то и посчитали этот эксперимент первой успешной проверкой существования кварков.

Позже, конечно же, последовали и другие эксперименты и новые теоретические обоснования, но суть их одна и та же. Любой школьник, прочитав историю данных открытий, поймёт, насколько всё в этой области физики притянуто за уши, насколько все банально нечестно.

Вот так и ведутся экспериментальные исследования в области науки с красивым названием - физика высоких энергий. Давайте будем честными сами перед собой, на сегодняшний день не существует чётких научных обоснований существования кварков. Этих частиц просто нет в природе. Понимает ли хоть один специалист, что на самом деле происходит при столкновении двух пучков заряженных частиц в ускорителях? То, что на этой кварковой теории строилась так называемая Стандартная модель, которая якобы является самой точной и правильной, ещё ни о чём не говорит. Специалистам хорошо известны все изъяны этой очередной теории. Вот только почему-то об этом принято умалчивать. Но почему? «И самая большая критика Стандартной модели касается тяготения и происхождения массы. Стандартная модель не учитывает тяготения и требует, чтобы масса, заряд и некоторые другие свойства частиц измерялись опытным путем для последующей постановки в уравнения» .

Несмотря на это огромные средства выделяются на эту область исследований, вдумайтесь только, на подтверждение Стандартной модели, а не поиски Истины. Построен Большой адронный коллайдер (CERN, Швейцария), сотни других ускорителей по всему миру, выдаются премии, гранты, содержится огромный штат технических специалистов, но суть всего этого - банальный обман, Голливуд и не более. Спросите любого человека - какую реальную пользу обществу приносят эти исследования - никто вам не ответит, поскольку это тупиковая ветвь науки. С 2012 года заговорили об открытии бозона Хиггса на ускорителе в CERN . История этих исследований - это целый детектив, в основе которого всё тот же обман мировой общественности. Занимательно, что этот бозон якобы открыли именно после того, как зашла речь о прекращении финансирования этого дорогостоящего проекта. И дабы показать обществу важность этих исследований, оправдать свою деятельность, дабы получить новые транши на строительство ещё более мощных комплексов, сотрудникам CERN, работающим в этих исследования, и пришлось пойти на сделку со своей совестью, выдавая желаемое за действительное.

В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» на этот счёт есть такая интересная информация: «Учёные обнаружили ча-стицу, предположительно похожую на бозон Хиггса (бозон был пред-сказан английским физиком Пите-ром Хиггсом (Peter Higgs; 1929), со-гласно теории, он должен обладать конечной массой и не иметь спина). На самом деле то, что обнаружили учёные, не является искомым бо-зоном Хиггса. Но эти люди, сами того ещё не осознавая, сделали действительно важное открытие и обнаружили гораздо большее. Они экспериментально обнаружили яв-ление, о котором подробно описа-но в книге «АллатРа» (примечание: книга «АллатРа», стр. 36 послед-ний абзац). .

Как же на самом деле устроен микромир материи? В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» есть достоверная информация об истинном строении элементарных частиц, знания, которые были известны и древним цивилизациям, чему есть неопровержимые доказательства в виде артефактов. Элементарные частицы состоят из различного числа фантомных частичек По . «Фантомная частичка По ‒ это сгусток, состоящий из септонов, вокруг которого находится небольшое разреженное собственное септонное поле. Фантомная частичка По имеет внутренний потенциал (является его носителем), обновляющийся в процессе эзоосмоса. Согласно внутреннему потенциалу, фантомная частичка По имеет свою соразмерность. Самой наименьшей фантомной частичкой По является уникальная силовая фантомная частичка По ‒ Аллат (примечание: подробнее см. далее по докладу) . Фантомная частичка По ‒ это упорядоченная структура, находящаяся в постоянном спиралевидном движении. Она может существовать только в связанном состоянии с другими фантомными частичками По, которые в конгломерате образуют первичные проявления материи. Вследствие своих уникальных функций, является своеобразным фантомом (призраком) для материального мира. Учитывая, что из фантомных частичек По состоит вся материя, это задаёт ей характеристику иллюзорной конструкции и формы бытия, зависимой от процесса эзоосмоса (наполнения внутреннего потенциала).

Фантомные частички По являются нематериальным образованием. Однако в сцепке (последовательном соединении) между собой, выстроенные согласно информационной программе в определённом количестве и порядке, на определённом расстоянии друг от друга, они составляют основу строения любой материи, задают её разнообразие и свойства, благодаря своему внутреннему потенциалу (энергии и информации). Фантомная частичка По ‒ это то, из чего состоят в своей основе элементарные частицы (фотон, электрон, нейтрино и так далее), а также частицы-переносчики взаимодействий. Это первичное проявление материи в этом мире» .

Проведя после прочтения данного доклада такое небольшое исследование истории развития теории кварков и в целом физики высоких энергий, стало понятно, как всё-таки мало знает человек, если ограничивает своё познание лишь рамками материалистического мировоззрения. Одни допущения от ума, теория вероятности, условная статистика, договорённости и отсутствие достоверных знаний. А ведь люди порой на эти исследования тратят свои жизни. Уверен, что среди учёных и этой области физики есть множество людей, которые действительно пришли в науку не ради славы, власти и денег, а ради одной цели - познания Истины. Когда им станут доступны знания «ИСКОННОЙ ФИЗИКИ АЛЛАТРА», они сами наведут порядок и сделают действительно эпохальные научные открытия, которые принесут реальную пользу обществу. С выходом в свет этого уникального доклада сегодня открыта новая страница мировой науки. Теперь уже стоит вопрос не в знаниях как таковых, а в том, готовы ли сами люди к созидательному использованию этих Знаний. В силах каждого человека сделать всё возможное, чтобы все мы преодолели навязанный нам потребительский формат мышления и пришли к пониманию необходимости создания основ построения духовно-созидательного общества будущего в грядущую эпоху глобальных катаклизмов на планете Земля.

Валерий Вершигора

Ключевые слова: кварки, теория кварков, элементарные частицы, бозон Хиггса, ИСКОННАЯ ФИЗИКА АЛЛАТРА, Большой адронный коллайдер, наука будущего, фантомная частичка По, септонное поле, аллат, познание истины.

Литература:

Коккедэ Я., Теория кварков, М., Издательство «Мир», 340 с., 1969, http://nuclphys.sinp.msu.ru/books/b/Kokkedee.htm ;

Arthur W. Wiggins, Charles M. Wynn, The Five Biggest Unsolved Problems in Science, John Wiley & Sons, Inc., 2003 // Уиггинс А., Уинн Ч. «Пять нерешённых проблем науки» в пер. на русский;

Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, 09 Jul 2012, CERN LHC, ATLAS, http://cds.cern.ch/record/1460439 ;

Observation of a new boson with a mass near 125 GeV, 9 Jul 2012, CERN LHC, CMS, http://cds.cern.ch/record/1460438?ln=en ;

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

Из-за обширной терминологии большинство популярных книг и статей по физике элементарных частиц не углубляются дальше самого факта существования кварков. Сложно что-либо обсуждать, если широкой аудитории не до конца понятны основные термины. Студент МФТИ и сотрудник лаборатории фундаментальных взаимодействий Владислав Лялин взял на себя функцию путеводителя в то, что называется Стандартной моделью, - главенствующую физическую теорию, объясняющую все известные науке частицы и их взаимодействие между собой, то есть устройство Вселенной на самом глубоком уровне.

Строение вещества

Итак, все состоит из молекул, а молекулы состоят из атомов. Атом состоит из ядра и облаков электронов вокруг него, которые совершают куда более сложные движения, чем просто вращение. Ядро примерно в 10 тысяч раз меньше размера атома, хотя это и есть почти вся его масса, и состоит из протонов и нейтронов. Как правило, на этом большинство школьных курсов физики заканчиваются, но на этом не заканчивается физика. В 50-х годах прошлого века ученые знали о существовании пяти частиц, которые они называли элементарными. Это были протон, нейтрон, электрон, фотон и электронное нейтрино. Уже через несколько десятков лет (с появлением первых коллайдеров) частиц, которые стоило бы причислить к элементарным, стало несколько десятков, и это число только росло. Термин «элементарная частица» пришлось пересматривать - и заодно придумывать новую теорию, еще сильнее углубляться в строение вещества. Со временем была создана теория, названная Стандартной моделью , описывающая все известные взаимодействия (кроме гравитации).

Еще с древних времен материя и силы (взаимодействия) в физике были отделены. Эта идея присутствует и в Стандартной модели. Все элементарные частицы в ней делятся на «кирпичики материи» - фермионы и переносчики взаимодействия - бозоны. Эти классы частиц сильно отличаются друг от друга, одним из самых ярких отличий является отсутствие принципа запрета Паули у бозонов. Грубо говоря, в одной точке пространства может быть не более одного фермиона, но сколько угодно бозонов.

Бозоны

В Стандартной модели всего шесть элементарных бозонов. Фотон не обладает электрическим зарядом, он передает электромагнитное взаимодействие - то самое, которое связывает атомы в молекулы. Глюон передает сильное взаимодействие и обладает своим видом заряда (об этом еще будет сказано). Именно сильное взаимодействие отвечает за ядерные силы, скрепляющие протоны и нейтроны в ядрах. W+, W- и Z0 означает, что бозоны заряжены соответственно положительно, отрицательно и нейтрально (не заряжены). Они отвечают за так называемое слабое взаимодействие, которое умеет превращать одни частицы в другие. Самый простой пример слабого взаимодействия - распад нейтрона: один из кварков, составляющих нейтрон, излучает W-бозон и превращается в другой кварк, а W-бозон распадается на электрон и нейтрино.

Остается последний бозон - бозон Хиггса. Теоретически он был предсказан еще в 60-х годах прошлого века, но экспериментально его существование было доказано только в 2013 году. Он отвечает за инертную массу элементарных частиц - именно массу, ответственную за эффекты инерции, а не притяжения. Квантовой теории, которая связала бы и инерцию, и гравитацию, пока что нет.

Фермионы

Элементарных фермионов гораздо больше, чем элементарных бозонов. Их делят на два класса: лептоны и кварки. Они отличаются тем, что кварки участвуют в сильном взаимодействии, а лептоны - нет.

Лептоны

Лептоны бывают трех поколений, в каждом поколении два лептона - один заряженный и один нейтральный. Первое поколение: электрон и электронное нейтрино, второе - мюон и мюонное нейтрино, третье - тау-лептон и тау-нейтрино. Лептоны очень похожи друг на друга, мюоны и тау-лептоны (так же как и электроны) могут образовывать атомы, заменяя на орбиталях электроны. Главное их отличие - в массе: мюон в 207 раз тяжелее электрона, а тау-лептон в 17 раз тяжелее мюона. С нейтрино должна быть похожая история, но их массы настолько малы, что до сих пор не измерены. Эти массы точно ненулевые, доказательство этого факта было отмечено Нобелевской премией в 2015 году. Мюон и тау-лептон нестабильны: время жизни мюона примерно 0,2 миллисекунды (что на самом деле довольно долго), тау-лептон распадается примерно в 17 раз быстрее. Особенности нейтрино состоят в том, что они участвуют только в слабом взаимодействии, из-за этого их очень трудно засечь. Также они могут произвольно менять свой сорт: к примеру, электронное нейтрино может внезапно превратиться в мюонное, или наоборот. В отличие от бозонов, у лептонов существуют античастицы. Таким образом, всего лептонов не 6, а 12.

Кварки

В английском слово funny может иметь значения «забавный» и «странный». Вот кварки как раз и есть funny. Они забавно называются: верхний, нижний, странный, очарованный, прелестный и истинный. И они очень странно себя ведут. Существует три поколения кварков, по два кварка в каждом, и точно так же у них у всех существуют античастицы. Кварки участвуют как в электромагнитном и слабом взаимодействиях, так и в сильном. Для заметки: фермионы, участвующие в сильном взаимодействии, называются адронами; таким образом, адроны - это частицы, состоящие из кварков. Поэтому Большой адронный коллайдер, собственно, называется адронным: там сталкивают протоны или ядра атомов (адроны), но не электроны. Кварки любят образовываться в частицы из трех и двух кварков, но никогда не появляются по одному. В этом и заключается их странность. Частицы из трех кварков называют барионами, а из двух - мезонами.

Почему они так делают? Это происходит из-за особенностей сильного взаимодействия, которое удерживает кварки в адронах. Сильное взаимодействие очень интересно: вместо одного заряда, как в электромагнитном, у сильного их бывает три. И оказывается, что существуют только нейтральные частицы, а нейтральной частица может быть, только если в ней есть либо три разных заряда одного знака, либо два одинаковых заряда разного знака. Из-за этой особенности (и для удобства) заряды начали называть красным, зеленым и синим, а соответствующие отрицательные заряды - антикрасным, антизеленым и антисиним. Получается, что если взять красный, зеленый и синий, мы получим белый, то есть нейтральный; если взять красный и антикрасный, мы тоже получим белый. Это легко запоминается, но стоит подчеркнуть, что это не имеет никакого отношения к цветам, к которым мы привыкли в жизни. Это просто красивая и удобная аналогия со смешиванием. В Стандартной модели каждый кварк может быть любого из трех цветов, а антикварк - любого из трех «антицветов». Получается, что ни один из кварков не может быть непосредственно зарегистрирован, ведь свободно существовать могут только бесцветные частицы, а кварки «раскрашены». Эта особенность их поведения называется конфайнментом, что с английского дословно переводится как «заточение».

Конфайнмент

Хорошо - допустим, что кварки не могут существовать свободно. Но что если просто взять мезон, состоящий из двух кварков, и разорвать его на две части? Не получим ли мы два кварка? (На самом деле нет.) Представьте, что мезон очень сильно растягивают. В отличие от электромагнитного, сильное взаимодействие тем сильнее до определенного предела, чем взаимодействующие частицы дальше друг от друга. Это похоже на пружину: чем сильнее ее растягивать, тем сильнее она будет сжиматься и тем больше у нее будет энергии. Чтобы сильнее стягивать кварки, сильное взаимодействие создает новые глюоны. И чем дальше мы их растягиваем, тем больше глюонов создается. Но в какой-то момент энергия этих созданных глюонов становится настолько большой, что выгоднее становится создать новую пару кварк-антикварк, чем продолжать плодить глюоны. Много глюонов исчезает, вместо них появляются кварк и антикварк. В момент появления кварк-антикварковой пары из четырех кварков создаются два мезона, каждый из которых бесцветен.

Может показаться, что теория замкнута сама на себе и что кварков на самом деле не существует, а конфайнмент, по сути, костыль, который придумали только для того, чтобы прекратить поиски кварков; что это просто удобная модель, которая не имеет под собой физического обоснования. Долгое время в научных кругах ходила такая мысль. Однако поздние теоретические исследования и недавние экспериментальные показывают, что при определенных условиях кварки могут покидать адроны. Более того, это состояние материи существовало практически сразу после большого взрыва, и только после сильного охлаждения кварки связались в адроны. Такое состояние материи сейчас исследуют на Большом адронном коллайдере в эксперименте ALICE. Для его получения нужна температура в два триллиона градусов. Это состояние материи называется кварк-глюонной плазмой.

Для понимания, что есть кварк-глюонная плазма, стоит провести аналогию. Представьте себе воду в невесомости. Она находится в жидком агрегатном состоянии, и из-за сил поверхностного натяжения она имеет вид шара - можно сказать, что она заточена в этот шар. Начнем повышать температуру. Когда она достигнет 100 градусов, вода начнет кипеть, активно испаряться и со временем полностью станет паром, у которого уже не будет силы поверхностного натяжения. Явление превращения воды в пар называется фазовым переходом. Если продолжить нагревать пар, то примерно при 1 400 градусах молекулы воды разделятся на водород и кислород - сдиссоциируют, - и вода станет смесью кислородной и водородной плазм. Это еще один фазовый переход. Теперь возьмем газ - но не из молекул воды, а из адронов - и начнем его нагревать. Придется нагревать весьма сильно, потому что для фазового перехода нужна температура примерно в два триллиона градусов. При такой температуре адроны как бы «диссоциируют» в свободные кварки и глюоны. Таким образом, адрон совершит фазовый переход в состояние кварк-глюонной плазмы. Это явление называется деконфайнментом, то есть процессом освобождения кварков из адронов.

В поисках теории всего

Последнего экспериментального подтверждения Стандартная модель ждала около 50 лет, но теперь бозон Хиггса найден - что дальше? Можно ли думать, что великие открытия закончились? Конечно, нет. Стандартная модель изначально не претендовала на звание теории всего (ведь она не включает в себя описание гравитации). Более того, в декабре прошлого года ATLAS и CMS в коллаборации опубликовали статьи о возможном обнаружении новой тяжелой частицы, не вписывающейся в Стандартную модель. И физики не грустят, а, наоборот, рады, ведь сам Большой адронный коллайдер строили не для того, чтобы подтверждать уже известное, а чтобы открывать новое. И так же «новая физика» не говорит о том, что Стандартная модель будет вычеркнута и предана анафеме. Мы ученые, и если что-то точно работает (а Стандартная модель это доказала), то оно должно быть частным случаем любой новой теории, иначе новая теория будет противоречить старым экспериментам. Для примера: механика Ньютона является прекрасной моделью для описания движения с низкими (значительно меньше скорости света) скоростями - несмотря на то, что сейчас мы знаем специальную теорию относительности. Точно так же, когда появятся новые модели (или модификации Стандартной), будут существовать условия, при которых будет верно то, что мы знаем сейчас.

Не пропустите следующую лекцию:

Теория кварков была разработана для того, чтобы описывать взаимодействие частиц. Важно отметить, что в свободном состоянии кварк в природе не встретить, так как кварк, строго говоря, сам по себе не является частицей. Это способ конфигурации электромагнитной волны в частице, а частица обычно включает в себя далеко не одну такую волну. Заряд кварка равен одной трети заряда электрона, а его масштаб составляет 0,5*10^-19 (10 в минус девятнадцатой степени), это меньше размера протона примерно в 20 тыс. раз. Адроны (к которым относится протон ) тоже состоят из кварков.

На настоящее время различают шести типов кварков, как правило, говорят, «ароматов». Помимо этого, кварк также имеет еще одну характеристику, важную для различения типа, это цвет. Очевидно, что это абстрактное деление, настоящий кварк, конечно же, не имеет ни цвета, на аромата. Но для калибрования кварков эта теория очень удобна. Каждому типу кварка соответствует антикварк – то есть, «частица», квантовые числа которой противоположны. Квантовые числа служат для описания свойств кварка.

История о том, как кварки получили свое название, достаточно забавна. Гелл-Манн, ученый, который впервые предположил, что адроны состоят из особенных частиц, позаимствовал это словечко из романа Джеймса Джойса «Поминки по Финнегану», в котором присутствуют : «Три кварка для мистера Марка!».

Теорию кварков вообще можно назвать одной из самых поэтичных. Тут и , и характеристики цвета и аромата, и сами типы кварков: истинный, очарованный, … Каждый тип кварка характеризуется зарядом и массой.

Роль кварков в физике

На основе кварков происходят сильное, слабое и электромагнитное взаимодействия. При сильных взаимодействиях может меняться цвет кварка, но не аромат. Слабые взаимодействия меняют аромат, но не цвет.

При сильном взаимодействии один отдельно взятый кварк не может удалиться от остальных кварков на сколько-нибудь заметное расстояние, именно поэтому в свободном виде их наблюдать невозможно. Это явление называется конфайнмент. Но адроны – «бесцветные» комбинации кварков – уже могут разлетаться друг от друга.

Реальны ли кварки?

Так как из-за конфайнмента увидеть отдельные кварки невозможно, то нередко неспециалисты спрашивают: «Реальны ли вообще кварки, если мы не можем их наблюдать? Не математическая ли это абстракция?»

Причин реальности теории кварков несколько:

Все адроны, несмотря на их многочисленность, обладают очень небольшим числом степеней свободы. Первоначально теория кварков описывала именно эти свободные параметры.
- Кварковая модель появилась раньше, чем стали известны многие адронные частицы, но все они в нее отлично вписывались.
- Кварковая модель некоторые последствия, которые затем были подтверждены экспериментально. Например, в адронных коллайдерах стало возможно «выбивать» кварки из протонов при высокоэнергетических столкновениях, и результаты этих процессов наблюдались в виде струй. Если бы протон был неделимой частицей, никаких струй бы не могло существовать.

Разумеется, несмотря на экспериментальные подтверждения, модель кварков еще оставляет физикам немало вопросов.

Самым распространенным минералом в земной коре является кварц. Он относится к породообразующим минералам. Встретить в природе кварц можно как в чистом виде, так и в виде силикатов.

Образование кварца

Название минерала произошло от немецкого слова «quarz». В переводе на русский оно означает «твердый». Впервые человек столкнулся с этим минералом в Альпах. Тогда все приняли его за лед. Но вскоре ему присвоили название «горный хрусталь».

Кристаллы кварца образуются в результате геологических изменений. Минерал не имеет цвета, но в отдельных случаях может иметь белые вкрапления. Происходит это из-за внутренних дефектов. Благодаря химическим реакциям, можно получить зеленый и голубой кварц.

Самым распространенным способом образования кварца в природе является возникновенье с помощью магмы кислого состава. Появившийся таким способом кварц можно встретить в вулканических, осадочных или известняковых породах.

Свойства кварца

Кварц имеет стеклянный блеск с жирным отливом. Твердость минерала равна семи по шкале Мооса. Если отломить кусочек кварца, то можно увидеть неровный излом.

Растворить этот минерал поможет щелочь. Температура его плавления примерно +1713 градусов Цельсия.Кварц имеет способность к стеклообразованию.

Самым важным свойством кварца является пьезоэффект. Суть его проста и заключается в том, что кварц является отличным проводником ультразвука. Плоская полированная пластина кварца с прикрепленными электродами образовывает резонатор. Он широко используется в качестве фильтра с высокой избирательной способностью.

Применение кварца

В настоящее время кварц является одним из самых ценных минералов. Его используют при производстве многих оптических приборов, а также при создании средств связи, таких как радио и телефон.

Кварц широко используется при создании ювелирных украшений. Благодаря своему главному свойству он используется и для военных нужд (кварцевый резонатор). Также в настоящее время кварц используют как источник ультразвука в промышленных и медицинских исследовательских и даже бытовых приборах.

Разновидности кварца

Существует множество разновидностей кварца. Связано это с его уникальностью. Проявляется она в том, что во время роста кристалл может захватывать другие минералы или остатки ила.

Самыми редкими и удивительными камнями считаются «Волосы Венеры» и кварц «фантом». Горный хрусталь молочного или дымчатого цвета с включениями золотистых волков является наиболее ценным. Легенда гласит, что богиня любви уронила свой локон в горную речку, и там он навсегда, превратившись в «Волосы Венеры».

Кварц фантом образовывается оседанием мельчайших частиц хлорита на растущий кристалл кварца. Такой камень является редкой и особенно ценной находкой для ученых и коллекционеров.

Раухтопаз выступает разновидностью кварца. В народе его называют дымчатым кварцем за его светло-серый или светло-бурый цвет.

Самый дорогой разновидности кварца является аметист. Он относится к драгоценным камням и имеет фиолетовый, фиолетово-розовый или сиренево-красный цвет.

Кварк-частица со спином 1/2 и дробным электрическим зарядом, являющаяся составным элементом адронов. Это название было заимствовано М. Гелл-Маном в одном из романов Дж. Джойса. По-немецки «кварк» - «творог», но в романе это слово означает нечто двусмысленное и таинственное; герою снится сон, где чайки кричат: «Три кварка для мастера Марка». Термин вошел в научный обиход, возможно, потому, что соответствовал двусмысленной и таинственной роли кварков в физике.

Все известные адроны состоят либо из пары кварк - антикварк (мезоны), либо из трех кварков (барионы). Кварки (и антикварки) удерживаются внутри адронов глюонным полем. Помимо спина кварки имеют еще две внутренние степени свободы - «аромат» и «цвет».

Каждый кварк может находиться в одном из трех «цветовых» состояний, которое условно называют «красным», «синим» и «желтым». Эта терминология введена для удобства и не имеет отношения к оптическим свойствам - все три «цветовых» состояния одинаково поглощают и испускают кванты света. Массы всех цветовых состояний также строго одинаковы.

Что касается «ароматов», то их известно пять и предполагается наличие шестого. Свойства кварков с различными «ароматами» различны, и поэтому их обозначают различными буквами, в порядке возрастания массы: u, d, s, с, b, t. Последний t-кварк настолько тяжел, что его пока не удалось наблюдать. Заряды d-, s-, b-кварков равны - 1 /3, а заряды остальных кварков равны 2/3 в единицах заряда протона.

Подсчитаем полное число внутренних степеней свободы. Каждый кварк u, d, s, с, b, t может быть окрашен в любой из трех цветов, иметь по два спиновых состояния ± 1/2 и по два зарядовых состояния (частица и античастица),. Это дает 6X3X2X2, т. е. 72 варианта.

Обычное вещество состоит из легчайших u- и d- кварков, входящих в состав нуклонов ядер (см. Ядро атомное). Более тяжелые кварки создаются искусственно в экспериментах на ускорителях заряженных частиц или наблюдаются в космических лучах.

Слова «создаются» и «наблюдаются» нуждаются в оговорке. Ни один кварк - ни легкий, ни тяжелый - ни разу не был зарегистрирован в свободном виде, несмотря на многолетние поиски. Кварки можно наблюдать только внутри адронов.

При попытке выбить кварк из адрона происходит следующее. Вылетающий кварк рождает на своем пути из вакуума пары кварк - антикварк, расположенные в порядке убывания скоростей. Один из медленных кварков занимает место исходного, а тот образует вместе с остальными рожденными кварками и антикварками струю адронов (см. рис.).

При этом либо тройки кварков соединяются в барионы, либо пары кварк - антикварк - в мезоны. Почему же невозможны другие комбинации, и в частности одиночный кварк? Эта загадка пока еще не разгадана наукой (см. Адро-ны, Сильные взаимодействия).

Кварки участвуют во всех известных взаимодействиях - гравитационных, слабых, электромагнитных и сильных. Неизвестно, из чего состоят сами кварки; возможно, они элементарны. Их собственный размер, во всяком случае, меньше 10 -16 см.

Участвует во взаимодействиях гравитационное ,
слабое , сильное , электромагнитное Античастица антикварк (q ) Теоретически обоснована М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году Обнаружена SLAC (~1968) Кол-во типов 6 (нижний , верхний , странный , очарованный , прелестный , истинный) Квантовые числа Электрический заряд Кратен /3 Цветной заряд r, g, b Барионное число 1/3 Спин ½ ħ

В настоящее время известно 6 разных «сортов» (чаще говорят - «ароматов ») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет ». Каждому кварку соответствует антикварк - античастица с противоположными квантовыми числами .

Свойства кварков

Символ Название Заряд Масса
рус. англ.
Первое поколение
d нижний down − 1 / 3 4,8 ± 0,5 ± 0.3 МэВ / ²
u верхний up + 2 / 3 2,3 ± 0,7 ± 0.5 МэВ/c²
Второе поколение
s странный strange − 1 / 3 95±5 МэВ/c²
c очарованный charm (charmed ) + 2 / 3 1275 ± 25 МэВ /c²
Третье поколение
b прелестный beauty (bottom ) − 1 / 3 4180 ± 30 МэВ/c²
t истинный truth (top ) + 2 / 3 174 340 ± 650 МэВ/c²

В силу неизвестных пока причин, кварки естественным образом группируются в три так называемые поколения (они так и представлены в таблице). Кварки имеют дробный электрический заряд , а в каждом поколении один кварк обладает зарядом + 2 3 {\displaystyle +{\frac {2}{3}}} , а другой − 1 3 {\displaystyle -{\frac {1}{3}}} . Кварки одного поколения были бы неразличимы, если бы не поле Хиггса . Подразделение на поколения распространяется также и на лептоны .

Кварки порождаются глюонами только парой кварк-антикварк .

Реальность кварков

Из-за непривычного свойства сильного взаимодействия - конфайнмента - часто неспециалистами задаётся вопрос: а откуда мы уверены, что кварки существуют, если их никто никогда не увидит в свободном виде? Может, они - лишь математическая абстракция , и протон вовсе не состоит из них?

Причины, по которым кварки считают реально существующими объектами, таковы:

  • Во-первых, в 1960-х годах стало ясно, что все многочисленные адроны подчиняются более или менее простой классификации: сами собой объединяются в мультиплеты и супермультиплеты . Иными словами, при описании всех этих мультиплетов требуется очень небольшое число свободных параметров. То есть, все адроны обладают небольшим числом степеней свободы : все барионы с одинаковым спином обладают тремя степенями свободы, а все мезоны - двумя. Первоначально гипотеза кварков как раз и заключалась в этом наблюдении, и слово «кварк», по сути, было краткой формой фразы «субадронная степень свободы».
  • Далее, при учёте спина оказалось, что каждой такой степени свободы можно приписать спин ½ и, кроме того, каждой паре кварков можно приписать орбитальный момент - словно они и есть частицы, которые могут вращаться друг относительно друга. Из этого предположения возникло стройное объяснение и всему разнообразию спинов адронов, а также их магнитных моментов .
  • Более того, с открытием новых частиц выяснилось, что никаких модификаций теории не требуется: каждый новый адрон удачно вписывался в кварковую конструкцию без каких-либо её перестроек (если не считать добавления новых кварков).
  • Как проверить, что заряд у кварков действительно дробный? Кварковая модель предсказывала, что при аннигиляции высокоэнергетических электрона и позитрона будут рождаться не сами адроны, а сначала пары кварк-антикварк, которые потом уже превращаются в адроны. Результат расчёта течения такого процесса напрямую зависел от того, каков заряд рождённых кварков. Эксперимент полностью подтвердил эти предсказания .
  • С наступлением эры ускорителей высокой энергии стало возможным изучать распределение импульса внутри, например, протона. Выяснилось, что импульс в протоне не распределён равномерно по нему, а частями сосредоточен в отдельных степенях свободы. Эти степени свободы назвали партонами (от англ. part - часть). Более того, оказалось, что партоны, в первом приближении, обладают спином ½ и теми же зарядами, что и кварки. С ростом энергии оказалось, что количество партонов растёт, но такой результат и ожидался в кварковой модели при сверхвысоких энергиях .
  • С повышением энергии ускорителей стало возможным также попытаться выбить отдельный кварк из адрона в высокоэнергетическом столкновении. Кварковая теория давала чёткие предсказания, как должны были выглядеть результаты таких столкновений - в виде струй . Такие струи действительно наблюдались в эксперименте. Заметим, что если бы протон ни из чего не состоял, то струй бы заведомо не было .
  • При высокоэнергетических столкновениях адронов вероятность того, что адроны рассеются на некоторый угол без разрушения, уменьшается с ростом величины угла. Эксперименты подтвердили, что, например, для протона скорость получается точно такая, какая ожидается для объекта, состоящего из трёх кварков .
  • При столкновениях протонов с высокими энергиями экспериментально наблюдается аннигиляция кварка одного протона с антикварком другого протона с образованием пары мюон-антимюон (процесс Дрелла - Яна) .
  • Кварковая модель с позиций взаимодействия кварков между собой при помощи глюонов хорошо объясняет расщепление масс между членами декуплета Δ − − Σ − − Ξ − − Ω − {\displaystyle \Delta ^{-}-\Sigma ^{-}-\Xi ^{-}-\Omega ^{-}} .
  • Кварковая модель хорошо объясняет расщепление масс между Ξ − − Ξ 0 {\displaystyle \Xi ^{-}-\Xi ^{0}} .
  • Кварковая модель предсказывает для отношения магнитных моментов протона и нейтрона величину μ P μ N = − 3 2 , {\displaystyle {\frac {\mu _{P}}{\mu _{N}}}=-{\frac {3}{2}},} что находится в хорошем соответствии с экспериментальным значением −1,47. Для отношения магнитных моментов гиперона и протона теория кварков предсказывает величину μ Λ μ P = − 1 3 {\displaystyle {\frac {\mu _{\Lambda }}{\mu _{P}}}=-{\frac {1}{3}}} , что также находится в хорошем соответствии с экспериментальным значением −0,29 ± 0,05 .
  • Есть и много других экспериментальных подтверждений кварковой модели строения адронов .

В целом, можно сказать, что гипотеза кварков и всё, что из неё вытекает (в частности, КХД), является наиболее консервативной гипотезой относительно строения адронов, которая способна объяснить имеющиеся экспериментальные данные. Попытки обойтись без кварков наталкиваются на трудности с описанием всех тех многочисленных экспериментов, которые очень естественно описывались в кварковой модели.

Кварковая модель была признана физическим сообществом в 1976 году .

Открытые вопросы

В отношении кварков остаются вопросы, на которые пока нет ответа:

Впрочем, история с адронами и кварками, а также симметрия между кварками и лептонами, наводит на подозрение, что кварки могут сами состоять из чего-то более простого. Рабочее название для гипотетических частиц-составляющих кварков - преоны . С точки зрения данных экспериментов, до сих пор никаких подозрений на неточечную структуру кварков не возникало. Однако попытки построить такие теории делаются независимо от экспериментов. Серьёзных успехов в этом направлении пока нет.

Другой подход состоит в построении теории Великого объединения . Польза от такой теории была бы не только в объединении сильного и электрослабого взаимодействий, но и в едином описании лептонов и кварков. Несмотря на активные усилия, построить такую теорию также пока не удалось.

Альтернативные модели

Название

См. также

Примечания

  1. Удивительный мир внутри атомного ядра Вопросы после лекции (неопр.) .
  2. КВАРКИ Большая Российская Энциклопедия (неопр.) .
  3. Кварки и восьмеричный путь
  4. кварки
  5. КВАРКИ Кварковая структура адронов
  6. Основные понятия и законы физики и свойства элементарных частиц материи Лев Окунь Электромагнитное взаимодействие Нейтральные частицы.
  7. Физика элементарных частиц в преддверии запуска Большого адронного коллайдера В. А. Рубаков Научно-популярная лекция для школьников, ФИАН, 25 сентября 2008 года
  8. Классификация адронов Кварки и их свойства
  9. Э. Э. Боос, О. Брандт, Д. Денисов, С. П. Денисов, П. Граннис. Top-кварк (к 20-летию открытия) // УФН . - 2015. - Т. 185 . - С. 1241–1269 . - DOI :10.3367/UFNr.0185.201512a.1241 .
  10. На берегу океана непознанного: иллюзия простоты
  11. «Частица на краю Вселенной». Глава из книги Шон Кэрролл Симметрии слабых взаимодействий
  12. Игорь Иванов, кандидат физико-математических наук (Институт математики СО РАН, Новосибирск, и Льежский университет, Бельгия). Анатомия одной новости, или Как на самом деле физики изучают элементарные частицы: Почему кварки не бывают свободными . - Элементы.ру.
  13. , с. 40.
  14. Герасимов С. Б. Цвейга правило // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Большая российская энциклопедия, 1999. - Т. 5: Стробоскопические приборы - Яркость. - С. 418. - 692 с. - 20 000 экз. - ISBN 5-85270-101-7 .