Химические реакции горения. Горение. Кинетические основы газовых реакций

Оригинальный документ ?

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ ГОРЕНИЯ

Химические процессы при горении. Природа горючих веществ. Лекция 3

Пожаровзрывоопасностъ веществ и материалов - это совокупность свойств, характеризующих их способность к возникновению и распростране­нию горения.

Следствием горения в зависимости от его скорости и условий протека­ния может быть пожар или взрыв.

Пожаровзрывоопасность веществ и материалов характеризуется пока­зателями, выбор которых зависит от агрегатного состояния вещества (мате­риала) и условий его применения.

При определении пожаровзрывоопасности веществ и материалов раз­личают следующие агрегатные состояния:

газы - вещества, давление насыщенных паров которых при нормаль­ных условиях (25°С и 101325 Па) превышает 101325 Па;

жидкости - вещества, давление насыщенных паров которых при нор­мальных условиях (25°С и 101325 Па) меньше 101325 Па. К жидкостям отно­сятся также твердые плавящиеся вещества, температура плавления или каплепадения которых ниже 50°С ;

твердые вещества и материалы - индивидуальные вещества и их сме­совые композиции с температурой плавления каплепадения выше 50°С , а также вещества, не имеющие температуру плавления (например, древесина, ткани, торф;

пыли - диспергированные вещества и материалы с размером частиц менее 850 мкм.

Горение как химическая реакция окисления веществ с участием кислорода

Горение - один из первых сложных физико-химических процессов, с которым человек встретился еще на заре своего развития. Процесс, овладев которым, он получил огромное превосходство над окружающими его живы­ми существами и силами природы.

Горение - одна из форм получения и преобразования энергии, основа многих технологических процессов производства. Поэтому человек постоян­но изучает и познает процессы горения.

История науки о горении начинается с открытия М.В. Ломоносова: "Горение есть соединение вещества с воздухом". Это открытие послужило основанием для открытия закона сохранения массы веществ пр и их физических и химических превращениях. Лавуазье уточнил определение процесса горения "Горение есть соединение вещества не с воздухом, а с кислородом воздуха".

В дальнейшем существенный вклад в изучение и развитие науки горении внесли советские и российские ученые А.В. Михельсон , Н.Н. Семенов, Я.В. Зельдовия , Ю.Б. Харитон, И.В. Блинов и др.

В основе процесса горения лежат экзотермические окислительно-восстановительные реакции, которые подчиняются законам химической кинетики, химической термодинамики и другим фундаментальным законам (закону сохранения массы, энергии и т.д.).

Горением называется сложный физико-химический процесс, при котором горючие вещества и материалы под воздействием высоких температур вступают в химическое взаимодействие с окислителем (кислоро­дом воздуха), превращаясь в продукты горения, и который сопровождается интенсивным выделением тепла и световым свечением.

В основе процесса горения лежит химическая реакция окисления, т.е. соединения исходных горючих веществ с кислородом. В уравнениях химиче­ских реакций горения учитывают и азот, который содержится в воздухе, хотя в реакциях горения не участвует. Состав воздуха условно принимают посто­янным , содержащим 21 % по объему кислорода и 79 % азота (в весовых со­ответственно 23 % и 77 % азота), т.е. на 1 объем кислорода приходится 3.76 объема азота. Или на 1 моль кислорода приходится 3.76 моль азота. Тогда, например, реакцию горения метана в воздухе можно записать так:

СН 4 + 2О 2 + 2 ´ 3.76 N 2 = СО 2 + 2Н 2 О + 2 ´ 3.76 N 2

Азот в уравнениях химических реакций учитывать необходимо потому, что он поглощает часть тепла, выделяемого в результате реакций горения, и вхо­дит в состав продуктов горения - дымовых газов.

Рассмотрим процессы окисления.

Окисление водорода осуществляется по реакции:

Н 2 + 0.5О 2 = Н 2 О.

Экспериментальные данные о реакции между водородом и кислородом много­численны и разнообразны. В любом реальном (высокотемпературном) пла­мени в смеси водорода и кислорода, возможно образование радикала * ОН или атомов водорода Н и кислорода О , которые инициируют окисление во­дорода до паров воды.

Горение углерода . Углерод, образующийся в пламенах , может быть газооб­разным, жидким или твердым. Его окисление независимо от агрегатного со­стояния происходит за счет взаимодействия с кислородом. Горение может быть полным или неполным, что определяется содержанием кислорода:

С + О 2 = СО 2 (полное) 2С + О 2 = 2СО (неполное)

Гомогенный механизм не исследован (углерод в газообразном состоянии). Взаимодействие углерода в твер­дом состоянии наиболее изучено. Этот процесс схематически можно пред­ставить из следующих этапов:

1. доставка окислителя (О 2 ) к поверхности раздела фаз путем молекулярной и конвективной диффузии;

2. физическая адсорбция молекул окислителя;

3. взаимодействие адсорбированного окислителя с поверхностными атомами углерода и образование продуктов реакции;

4.десорбция продуктов реакции в газовую фазу.

Горение окиси углерода . Суммарная реакция горения окиси углерода запишется СО + 0.5О 2 = СО 2 , хотя окисление монооксида углерода имеет более сложный механизм Основные закономерности горения окиси углерода можно объяснить на ос­новании механизма горения водорода, включая в него реакции взаимодейст­вия окиси углерода с образующимся в системе гидрооксидом и атомным ки­слородом, т.е. процесс этот многостадийный:

* ОН + СО = СО 2 + Н;О + СО = СО 2

Прямая реакция СО + О 2 -> СО 2 маловероятна, так как реальные сухие смеси СО и О 2 характеризуются чрезвычайно низкими скоростями горения или не могут воспламениться вообще.

Окисление простейших углеводородо в. Метан горит с образованием диоксида углерода и паров воды:

СН 4 + О 2 = СО 2 + 2Н 2 О.

Но этот процесс на самом деле включает в себя целый ряд реакций, в которых участвуют моле­кулярные частицы с высокой химической активностью (атомы и свободные радикалы): * СН 3 , * Н, * ОН. Хотя эти атомы и радикалы существуют в пламени короткое время, они обеспечивают быстрый расход горючего. В процессе го­рения природного газа возникают комплексы углерода, водорода и кислоро­да, а также комплексы углерода и кислорода, при разрушении которых обра­зуются СО, СО 2 , Н 2 О. Предположительно схему горения метана можно запи­сать так:

СН 4 → С 2 Н 4 →С 2 Н 2 →углеродистые продукты+О 2 → C x U y O z CO , СО 2 ,Н 2 О.

Термическое разложение, пиролиз твердых веществ

При повышении температуры твердого горючего материала происхо­дит разрыв химических связей с образованием более простых компонентов (твердых, жидких, газообразных). Этот процесс называется термическим раз­ложением или пиролизом . Термическое разложение молекул органических соединений происходит в пламени, т.е. при повышенных температурах вбли­зи поверхности горения. Закономерности разложения зависят не только от горючего, но и от температуры пиролиза, скорости ее изменения, размеров образца, его формы, степени распада и т.д.

Рассмотрим процесс пиролиза на примере наиболее распространенного твердого горючего материала - древесины.

Древесина представляет собой смесь большого количества веществ различного строения и свойств. Основными ее компонентами являются гемицеллюлоза (25 %), целлюлоза (50 %), лигнин (25 %). Гемицеллюлоза со­стоит из смеси пентазанов (С 5 Н 8 О 4), гексазанов (С 6 Н 10 О 5), полиуронидов . Лигнин имеет ароматическую природу и содержит связанные с ароматиче­скими кольцами углеводы. В среднем древесина содержит 50 % С , 6 % Н, 44 % О. Это пористый материал, объем пор в котором достигает 50 - 75 %. Наи­менее термостойким компонентом древесины является гемицеллюлоза (220 - 250°С), наиболее термостойким компонентом - лигнин (интенсивное его разложение наблюдается при температуре 350 - 450°С). Итак, разложение древесины состоит из следующих процессов:

пп

Температура,°С

Характеристика процессов

до 120 - 150

сушка, удаление физически связанной воды

150 - 180

Разложение наименее стойких компонентов (лумино-вых кислот) с выделением СО 2 , Н 2 О

250 - 300

пиролиз древесины с выделением СО, СН 4 , Н 2 , СО 2 , Н 2 О и т.д.; образующаяся смесь способна воспламе­няться от источника зажигания

350 - 450

Интенсивный пиролиз с выделением основной массы горючих веществ (до 40 % от всей массы); газообраз­ная смесь состоит из 25 % Н 2 и 40 % предельных и ненасыщенных углеводородов; обеспечивается мак­симальная поставка летучих компонентов в зону пла­мени; процесс на этой стадии экзотермический; коли­чество тепла, которое выделяется, достигает 5 - 6 % от низшей теплоты сгорания Q ≈ 15000 кДж/кг

500 - 550

Скорость термического разложения резко снижается; выход летучих компонентов прекращается (конец пи­ролиза); при 600 °С выделение газообразных продук­тов прекращается

Аналогично древесине протекает пиролиз каменного угля, торфа. Од­нако выход летучих у них наблюдается при других температурах. Каменный уголь состоит их более твердых термостойких углеродсодержащих компо­нентов, и разложение его протекает менее интенсивно и при более высоких температурах (рис.1).

Горение металлов

По характеру горения металлы делятся на две группы: летучие и неле­тучие. Летучие металлы имеют Т пл . < 1000 K и Т кип . < 1500 K . К ним относятся щелочные металлы (литий, натрий, калий) и щелочноземельные (магний, кальций). Горение металлов осуществляется следующим образом: 4 Li + О 2 = 2 Li 2 O . Нелетучие металлы имеют Т пл . > 1000 K и Т кип . > 2500 K .

Механизм горения во многом определяется свойствами оксида металла. Температура летучих металлов ниже температуры плавления их оксидов. При этом последние представляют собой достаточно пористые образования. При поднесении искры зажигания к поверхности металла происходит его испарение и окисление.

При достижении концентрации паров, равной нижнему концентрационному пределу воспламенения, происходит их воспламенение. Зона диффузионного горения устанавливается у поверхности, большая доля тепла передается металлу, и он нагревается до температуры кипения.

Образующиеся пары, свободно диффундируя через пористую оксидную пленку, поступают в зону горения. Кипение металла вызывает периодическое разрушение оксидной пленки, что интенсифицирует горение. Продукты горения (оксиды металлов) диффундируют не только к поверхности металла, способствуя образованию корки оксида металла, но и в окружающее пространство, где, конденсируясь, образуют твердые частицы в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазово­го перехода, при горении на поверхности образуется весьма плотная оксидная пленка, которая хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, например, алюминия или бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они вводятся в виде стружки, порошков, аэрозолей. Их горение происходит без образования плотного дыма. Образование плотной оксидной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно, часто наблюдающееся при движении частицы в высокотемпера­турной окислительной среде, связывают с накоплением паров металлов под оксидной пленкой с последующим внезапным ее взрывом. Это естественно приводит к резкой интенсификации горения.

Горение пылей

Пыль - это дисперсная система, состоящая из газообразной дисперсной среды (воздух) и твердой фазы (мука, сахар, древесина, уголь и т.д.).

Распространение пламени по пыли происходит за счет прогрева холодной смеси лучистым потоком от фронта пламени. Твердые частицы, поглощая тепло от лучистого потока, нагреваются, разлагаются с выделением горючих продуктов, которые образуют горючие смеси с воздухом.

Аэрозоль, имеющая очень мелкие частицы, при воспламенении быстро сгорает в зоне воздействия источника зажигания. Однако толщина зоны пламени настолько мала, что интенсивность его излучения оказывается недостаточной для разложения частиц, и стационарного распространения пламени по таким частицам не происходит.

Аэрозоль, содержащая крупные частицы, также неспособна к стационарному горению. С увеличением размера частиц снижается удельная поверхность теплообмена, и возрастает время их прогрева до температуры разложения.

Если время образования горючей паровоздушной смеси перед фронтом пламени за счет разложения частичек твердого материала больше времени существования фронта пламени, то горение происходить не будет.

Факторы, влияющие на скорость распространения пламени по пылевоздушным смесям:

1. концентрация пыли (максимальная скорость распространения пламени имеет место для смесей несколько выше стехиометрического состава, например, для торфяной пыли при концентрации 1 - 1.5 кг/м 3);

2.зольность (при увеличении зольности уменьшается концентрация горючего компонента и уменьшается скорость распространения пламени);

Классификация пыли по взрывопожарной опасности:

I класс - наиболее взрывоопасная пыль (концентрация до 15 г/м 3);

II класс - взрывоопасная до 15-65 г/м 3

III класс - наиболее пожароопасная > 65 г/м 3 Т св ≤ 250°С;

IV класс - пожароопасная > 65 г/м 3 Т св > 250°С.

Бескислородное горение

Существует ряд веществ, которые при повышении их температуры выше определенного уровня претерпевают химическое разложение, приводя­щее к свечению газа, едва отличимому от пламени. Пороха и некоторые синтетические материалы могут гореть без доступа воздуха или в нейтральной среде (в чистом азоте).

Горение целлюлозы (звено - С 6 Н 7 О 2 (ОН) 3 - ) можно представить в виде внут­ренней окислительно-восстановительной реакции в молекуле, содержащей атомы кислорода, которые могут реагировать с углеродом и водородом целлюлозного звена.

Пожар, в котором участвует нитрат аммония, может поддерживаться без подвода кислорода. Эти пожары вероятны при большом содержании нит­рата аммония (около 2000 т) в присутствии органического вещества, в част­ности, бумажных пакетов или упаковочных мешков.

В качестве примера можно привести аварию в 1947 г. Судно “ Grandcamp ” назодилось в порту Техас-Сити с грузом около 2800 т нитрата аммония. Пожар возник в грузовом отсеке с нитратом аммония, упакованном в бумажные мешки. Капитан судна принял решение не гасить огонь водой, чтобы не испортить груз, и пытался ликвидировать пожар, задраив палубные люки и впуская пар в грузовой отсек. Такие меры способствуют ухудшению ситуации, усиливая пожар без доступа воздуха, поскольку происходит подогрев нитрата аммония. Пожар начался в 8 часов утра, а в 9 час. 15 мин.п роизошел взрыв. В результате погибло более 200 человек, столпившихся в порту и наблюдавших за пожаром, в том числе команда судна и экипаж двух самолетов из 4 человек, облетавших судно.

В 13 час 10 мин следующего дня на другом судне, транспортировавшем нитрат аммония и серу, которое загорелось от первого судна накануне, также произошел взрыв.

Маршалл описывает пожар, возникший вблизи Франкфурта в 1961 г. Самопроизвольное термическое разложение, вызванное лентой транспортера, привело к загоранию 8.. т удобрений, треть этого количества составлял нитрат аммония, а остальное - инертные вещества, используемые в качестве удобрений. Пожар продолжался 12 часов. В результате пожара выделялось большое количество ядовитых газов, в состав которых входил азот.

Горение - быстропротекающая химическая реакция соединения горючих компонентов с кислородом, сопровождающаяся интенсивным выделением теплоты и резким повышением температуры продуктов сгорания. Реакции горения описываются т.н. стехиометрическими уравнениями, характеризующими качественно и количественно вступающие в реакцию и образующиеся в результате ее вещества(Стехиометрический состав горючей смеси (от греч. stoicheion - основа, элемент и греч. metreo - измеряю) - состав смеси, в которой окислителя ровно столько, сколько необходимо для полного окисления топлива ). Общее уравнение реакции горения любого углеводорода

C m H n + (m + n/4) O 2 = mCO 2 + (n/2) Н 2 O + Q (8.1)

Где m, n - число атомов углерода и водорода в молекуле; Q - тепловой эффект реакции, или теплота сгорания.
Реакции горения некоторых газов приведены в табл. 8.1. Эти уравнения являются балансовыми, и по ним нельзя судить ни о скорости реакций, ни о механизме химических превращений.

Тепловой эффект (теплота сгорания) Q - количество теплоты, выделяющееся при полном сгорании 1 кмоля, 1 кг или 1 м 3 газа при нормальных физических условиях. Различают высшую Q в и низшую Q н теплоту сгорания: высшая теплота сгорания включает в себя теплоту конденсации водяных паров в процессе горения (в реальности при сжигании газа водяные пары не конденсируются, а удаляются вместе с другими продуктами сгорания). Обычно технические расчеты обычно ведут по низшей теплоте сгорания, без учета теплоты конденсации водяных паров (около 2400 кДж/кг).

КПД, рассчитанный по низшей теплоте сгорания, формально выше, но теплота конденсации водяных паров достаточно велика, и ее использование более чем целесообразно. Подтверждение этому - активное применение в отопительной технике контактных теплообменников, весьма разнообразных по конструкции.

Для смеси горючих газов высшая (и низшая) теплота сгорания газов определяется по соотношению

Q = r 1 Q 1 + r 2 Q 2 + ... + r n Q n (8.2)

Где r 1 , r 2 , …, r n - объемные (молярные, массовые) доли компонентов, входящих в смесь; Q 1 , Q 2 , …, Q n - теплота сгорания компонентов.

Воспользовавшись табл. 8.1, высшую и низшую теплоту сгорания, кДж/м 3 , сложного газа можно определять по следующим формулам:

Q в = 127,5 Н 2 + 126,4 СО + 398 СН 4 + 703 С 2 Н 6 + 1012 С 8 Н 8 + 1338 C 4 H 10 +1329 C 4 H 10 + 1693 С 5 Н 12 + 630 С 2 Н 4 + 919 С 3 Н 6 +1214 C 4 H 8 (8.3)

Q н = 107,9 H 2 + 126,4 CO + 358,8 CH 4 + 643 C 2 H 6 + 931,8 C 8 H 8 + 1235 C 4 H 10 + + 1227 C 4 H 10 + 1566 C 5 H 12 + 595 C 2 H 4 + 884 C 8 H 6 + 1138 C 4 H 8 (8.4)

Где H 2 ,CO,CH 4 и т.д. - содержание отдельных составляющих в газовом топливе, об. %.

Процесс горения протекает гораздо сложнее, чем по формуле (8.1), так как наряду с разветвлением цепей происходит их обрыв за счет образования промежуточных стабильных соединений, которые при высокой температуре претерпевают дальнейшие преобразования. При достаточной концентрации кислорода образуются конечные продукты: водяной пар Н 2 О и двуокись углерода СО 2 . При недостатке окислителя, а также при охлаждении зоны реакции, промежуточные соединения могут стабилизироваться и попадать в окружающую среду.

Интенсивность тепловыделения и рост температуры приводят к увеличению в реагирующей системе активных частиц. Такая взаимосвязь цепного реагирования и температуры, свойственная практически всем процессам горения, привела к введению понятия цепочечно-теплового взрыва - сами химические реакции горения имеют цепной характер, а их ускорение происходит за счет выделения теплоты и роста температуры в реагирующей системе.

Скорость химической реакции в однородной смеси пропорциональна произведению концентраций реагирующих веществ:

W = kС 1 С 2 (8.5)

Где С 1 и С 2 - концентрации реагирующих компонентов, кмоль/м 3 ; k - константа скорости реакции, зависящая от природы реагирующих веществ и температуры.

При сжигании газа концентрации реагирующих веществ можно условно считать неизменными, так как в зоне горения происходит непрерывный приток свежих компонентов однозначного состава.

Константа скорости реакции (по уравнению Аррениуса):

К = К 0 е -Е/RT (8.6)

Где К 0 - предэкспоненциальный множитель, принимаемый для биометрических гомогенных смесей, ≈1,0; Е - энергия активации, кДж/кмоль; R - универсальная газовая постоянная, Дж/(кг К); Т - абсолютная температура, К (°С); е - основание натуральных логарифмов.

Предэкспоненциальный множитель К0 можно истолковать как константу, отражающую полноту столкновения молекул, а Е - как минимальную энергию разрыва связей молекул и образования активных частиц, обеспечивающих эффективность столкновений. Для распространенных горючих смесей она укладывается в пределах (80÷150) 103 кДж/кмоль.

Уравнение (8.6) показывает, что скорость химических реакций резко возрастает с увеличением температуры: например, повышение температуры с 500 до 1000 К влечет повышение скорости реакции горения в 2·104÷5 108 раз (в зависимости от энергии активации).

На скорость реакций горения влияет их цепной характер. Первоначалаьно генерируемый реакцией атомы и радикалы вступают в соединения с исходными веществами и между собой, образуя конечные продукты и новые частицы, повторяющие ту же цепь реакций. Нарастающее генерирование таких частиц приводит к «разгону» химических реакций - фактически взрыву всей смеси.

Высокотемпературное горение углеводородов имеет весьма сложный характер и связано с образованием активных частиц в виде атомов и радикалов, а также промежуточных молекулярных соединений. В качестве примера приводятся реакции горения простейшего углеводорода - метана:
1. Н + О 2 -› ОН + О
СН 4 + ОН -› СН 3 + Н 2 О
СН 4 + О -› СН 2 + Н 2 О

2. СН 3 + О 2 -› НСНО + ОН
СН 2 + О 2 -› НСНО + О

3. НСНО + ОН -› НСО + Н 2 О
НСНО + О -› СО + Н 2 О
НСО + О 2 -› СО + О + ОН

4. СО + О -› СО 2
СО + ОН -› СО 2 + Н

Итог единичного цикла:
2СН 4 + 4О 2 -› 2СО 2 + 4Н 2 О

Таблица 8.1. Реакции горения и теплота сгорания сухих газов (при 0°С и 101,3 кПа)

Газ Реакция горения Теплота сгорания
Молярная, кДж/кмоль Массовая, кДж/кг Объемная, кДж/м 3
высшая низшая высшая низшая высшая низшая
Водород H 2 + 0,5O 2 = H 2 O 286,06 242,90 141 900 120 080 12 750 10 790
Оксид углерода CO + 0,5O 2 = CO 2 283,17 283,17 10 090 10 090 12 640 12 640
Метан CH 4 + 2O 2 = CO 2 + 2H 2 O 880,90 800,90 55 546 49 933 39 820 35 880
Этан C 2 H 6 + 0,5O 2 = 2CO 2 + 3H 2 O 1560,90 1425,70 52 019 47 415 70 310 64 360
Пропан C 3 H 8 + 5H 2 O = 3CO 2 +4H 2 O 2221,40 2041,40 50 385 46 302 101 210 93 180
н -Бутан 2880,40 2655,00 51 344 47 327 133 800 123 570
Изобутан C 4 H 10 + 6,5O 2 = 4CO 2 + 5H 2 O 2873,50 2648,30 51 222 47 208 132 960 122 780
н -Пентан C 5 H 12 + 8O 2 = 5CO 2 + 6H 2 O 3539,10 3274,40 49 052 45 383 169 270 156 630
Этилен C 2 H 4 + 3O 2 = 2CO 2 + 2H 2 O 1412,00 1333,50 50 341 47 540 63 039 59 532
Пропилен C 3 H 6 + 4,5O 2 = 3CO 2 + 3H 2 O 2059,50 1937,40 48 944 46 042 91 945 88 493
Бутилен C 4 H 8 + 6O 2 = 4CO 2 + 4H 2 O 2720,00 2549,70 48 487 45 450 121 434 113 830

Баланс – (от фр. balance – буквально “весы”) – количественное выражение сторон какого-либо процесса, которые должны уравновешивать друг друга. Другими словами, баланс – это равновесие, уравновешивание. Процессы горения на пожаре подчиняются фундаментальным законам природы, в частности, законам сохранения массы и энергии.

Для решения многих практических задач, а также для выполнения пожарно-технических расчетов необходимо знать количество воздуха, необходимого для горения, а также объем и состав продуктов горения. Эти данные необходимы для расчета температуры горения веществ, давления при взрыве, избыточного давления взрыва, флегматизирующей концентрации флегматизатора, площади легкосбрасываемых конструкций.

Методика расчета материального баланса процессов горения определяется составом и агрегатным состоянием вещества. Свои особенности имеет расчет для индивидуальных химических соединений, для смеси газов и для веществ сложного элементного состава.

Индивидуальные химические соединения – это вещества, состав которых можно выразить химической формулой. Расчет процесса горения в этом случае производится по уравнению реакции горения.

Составляя уравнение реакции горения, следует помнить, что в пожарно-технических расчетах принято все величины относить к 1 молю горючего вещества. Это, в частности, означает, что в уравнении реакции горения перед горючим веществом коэффициент всегда равен 1 .

Состав продуктов горения зависит от состава исходного вещества.

Элементы, входящие в состав горючего вещества

Продукты горения

Углерод С

Углекислый газ СО 2

Водород Н

Вода Н 2 О

Сера S

Оксид серы (IV) SO 2

Азот N

Молекулярный азот N 2

Фосфор Р

Оксид фосфора (V) Р 2 О 5

Галогены F, Cl, Br, I

Галогеноводороды HCl , HF , HBr , HI

Горение пропана в кислороде

    Записываем реакцию горения:

С 3 Н 8 + О 2 = СО 2 + Н 2 О

2. В молекуле пропана 3 атома углерода, из них образуется 3 молекулы углекислого газа.

С 3 Н 8 + О 2 = 3СО 2 + Н 2 О

3. Атомов водорода в молекуле пропана 8, из них образуется 4 молекулы воды:

С 3 Н 8 + О 2 = 3СО 2 + 4Н 2 О

4. Подсчитаем число атомов кислорода в правой части уравнения

5. В левой части уравнения так же должно быть 10 атомов кислорода. Молекула кислорода состоит из двух атомов, следовательно, перед кислородом нужно поставить коэффициент 5.

С 3 Н 8 + 5О 2 = 3СО 2 + 4Н 2 О

Коэффициенты, стоящие в уравнении реакции, называются стехиометрическими коэффициентами и показывают, сколько молей (кмолей) веществ участвовало в реакции или образовалось в результате реакции.

Стехиометрический коэффициент, показывающий число молей кислорода, необходимое для полного сгорания вещества, обозначается буквой .

В первой реакции = 5.

Горение глицерина в кислороде

1. Записываем уравнение реакции горения.

С 3 Н 8 О 3 + О 2 = СО 2 + Н 2 О

2. Уравниваем углерод и водород:

С 3 Н 8 О 3 + О 2 = 3СО 2 + 4Н 2 О.

3. В правой части уравнения 10 атомов кислорода.

В составе горючего вещества есть 3 атома кислорода, следовательно, из кислорода в продукты горения перешли 10 – 3 = 7 атомов кислорода.

Таким образом, перед кислородом необходимо поставить коэффициент 7: 2 = 3,5

С 3 Н 8 О 3 +3,5О 2 = 3СО 2 + 4Н 2 О.

В этой реакции = 3,5.

Горение аммиака в кислороде

Аммиак состоит из водорода и азота, следовательно, в продуктах горения будут вода и молекулярный азот.

NH 3 + 0,75 O 2 = 1,5 H 2 O + 0,5 N 2 = 0,75.

Обратите внимание, что перед горючим веществом коэффициент 1, а все остальные коэффициенты в уравнении могут быть дробными числами.

Горение сероуглерода в кислороде

Продуктами горения сероуглерода CS 2 будут углекислый газ и оксид серы (IV).

CS 2 + 3 O 2 = CO 2 + 2 SO 2 = 3.

Чаще всего в условиях пожара горение протекает не в среде чистого кислорода, а в воздухе. Воздух состоит из азота (78 %), кислорода (21 %), окислов азота, углекислого газа, инертных и других газов (1 %). Для проведения расчетов принимают, что в воздухе содержится 79 % азота и 21 % кислорода. Таким образом, на один объем кислорода приходится 3,76 объемов азота (79:21 = 3,76).

В соответствии с законом Авогадро и соотношение молей этих газов будет 1: 3,76. Таким образом, можно записать, что молекулярный состав воздуха (О 2 + 3,76 N 2 ).

Составление реакций горения веществ в воздухе аналогично составлению реакций горения в кислороде. Особенность состоит только в том, что азот воздуха при температуре горения ниже 2000 0 С в реакцию горения не вступает и выделяется из зоны горения вместе с продуктами горения.

Горение водорода в воздухе

Н 2 + 0,5(О 2 + 3,76 N 2 ) = Н 2 О + 0,5 3,76 N 2 = 0,5.

Обратите внимание, что стехиометрический коэффициент перед кислородом 0,5 необходимо поставить и в правой части уравнения перед азотом.

Горение пропанола в воздухе

С 3 Н 7 ОН + 4,5(О 2 + 3,76 N 2 ) =3СО 2 + 4Н 2 О +4,5 3,76 N 2

В составе горючего есть кислород, поэтому расчет коэффициента проводят следующим образом: 10 – 1 = 9; 9: 2 = 4,5.

Горение анилина в воздухе

С 6 Н 5 N Н 2 + 7,75(О 2 + 3,76 N 2 ) =6СО 2 + 3,5Н 2 О + 0,5 N 2 +7,75 3,76 N 2

В этом уравнении азот в правой части уравнения встречается дважды: азот воздуха и азот из горючего вещества.

Горение угарного газа в воздухе

СО + 0,5(О 2 + 3,76 N 2 ) =СО 2 + 0,5 3,76 N 2

Горение хлорметана в воздухе

СН 3 С l + 1,5(О 2 + 3,76 N 2 ) =СО 2 + НС l + Н 2 О +1,5 3,76 N 2

Горение диэтилтиоэфира в воздухе

2 Н 5 ) 2 S + 7,5(О 2 + 3,76 N 2 ) =4СО 2 + 5Н 2 О + SO 2 + 7,5 3,76 N 2

Горение диметилфосфата в воздухе

(СН 3 ) 2 НР О 4 + 3(О 2 + 3,76 N 2 ) =2СО 2 + 3,5Н 2 О + 0,5Р 2 О 5 + 3 3,76 N 2

В процессах горения исходными веществами являются горючее вещество и окислитель, а конечными - продукты горения.

1. Запишем уравнение реакции горения бензойной кислоты.

С 6 Н 5 СООН + 7,5(О 2 + 3,76 N 2 ) =7СО 2 + 3Н 2 О +7,5 3,76 N 2

2. Исходные вещества: 1 моль бензойной кислоты;

7,5 молей кислорода;

7,53,76 молей азота.

Газов воздуха всего 7,54,76 молей.

Всего (1 + 7,54,76) молей исходных веществ.

3. Продукты горения: 7 молей углекислого газа;

3 моля воды;

7,53,76 моля азота.

Всего (7 + 3 + 7,53,76) молей продуктов горения.

Аналогичные соотношения и в том случае, когда сгорает 1 киломоль бензойной кислоты.

Смеси сложных химических соединений или вещества сложного элементного состава нельзя выразить химической формулой, их состав выражается чаще всего в процентном содержании каждого элемента. К таким веществам можно отнести, например, нефть и нефтепродукты, древесину и многие другие органические вещества.

Образцы выполнения с/р2

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА. РАВНОВЕСИЕ. КИНЕТИКА.

ЗАДАЧА 1. Теплота сгорания топлива.

Имеем газовую топливную смесь: 50%СН 4 + 50%С 4 Н 10 .

Суммарный объем V=1000 л=1м 3 .

1. Напишите химические уравнения реакций горения газовых составляющих заданной топливной смеси.

Реакция горения метана:

СН 4 (г) + 2О 2 (г) ® СО 2 (г) + 2Н 2 О (ж)

Реакция горения бутана:

С 4 Н 10 (г) + 13/2О 2 (г) ® 4СО 2 (г) + 5Н 2 О (ж) .

Энтальпия Δ r Н 0 298 этих химических реакций является теплотой сгорания газового топлива ΔН 0 сг.

2. Рассчитайте, сколько теплоты можно получить при сжигании заданного объема топливной смеси заданного состава (объемные %), условия считать нормальными.

С использованием закона Гесса рассчитаем теплоту сгорания газового топлива ΔН 0 сг при стандартном состоянии и 298 К, используя табличные данные (см. приложение, табл.) теплоты образования всех веществ, участвующих в реакции горения (Δ f Н 0 298):

для метана

ΔН 0 сг СН4 = Δ r Н 0 298 = Δ f Н 0 СО2 + Δ f Н 0 Н2О - Δ f Н 0 СН4 - 2Δ f Н 0 О2 =

393,62 + 2 . (-285,84) – (-74,78) - 0 = -802,28 кДж/моль.

для бутана

ΔН 0 сг С4Н10 = Δ r Н 0 298 = 4Δ f Н 0 СО2 + 5Δ f Н 0 Н2О - Δ f Н 0 С4Н10 - 13/2Δ f Н 0 О2 =

4 . (- 393,62) + 5 . (-285,84) – (-126,15) - 0 = -2877,53 кДж/моль.

Удельная теплота сгорания Q Т газового топлива:

Q T = - (ΔН сг. 1000/22,4) , кДж/м 3 ,

где 22,4 л/моль – молярный объем газа при н.у.

для метана

Q T , СН4 = - (-802,28 . 1000 / 22,4) =35816 кДж/м 3 .

для бутана

Q T , С4Н10 = - (-2877,53 . 1000 / 22,4) =128461 кДж/м 3 .

Суммарное количество теплоты, полученное при сгорании данной топливной смеси с учетом объемов газов:

Q = Q T , СН4 . V СН4 + Q T , С4Н10 . V С4Н10 =

35816 . (1 . 0,5)+128461 . (1 . 0,5) =82138,5 кДж.

3. Из заданной топливной смеси выберите наиболее энергоэффективное топливо. Рассчитайте удельную теплоту сгорания этого топлива Q T , кДж/м 3 . Рассчитайте минимальный объем этого топлива для получения 100 МДж теплоты.

Наиболее энергоэффективное топливо в данной топливной смеси – бутан, удельная теплота сгорания Q T , С4Н10 = 128461 кДж/м 3 .

Для получения 100 МДж теплоты необходимо сжечь:

V С4Н10 = Q / Q T , С4Н10 =100000/128461=0,778 м 3 = 778 л.

ЗАДАЧА 2. Химическая термодинамика.

1. Напишите термохимические уравнения реакций, тепловой эффект которых является теплотой образования всех реагентов заданной химической реакции.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

Вещество C (к) – простое, устойчивое при 298 К и давлении 100 кПа, энтальпия его образования DH 0 f , 298 , = 0.

Термохимические уравнения реакций, тепловой эффект которых является теплотой образования реагентов заданной химической реакции СO 2 (г) и CО (г) :

O 2 (г) + C (к) « CО 2 (г) , DH 0 f , 298 = -393,51 кДж/моль,

(см. табл.);

1/2 O 2 (г) + C (к) « CО (г) , DH 0 f , 298 = -110,5 кДж/моль,

(см. табл.).

2. Рассчитайте величины энтальпии D r H 0 298 , энтропии D r S 0 298 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Сделайте вывод о тепловом эффекте реакции.

По табличным данным (см. табл.) запишем термодинамические функции состояния реагентов заданной химической реакции при стандартном состоянии и 298 К

С использованием закона Гесса рассчитаем энтальпию Δ r Н 0 298 , энтропию r S 0 298 и энергию Гиббса Δ r G 0 298 химической реакции при стандартном состоянии и 298 К:

Δ r Н 0 298 = 2Δ f Н 0 298 СОг - Δ f Н 0 298 Ск - Δ f Н 0 298 СО2г =

2(-110,5) – 0 – (-393,5) = 172,5 кДж.

Δ r Н 0 298 >0 - реакция эндотермическая, идет с поглощением теплоты.

r S 0 298 = 2 S 0 f , 298,СО(г) - S 0 f , 298,С(к) - S 0 f , 298,СО2(г) = 2(197,54) – 5,74 – 213,68 =

175,66 Дж/К.

r S 0 298 >0 – система стала более неупорядоченной вследствие образования дополнительного количества газа.

3. Рассчитайте величину энергии Гиббса D r G 0 298 заданной химической реакции (п.1 . табл. к задачам 1, 2) при стандартном состоянии (с.с.) всех реагентов и температуре 298 К. Определите, в каком направлении будет самопроизвольно протекать данная реакция при стандартном состоянии всех реагентов и температуре 298 К.

Δ r G 0 298 = 2Δ f G 0 298 СОг - Δ f G 0 298 Ск - Δ f G 0 298 СО2г =

2(-137,14) – 0 – (-394,38) = 120,15 кДж.

Δ r G 0 298 >0 – самопроизвольное протекание реакции в прямом направлении при стандартном состоянии и 298 К невозможно. Реакция протекает в обратном направлении.

4. Определите область температур, при которых возможно самопроизвольное протекание прямой реакции при стандартном состоянии всех реагентов без учета зависимости D r H 0 и D r S 0 от температуры. Постройте график зависимости энергии Гиббса реакции от температуры D r G 0 = f (Т ).

Возможность самопроизвольного протекания реакции при стандартном состоянии определяется неравенством r G 0 T < 0.

Т.е. , если

r G 0 T = ∆ r H 0 298 +∆ r с 0 p dT - Т r S 0 298 - Т r с 0 p / T )dT < 0

r G 0 T ≈ ∆ r H 0 298 - Т r S 0 298 < 0

r G 0 Т = (172,5 – Т . 175,66 . 10 -3) < 0 , отсюда Т > 982 К.

График зависимости D r G 0 = f (Т ):

r G 0 Т

298 982 2300 Т

С учетом температурных интервалов существования реагентов температурная область самопроизвольного протекания реакции при стандартном состоянии 982 < Т < 2300 К.

5. Рассчитайте величину энергии Гиббса D r G 298 химической реакции при заданных значениях парциальных давлений газов (п.2 . табл. к задачам 1, 2) и температуре 298 К. Определите, изменится ли направление протекания процесса при 298 К при изменении парциальных давлений газов по сравнению со стандартным состоянием.

Расчет энергии Гиббса химической реакции при любой температуре и любых относительных парциальных давлениях газов производится по уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln .

Рассчитаем Δ r G 298 при 298 К и давлениях газов: р СО = 2 . 10 3 Па,

р СО2 = 8 . 10 5 Па.

Относительные парциальные давления газов:

СО = 2 . 10 3 Па/10 5 Па = 0,02; СО2 = 8 . 10 5 Па/10 5 Па = 8.

Δ r G 298 = Δ r G 0 298 + RTln (р 2 СО /р СО2) = 120,15 +8,31 . 10 -3 . 298 . ln (0,02/8) =

Δ r G 298 >0 – самопроизвольное протекание реакции в прямом направлении при заданных парциальных давлениях газов и 298 К невозможно. Реакция протекает в обратном направлении.

6. Определите, как нужно (теоретически) изменить парциальное давление любого из исходных газов (р А или р В ) для изменения направления протекания процесса по сравнению со стандартным состоянием при 298 К и стандартном парциальном давлении всех других компонентов химической реакции.

При стандартном состоянии и 298 К возможно самопроизвольное протекание реакции в обратном направлении, т.к. Δ r G 0 298 >0.

Для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К можно изменить парциальное давление СО 2 , (состояние всех других компонентов стандартное). Условием самопроизвольного протекания реакции в прямом направлении является Δ r G 298 < 0.

По уравнению изотермы Вант-Гоффа:

Δ r G Т = r G 0 Т + RT ln< 0

Δ r G 298 = 120,15 + 8,31 . 10 -3. 298 ln < 0

Решаем неравенство ln < - 48,5и получаем: < 10 -21 .

Таким образом,р СО < р СО2 ≈ в 10 5 раз.

Таким образом, для изменения направления протекания процесса по сравнению состандартным состояниемпри 298 К и давлении р СО = 10 5 Па нужно увеличить парциальное давление СО 2 в 10 5 раз, т.е. парциальное давление СО 2 должно быть: р СО2 > 10 25 Па.

При таком давлении СО 2 заданная химическая реакция может самопроизвольно протекать в прямом направлении при 298 К.

ЗАДАЧА 2. Химическое равновесие.

Для химической реакции

СO 2 (г) + C (к) « 2CО (г)

1. Рассчитайте энергию Гиббса D r G 0 Т и константу равновесия К р данной реакции при стандартном состоянии и температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости D r H 0 Т и D r S 0 Т от температуры при постоянной величине удельной теплоемкости веществ с р = const . Постройте график зависимости

К р = f (Т ).

Рассчитаем изменение теплоемкости системы (∆ r c 0 р = const):

r с 0 р = 2с 0 р 298СОг – с 0 р 298Ск – с 0 р 298СО2г =

2 . (29,14)–8,54–37,41 =12,33 Дж/К.

Рассчитаем энергию Гиббса химической реакции при стандартном состоянии и заданных температурах 298 К, 500 К, 800 К, 1000 К с учетом зависимости ∆ r H 0 Т и ∆ r S 0 Т от температуры, считая постоянной величину удельной теплоемкости веществ с р , по формуле:

r G 0 T = ∆ r H 0 Т – Т . r S 0 Т = r G 0 298 + r с 0 р (Т - 298) Т . ∆ r с 0 р ln (Т / 298).

r G 0 298 =120,15 кДж;

r G 0 500 =120,15+12,33 . 10 -3 . (500-298) - 500 . 12,33 . 10 -3 . ln (500/298)=

r G 0 800 =120,15+12,33 . 10 -3 . (800-298) - 800 . 12,33 . 10 -3 . ln (800/298)=

r G 0 1000 =120,15+12,33 . 10 -3 . (1000-298) - 1000 . 12,33 . 10 -3 . ln (1000/298) =

Термодинамическое условие химического равновесия: r G T = 0.

Энергия Гиббса химической реакции при стандартном состоянии

r G 0 Т связана с константой равновесия К р по соотношению:

r G 0 Т = - RT lnК р

Рассчитав величину r G 0 T реакции, рассчитаем константу равновесия К р по формуле:

K p = exp(-∆G 0 Т /RT ) ,

где R =8,31 Дж/моль. К - универсальная газовая постоянная.

K p, 298 = exp(-∆G 0 Т , 298 / R . 298) = exp(-120,15/8,31 . 10 -3. 298) =8 . 10 -22 ;

K p, 500 = exp(-∆G 0 Т , 500 / R . 500) = exp(-84,67/8,31 . 10 -3. 500) =1,4 . 10 -9 ;

K p, 800 = exp(-∆G 0 Т , 800 / R . 800) = exp(-31,97/8,31 . 10 -3. 800) =8,1 . 10 -3 ;

K p, 1000 = exp(-∆G 0 Т , 1000 / R . 1000) = exp(3,16/8,31 . 10 -3. 1000) =1,46.

При увеличении температуры увеличивается константа равновесия, что объясняется эндотермическим тепловым эффектом данной реакции

(Δ r Н 0 Т >0).

2. Выберите любую температуру из области самопроизвольного протекания реакции в прямом направлении. При этой температуре рассчитайте равновесные концентрации газообразных реагентов, если их исходные концентрации были равны, соответственно, (см. п.3. табл. к задачам 1,2).

При Т =1000 К реакция протекает самопроизвольно в прямом направлении, т.к. r G 0 1000 = - 3,16 кДж <0, K p , 1000 = 1,46.

Выберем температуру Т =1000 для расчета равновесных концентраций газообразных реагентов, если исходные концентрации газообразных реагентов СО 2 и СО были равны: с СО2 = 0,5 моль/л, с СО =0.

Выражения для констант равновесия, выраженных через относительные равновесные парциальные давления газов (р равн ) и равновесные концентрации (с равн) :

К р =
; К с =

K p и K с связаны через уравнение газового состояния:

K с, 1000 =
=
= 0,018

где R =0,082 л. атм/моль. К - универсальная газовая постоянная;

∆ν = 2-1= 1 (изменение числа молей газообразных веществ в ходе реакции).

Таблица материального баланса:

Подставляем равновесные концентрации газообразных реагентов в выражение для K с и решаем алгебраическое уравнение относительно х :

К с =
= 0,018 , х = 0,0387моль/л

С СО равн = 2 . 0,0387 = 0,0774моль/л

С СО2равн = 0,5 - 0,0387 = 0,4613 моль/л.

Дата публикации 10.02.2013 20:58

Горением называется реакция окисления, протекающая с высокой скоростью, которая сопровождается выделением тепла в большом количестве и, как правило, ярким свечением, которое мы называем пламенем. Процесс горения изучает физическая химия, в которой к горению принято относить все экзотермические процессы, имеющие самоускоряющуюся реакцию. Такое самоускорение может происходить из-за повышения температуры (т. е. иметь тепловой механизм) или накопления активных частиц (иметь диффузионную природу).

Реакция горения имеет наглядную особенность - наличие высокотемпературной области (пламени), ограниченной пространственно, где и происходит большая часть преобразования исходных веществ (топлива) в продукты сгорания. Данный процесс сопровождается выбросом большого количества тепловой энергии. Для начала реакции (появления пламени) требуется затратить некоторое количество энергии на поджигание, затем процесс идет самопроизвольно. Его скорость зависит от химических свойств веществ, участвующих в реакции, а также от газодинамических процессов при сгорании. Реакция горения имеет определенные характеристики, важнейшие из которых - теплотворная способность смеси и та температура (называемая адиабатической), которая теоретически могла бы достигаться при полном сгорании без учета теплопотерь.

По агрегатному состоянию окислителя и горючего процесс сгорания может быть отнесен к одному из трех типов. Реакция горения может быть:

Гомогенной, если горючее и окислитель (предварительно смешанные) находятся в газообразном состоянии,

Гетерогенной, при которой твердое или жидкое горючее вступает во взаимодействие с газообразным окислителем,

Реакцией горения порохов и взрывчатых веществ.

Гомогенное горение является наиболее простым, имеет постоянную скорость, зависящую от состава и молекулярной теплопроводности смеси, температуры и давления.

Гетерогенное горение наиболее распространено как в природе, так и в искусственных условиях. Скорость его зависит от конкретных условий процесса сжигания и от физических характеристик ингредиентов. У жидких горючих на скорость сгорания большое влияние оказывает скорость испарения, у твердых - скорость газификации. Например, при сгорании угля процесс образует две стадии. На первой из них (в случае сравнительно медленного нагрева) выделяются летучие компоненты вещества (угля), на второй догорает коксовый остаток.

Горение газов (например, горение этана) имеет свои особенности. В газовой среде пламя может распространяться на обширное расстояние. Оно может двигаться по газу с дозвуковой скоростью, причем данное свойство присуще не только газовой среде, но и мелкодисперсной смеси жидких и твердых горючих частиц, смешанной с окислителем. Для обеспечения устойчивого горения в таких случаях требуется специальная конструкция устройства топки.

Последствия, которые вызывает реакция горения в газовой среде, бывают двух видов. Первый - это турбулизация газового потока, приводящая к резкому увеличению скорости процесса. Возникающие при этом акустические возмущения потока могут привести к следующей стадии - зарождению ударной волны, ведущей к детонации смеси. Переход горения в стадию детонации зависит не только от собственных свойств газа, но и от размеров системы и параметров распространения.

Сгорание топлива используется в технике и промышленности. Основной задачей при этом является достижение максимальной полноты сгорания (т.е. оптимизация тепловыделения) за заданный промежуток. Используется горение, например, в горном деле - методы разработки различных полезных ископаемых основаны на использовании горючего процесса. Но в определенных природных и геологических условиях явление горения может стать фактором, несущим серьезную опасность. Реальную опасность, например, представляет процесс самовозгорания торфа, приводящий к возникновению эндогенных пожаров.