Какой ученый ввел в науку понятие экосистема. Понятие биогеоценоза. Понятие и структура биогеоценоза

Идея о взаимосвязи и единстве всех явлений природы привела к формированию экосистемного подхода и разработке понятия «экосистема» за рубежом и к возникновению новой научной дисциплины в бывшем СССР.

Такой дисциплиной, зародившейся в недрах лесной геоботаники и оформившейся впоследствии в фундаментальную науку со своими задачами и методами, является биогеоценология (от греч. bios — жизнь, geo — земля, koinos — общий). Основоположником биогеоценологии стал выдающийся отечественный геоботаник, лесовод и эколог, академик В.Н. Сукачев, предложивший собственную трактовку структурной организации биосферы. В.Н. Сукачев посвятил свою жизнь разработке общих вопросов фитоценологии — науки о растительных сообществах (фитоценозах). Он придавал большое значение изучению межвидовых и внутривидовых взаимоотношений растений в растительных сообществах.

Важнейшей теоретической разработкой В.Н. Сукачева является идея единства и взаимосвязи живых организмов (биоценоза) и среды его обитания (биотопа). Биогеопенология предполагает разносторонний комплексный подход к исследованию живого покрова Земли, основанный на изучении взаимодействия слагающих его компонентов. Задача биогеоценологии — расшифровка связей и взаимодействий между живыми и косными компонентами природы — биогеоценозами, которые ученый назвал элементарными ячейками поверхности Земли.

По определению В.Н. Сукачева, биогеоценоз — это однородный участок земной поверхности, где природные явления (атмосфера, горная порода, растительность, животный мир, микроорганизмы, почва, гидрологические условия) имеют однотипный характер взаимодействия между собой и объединены обменом веществ и энергии в единый природный комплекс.

Сущность биогеоценоза В.Н. Сукачев видел в процессе взаимного обмена веществом и энергией между составляющими его компонентами, а также между ними и окружающей средой. Важная особенность биогеоценоза — то, что он связан с определенным участком земной поверхности.

Исходным понятием при определении биогеоценоза был геоботанический термин «фитоценоз» - растительное сообщество, группировка растений с однородным характером взаимоотношений между ними самими и между ними и средой. Еще одним природным компонентом, с которым непосредственно контактируют растения, является атмосфера. Для характеристики биогеоценоза важны также условия увлажнения. Кроме того, любой фитоценоз всегда населен разнообразными животными.

Объедив все указанные составляющие в одно целое, мы получим структуру биогеоценоза (рис. 10). Она включает фитоценоз — растительное сообщество (автотрофные организмы, продуценты); зооценоз — животное население (гетеротрофы, консументы) и микробоценоз — различные микроорганизмы (бактерии, грибы, простейшие (редуценты). Живую часть биогеоценоза Сукачев относил к биоценозу. Неживую, абиотическую часть биогеоценоза слагают совокупность климатических факторов данной территории — климатом, биокосное образование — эдафотоп (почва) и условия увлажнения (гидрологические факторы) — гидротоп. Совокупность абиотических компонентов биогеоценоза носит название биотоп. Каждый компонент в природе неотделим от другого. Главным созидателем живого вещества в пределах биогеоценоза является фитоценоз — зеленые растения. Используя солнечную энергию, зеленые растения создают огромную массу органического вещества. Состав и масса такого вещества зависят главным образом от особенностей атмосферы и почвенных условий, которые определяются, с одной стороны, географическим положением (зональность, обусловленная существованием определенных типов биомов), а с другой — рельефом местности и расположением фитоценоза. От состава и характеристики растительности зависит существование комплекса гетеротрофов. В свою очередь, биоценоз в целом определяет состав и количество органического вещества, попадающего в почву (степные богатые черноземы, слабогумусированная почва бореальных лесов и крайне бедные почвы влажного тропического леса). Животные в процессе жизнедеятельности также оказывают разнообразное влияние на растительность. Исключительно важны взаимодействия между микроорганизмами и растительностью, микроорганизмами и позвоночными и беспозвоночными животными.

Рис. 10. Структура биогеоценоза и схема взаимодействия его компонентов

Биогеоценоз и экосистемы

Биогеоценоз как структурная единица биосферы сходен с предложенной А. Тенсли трактовкой экосистемы. Биогеоценоз и экосистема — понятия сходные, но не одинаковые. Биогеоценоз следует рассматривать как элементарную комплексную, т.е. состоящую из биотопа и биоценоза, экосистему. Каждый биогеоценоз является экосистемой, но не каждая экосистема соответствует биогеоценозу.

Прежде всего, любой биогеоценоз выделяется только на суше. Биогеоценоз имеет конкретные границы, которые определяются границами растительного сообщества — фитоценоза. Образно говоря, биогеоценоз существует только в рамках фитоценоза. Там, где нет фитоценоза, нет и биогеоценоза. Понятия «экосистема» и «биогеоценоз» тождественны только для таких природных образований, как, к примеру, лес, луг, болото, поле. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо в тех случаях, где фитоценоз выделить нельзя, применяется понятие «экосистема». Например, кочка на болоте, ручей — экосистемы, но не биогеоценозы. Только экосистемами являются морс, тундра, влажный тропический лес и т.п. В тундре, лесу можно выделить не один фитоценоз, а совокупность фитоценозов, представляющих собой более крупное образование, нежели биогеоценоз.

Экосистема может быть и меньше, и крупнее биогеоценоза. Экосистема — образование более общее, безранговое. Это может быть участок суши или водоема, прибрежная дюна или небольшой пруд. Это также вся биосфера в целом. Биогеоценоз заключен в границы фитоценоза и обозначает конкретный природный объект, занимающий определенное пространство на суше и отделенный пространственными границами от таких же объектов. Это реальная природная зона, в которой осуществляется биогенный круговорот.

1. Определение экологии.Предмет, задачи и объекты изучения экологии. Экология (от греческого «ойкос»- дом, жилище и «логос» - учение) – наука изучающая условия существования живых организмов и взаимосвязи между организмами и соредой, в которой они обитают. Предметом экологии является совокупность или структура, связей между организмами и средой. Задачи экологии : изучение взаимоотношений организмов и их популяций с окружающей средой, исследование действия среды на строение, жизнедеятельность и поведение организма, установление зависимости между средой и численностью популяций. Объекты изучения - экосистемы, т.е. единые природные комплексы, образованные живими организмами и средой обитания; отдельные виды организмов (организменный уровень) и их популяции т.е. совокупность особей одного вида (популяционно-видовой) и биосфера в целом (биосферный уровень)

2. Краткая история развития. Роль А.Гумбольда, Ж.Ламарка, К.Линнея, К.Ф.Рулье, Ч.Дарвина, Э.Геккеля, А.Тенсли, В.В.Докучаева, В.И.Вернадского в становлении экологии. Краткая история развития: 1) (до 60-х гг.XIXв.) зарождение и становление экологии как науки; 2) (после 60-х гг.XIXв.) оформление экологии в самостоятельную отрасль знаний; 3) (50-е гг.XXв. – по наст.) превращение экологии в комплексную науку, включ. В себя науки об охр. природн. и окруж. среды. А.Гумбольдт (1769-1859) – заложил основы биогеографии. Ж.Ламарк – «Философия зоологии» - теория эволюции живого мира К.Линней – создал таксономическую систему животных и растений. К.Ф.Рулье – заложил основы экологии животных.

Ч.Дарвин - книга о происхождении видов, путем естественного отбора.

Э.Геккель – предложил термин «экология».

А.Тенсли – ввел понятие экосистема.

В.В.Докучаев – термин «биоценоз».

В.И.Вернадский – создал учение о биосфере.

3. Видные ученые-экологи XX столетия: В.Н.Сукачев, Г.Одум, Ю.Одум, Н.Ф.Реймерс, Б.Небел, Б.Коммонер и др. Развитие экологии в Казахстане. В.Н.Сукачев - ввёл в науку понятие «биогеоценоз». Ю.Одум - автор классического труда «Экология» , Н.Ф.Реймерс - словарь-справочник «Природопользование», «Популярный биологический словарь», монография «Надежды на выживание человечества. Концептуальная экология». Б.Небел - Наука об окружающей среде. Как устроен мир. Б.Коммонер - автор Законов экологии. Развитие экологии в Казахстане. Концепция устойчивого развития экологии в Кз принято 14 мая 2007г. Включ. в себя: развитие экологической среды; достижение устойчивого экономического роста; рациональное использование энергитических ресурсов (нефть, газ, уголь) для роста экологии республики.

4.Основные понятия (термины) экологии: биосфера, экосистемы, биогеоценозы, популяции, сообщества, экологические факторы

Биосфера (греч «bios» - жизнь «sphaira» - шар, сфера) – сложн. наружн. оболочка Земли, населенная организмами, состовляющими в совокупности живое вещество планеты.

Экосистема (от греч. oikos - жилище, местопребывание и система) - природный комплекс, образованный живыми организмами и средой их обитания, связанными между собой обменом веществ и энергии. Биогеоценозы - (греч. «био», «ge»-земля, «koinos»-общий) территориально (или акваториально) единая система живых (животные, растения, микроорганизмы) и неживых компонентов, которые связаны между собой обменом веществ и энергии. Популяции – совокупность особей одного вида, насел. опред. территор. Сообщества – совокупность совмесно обитающих организмов различн. видов. Экологические факторы – определен. условия и элементы среды, кот. оказ. спецефическое воздействие воздействие на организм. Абиотические, биотические, антропогенные.

5.Методы экологии. 1)Экосистемный - ценром внимашя явл. поток энергии и круговорот веществ между биотич. иабиотич. компонентпами. 2)Метод изучения сообществ – определение и описание видов, изучение факторов ограничивающих распростронение. 3)Популяционный – испоьзует математические модели роста, самоподдержания и уменьшения численности популяции тех или иных видов. 4)Эволюционный, исторический – изучение изменений связанных с развитием жизни на земле.

6.Предмет, задачи и структура общей экологии. Предмет эко: – изучение взаимоотношений между человеком и природой. Задачи: ·Изучение антропогенных изменений в среде обитания. ·Разработка методов сохранения и улучшения этой среды в интересах человечества. ·Прогнозирование изменений эко. ситуации в будущем и на этой основе, разработка мероприятий направл. на сохранение и улудшение среды обитаня людей на предотвращение нежелат. изменений биосферы. Аутоэкология – иссл. индивидуальные связи отдельного организма (виды,особи) с окружающей средой. Популяционная э.(демоэкология) – изучает струкуры и динамики популяций отдельно.Рассмат.как спец. раздел аутэкологии. Синэкология (биоценология) – изучает взаимоотношение популяций, сообществ и экосистемФсо средой.

7. Уровни биологичекой организации живого вещества. Молекулярный - наэтом уровне происходят процессы жизнедеятельности (обмен веществ, питание, дыхание, раздражимость и т. д.). Субклеточный. Клеточный - Молекулы объединяются в клетки, и только тогда в них формируются вещества, необходимые для жизнедеятельности органов и организмов. Тканевый совокупность клеток с одинаковым уровнем организации образует живую ткань. Органный - на этом уровне изучаются системы разных органов: побеговые и генеративные – у растений, системы органов дыхания, пищеварения, размножения – у животных. Организменный первый, самый низший уровень из изучаемых общей экологией. В организме взаимодействие систем органов сводится в единую систему индивидуального организма. Он может существовать самостоятельно! Вне организмов жизнь не проявляется. На этом уровне изучаются жизненные циклы отдельных особей, законы образования фенотипов и генотипов. Популяционно-видовой - совокупность особей одного вида. Биоценотический - Совокупность особей разных видов, занимающая определённую территорию. Биосферный самый высокий, рассматривается взаимоотношения между собой макроэкосистем, биогеоценозов (лес-степь, лес-болото, лес-тундра и др.), изучаются закон круговорота веществ, энергии в глобальном аспекте.

8. Системы организменного и надорганизменного уровней – организмы, популяции, экосистемы, биосфера – как объекты изучения экологии. Организм рассматривается как целостная система, взаимодействуюющая с внешней средой как биотич, так и абиотич. Популяция . Ее определяют как группу организмов одного вида (внутри которой особи могут обмениваться генетической информацией), занимающую конкретное пространство и функционирующую как часть биотического сообщества. Популяция это совокупность особей одного вида, обитающих на определенной территории, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций. Экосистемы - единые природные комплексы, образованные живими организмами и средой обитания, связанными между собой обменом веществ и энергии.Главным предметом исследования при экосистемном подходе в экологии становятся процессы трансформации вещества и энергии между биотой и физической средой т.е. возникающий биогеохимический круговорот веществ в экосистеме в целом.

9.Вопросы и проблемы, рассматриваемые общей экологией. Разделы общей экологии. Общая экология(4 основн. раздел.): 1)Биоэкология состоит из экологий естественных биологических систем: особей, видов (аутоэкология), популяций и сообществ (синэкология) и экологии биоценозов. 2)Геоэкология изуч. биосферные оболочки Земли, в том числе подземную гидросферу, как компоненты окружающей среды, минеральную основу биосферы и происходящие в них изменения под влиянием природных и техногенных процессов. Включ. в себя изучение ландшафтов, почв, поверхностных и подземных вод, горных пород, воздуха, растительного покрова. 3)Экология человека - комплекс дисциплин, исследующих взаимодействие человека как биологической особи (биоэкология человека) и личности с окружающей его природной, социальной и культурной средами. Здоровье людей связано с экологической обстановкой и образом жизни (медицинская экология), на человека оказывает влияние среда морали, воззрений, традиций и трудно уловимой духовности (экология духа). 4)Прикладная экология представлена комплексом дисциплин, связанных с различными областями человеческой деятельности и взаимоотношений между человеком и природой. Она исследует механизмы техногенных и антропогенных воздействий на экосистемы, формирует экологические критерии и нормативы в промышленности, транспорте и сельском хозяйстве (экология природно-технических геосистем (ПТГС) и селскохозяйственная экология). Для всех направлений главн. явл. изучение – выживания живых существ в окпужающей среде. Изучает общие закономерности взаимоотношений любых живых организмов и среды (включ. чел-а как биологич. сущ-во).

10. Значение универсального свойства систем живой природы - эмержентности. Эмержентность – наличие у системного целого особых свойств, не присущих его подсистемам и блокам, а так же сумме других элементов, не объединенных системообразующими связями.

11.Учение о биосфере - Биосфера, согласно учению академика В.И. Вернадского, представляет собой наружную оболочку Земли, включающую все живое вещество и область его распространения (среду обитания). Верхняя граница биосферы - защитный озоновый слой в атмосфере на высоте 20-25 км, выше которого жизнь невозможна ввиду воздействия ультрафиолетового излучения. Нижней границей биосферы являются: литосфера до глубины 3-5 км и гидросфера до глубины 11-12 км

Важнейшими компонентами биосферы являются:

Живое вещество (растения, животные, микроорганизмы);

Биогенное вещество органического происхождения (уголь, торф, почвенный гумус, нефть, мел, известняк и др.); косное вещество (горные породы неорганического происхождения);

Биокосное вещество (продукты распада и переработки горных пород живыми организмами).

Биосфера как глобальная экосистема характеризуется максимальным среди других систем разнообразием. Последнее обусловливается многими причинами и факторами. Это и разные среды жизни (водная, наземно-воз-душная, почвенная, организменная);

12.Живое вещество - вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности..Термин введён В. И. Вернадским.В состав живого вещества входят как органические (в химическом смысле), так и неорганические, или минеральные, вещества. Вернадский писал: Идея о том, что явления жизни можно объяснить существованием сложных углеродистых соединений – живых белков, бесповоротно опровергнута совокупностью эмпирических фактов геохимии... Живое вещество – это совокупность всех организмов.

Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6×1012 т (в сухом весе) и составляет менее 10−6 массы других оболочек Земли. Но это одна «из самых могущественных геохимических сил нашей планеты».

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы. В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза.

Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

Выделяют пять основных функций живого вещества:

    Энергетическая. Заключается в поглощении солнечной энергии при фотосинтезе, а химической энергии – путем разложения энергонасыщенных веществ и передаче энергии по пищевой цепи разнородного живого вещества.

    Концентрационная. Избирательное накопление в ходе жизнедеятельности определенных видов вещества. Выделяют два типа концентраций химических элементов живым веществом: а) массовое повышение концентраций элементов в среде, насыщенной этими элементами, например, серы и железа много в живом веществе в районах вулканизма; б) специфическую концентрацию того или иного элемента вне зависимости от среды.

    Деструктивная. Заключается в минерализации необиогенного органического вещества, разложении неживого неорганического вещества, вовлечении образовавшихся веществ в биологический круговорот.

    Средообразующая. Преобразование физико-химических параметров среды (главным образом за счет необиогенного вещества).

    Транспортная. Перенос вещества против силы тяжести и в горизонтальном направлении.

Живое вещество охватывает и перестраивает все химические процессы биосферы. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Воздавая должное памяти великого основоположника учения о биосфере, следующее обобщение А. И. Перельман предложил назвать «законом Вернадского»

13.Закон биогенной миграции атомов В.И.Вернадского - Закон биогенной миграции атомов В.И.Вернадского - в экологии - закон, согласно которому миграция химических элементов на земной поверхности и в биосфере в целом осуществляется

Или при непосредственном участии живого вещества (биогенная миграция);

Или же она протекает в среде, геохимические особенности которой обусловлены живым веществом.

Понятие об экосистемах. Учение о биогеоценозах

Сообщества организмов связаны с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода. В любом конкретном местообитании запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков. Таким образом, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Понятие об экосистемах. Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называют экосистемой. Термин был предложен в 1935 г. английским экологом А. Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты и мы не можем отделить организмы от конкретной окружающей их среды. А. Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, хотя они и не имеют определенного объема и могут охватывать пространство любой протяженности.

Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений. Консументы – это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы. Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена – консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе чрезвычайно различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т. е. многократность вовлечения одних и тех же атомов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, степи на плакорных участках, озера и т. п.). Однако ни одна, даже самая крупная, экосистема Земли не имеет полностью замкнутого круговорота. Материки интенсивно обмениваются веществом с океанами, причем большую роль в этих процессах играет атмосфера, и вся наша планета часть материи получает из космического пространства, а часть отдает в космос.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Эко-системная организация жизни является одним из необходимых условий ее существования. Запасы биогенных элементов, из которых строят тела живые организмы, на Земле в целом и на каждом конкретном участке на ее поверхности небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни. Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Таким образом, функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы – древнейшее свойство жизни.

Учение о биогеоценозах. Параллельно с развитием концепции экосистем успешно развивается учение о биогеоценозах, автором которого был академик В. Н. Сукачев (1942).

«Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющих свою специфику взаимодействия этих слагаемых ее компонентов и определенный тип обмена веществами и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии» (В. Н. Сукачев, 1964).

«Экосистема» и «биогеоценоз» – близкие по сути понятия, но если первое из них приложимо для обозначения систем, обеспечивающих круговорот любого ранга, то «биогеоценоз» – понятие территориальное, относимое к таким участкам суши, которые заняты определенными единицами растительного покрова – фитоценозами. Наука о биогеоценозах – биогеоценология – выросла из геоботаники и направлена на изучение функционирования экосистем в конкретных условиях ландшафта в зависимости от свойств почвы, рельефа, характера окружения биогеоценоза и составляющих его первичных компонентов – горной породы, животных, растений, микроорганизмов.

В биогеоценозе В. Н. Сукачев выделял два блока: экотоп – совокупность условий абиотической среды и биоценоз – совокупность всех живых организмов.

Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп – как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов. Во внутреннем сложении биогеоценоза выделяют такие структурно-функциональные единицы, как парцеллы (термин предложен Н. В.Дылисом). Биогеоценотические парцеллы включают в себя растения, животное население, микроорганизмы, мертвую органику, почву и атмосферу по всей вертикальной толще биогеоценоза, создавая его внутреннюю мозаику. Биогеоценотические парцеллы различаются визуально по растительности: высоте и сомкнутости ярусов, видовому составу, жизненному состоянию и возрастному спектру популяций доминирующих видов. Иногда они хорошо отграничены по составу, строению и мощности лесной подстилки. Названия им дают обычно по растениям, доминирующим в разных ярусах. Например, в волосистоосоковом дубо-ельнике можно выделить такие парцеллы, как елово-волосистоосоковая, елово-кисличная, крупнопапоротниковая в окнах древесного яруса, дубово-снытевая, дубово-осиново-медуничная, березово-елово-мертвопокровная, осиново-снытевая и др.

Внутри каждой парцеллы создается свой фитоклимат. Весной в тенистых еловых парцеллах снег лежит дольше, чем на участках под листопадными деревьями или в окнах. Поэтому активная жизнь весной в парцеллах наступает в разные сроки, переработка детрита также идет с разной скоростью. Границы между парцеллами могут быть как относительно четкими, так и размытыми. Взаимосвязь осуществляется как в результате кондиционирования условий среды (теплообмен, изменение освещения, перераспределение осадков и т. п.), так и в результате материально-энергетического обмена. Происходит разброс растительного опада, перенос пыльцы, спор, семян и плодов воздушными потоками и животными, перемещение животных, поверхностный сток осадков и талых вод, передвигающих минеральные и органические вещества. Все это поддерживает биогеоценоз как единую, внутренне разнородную экосистему.

Роль разных парцелл в строении и функционировании биогеоценозов неодинакова, наиболее крупные парцеллы, занимающие большие пространства и объем, называют основными. Их бывает немного. Именно они определяют внешний облик и строй биогеоценоза. Парцеллы, занимающие небольшие площади, называют дополняющими. Число их всегда больше. Одни парцеллы более устойчивы, другие подвержены значительным и быстрым изменениям. По мере взросления и старения растений парцеллы могут сильно изменить состав и структуру, ритмы сезонного развития, по-разному участвовать в круговороте веществ.

Рис. 145. Окна возобновления основных пород в лесном биогеоценозе (по О. В. Смирновой, 1998)

Мозаичность лесных биогеоценозов и появление новых парцелл часто связаны с образованием в лесах окон, т. е. нарушением древесного яруса в связи с вывалом старых деревьев, вспышек массовых вредителей – насекомых, поражением грибами, деятельностью крупных копытных. Создание такой мозаичности совершенно необходимо для устойчивого существования леса и возобновления главенствующих пород деревьев, подрост которых часто не может развиваться под материнскими кронами, так как требует иных условий освещения и минерального питания. Окна возобновления для разных пород должны иметь достаточную пространственную протяженность (рис. 145). В восточноевропейских широколиственных лесах ни один вид не может переходить к плодоношению в окнах, соизмеримых всего с проекциями крон одного-двух взрослых деревьев. Даже наиболее теневыносливым из них – букам, кленам – требуются освещенные парцеллы в 400–600 м 2 , а полный онтогенез светолюбивых видов – дуба, ясеня, осины может завершаться только в крупных окнах не менее 1500–2000 м 2 .

На основании детального изучения структуры и функционирования биогеоценозов в экологии в последнее время развивается концепция мозаично-циклической организации экосистем. С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Биогеоценология рассматривает поверхность Земли как сеть соседствующих биогеоценозов, связанных между собой через миграцию веществ, но тем не менее, хотя и в разной степени, автономных и специфичных по своим круговоротам. Конкретные свойства участка, занятого биогеоценозом, придают ему своеобразие, выделяя из других, исходных по типу.

Обе концепции – экосистем и биогеоценозов – дополняют и обогащают друг друга, позволяя рассматривать функциональные связи сообществ и окружающей их неорганической среды в разных аспектах и с разных точек зрения.

Понятие "экосистема" ввел в 1935 году А. Тенсли, английский ботаник. Этим термином он обозначил любую совокупность организмов, обитающих совместно, а также окружающую их среду. В его определении подчеркивается наличие взаимозависимости, взаимоотношений, причинно-следственных связей, существующих между абиотической средой и биологическим сообществом, объединение их в некое функциональное целое. Экосистема, как считают биологи - это совокупность всевозможных популяций различных видов, которые обитают на общей территории, а также окружающая их неживая среда.

Биогеоценоз - это природное образование, имеющее четкие границы. Оно состоит из совокупности биоценозов (живых существ), которые занимают определенное место. Например, для водных организмов это место - вода, для тех, кто обитает на суше, - атмосфера и почва. Ниже мы рассмотрим которые помогут вам понять, что это такое. Эти системы мы подробно опишем. Вы узнаете о том, какова их структура, какие существуют их виды и как происходит их смена.

Биогеоценоз и экосистема: различия

До некоторой степени понятия "экосистема" и "биогеоценоз" являются однозначными. Тем не менее по объему они совпадают не всегда. Биогеоценоз и экосистема соотносятся как менее широкое и более широкое понятие. Экосистема не связана с неким ограниченным участком поверхности земли. Понятие это можно применять по отношению ко всем стабильным системам неживых и живых компонентов, в которых происходит внутренний и внешний круговорот энергии и веществ. К экосистемам, например, можно отнести каплю воды с находящимися в ней микроорганизмами, горшок с цветами, аквариум, биофильтр, аэротенк, космический корабль. А вот биогеоценозами их назвать нельзя. Экосистема может иметь в своем составе и несколько биогеоценозов. Обратимся к примерам. Можно выделить биогеоценозы океана и биосферы в целом, материка, пояса, почвенно-климатической области, зоны, провинции, округа. Таким образом, биогеоценозом можно считать не каждую экосистему. Мы выяснили это, обратившись к примерам. А вот любой биогеоценоз можно назвать экологической системой. Надеемся, теперь вы уяснили специфику этих понятий. "Биогеоценоз" и "экосистема" нередко употребляются как синонимы, однако разница между ними все-таки есть.

Особенности биогеоценоза

Множество видов обычно обитает в любом из ограниченных пространств. Между ними устанавливаются сложные и постоянные взаимоотношения. Другими словами, разные виды организмов, которые существуют в некотором пространстве, характеризующимся комплексом особых физико-химических условий, представляют собой сложную систему, которая сохраняется более или менее длительное время в природе. Уточняя определение, отметим, что биогеоценоз - это сообщество организмов различных видов (исторически сложившееся), которые тесно связаны между собой и с окружающей их, обменом энергии и веществ. Специфическая характеристика биогеоценоза заключается в том, что он пространственно ограничен и довольно однороден по видовому составу включенных в него живых существ, а также по комплексу различных Существование как целостной системы обеспечивает постоянное поступление в этот комплекс солнечной энергии. Как правило, граница биогеоценоза устанавливается по границе фитоценоза (растительного сообщества), который является его важнейшим компонентом. Таковы основные его особенности. Роль биогеоценоза велика. На его уровне происходят все процессы потока энергии и круговорота веществ в биосфере.

Три группы биоценоза

Главная роль в осуществлении взаимодействия между различными его компонентами принадлежит биоценозу, то есть живым существам. Они подразделяются по своим функциям на 3 группы - редуцентов, консументов и продуцентов - и тесно взаимодействуют с биотопом (неживой природой) и друг с другом. Эти живые существа объединены существующими между ними пищевыми связями.

Продуценты - это группа автотрофных живых организмов. Потребляя энергию солнечного света и минеральные вещества из биотопа, они создают тем самым первичные органические вещества. К данной группе относятся некоторые бактерии, а также растения.

Редуценты разлагают остатки умерших организмов, а также расщепляют до неорганических органические вещества, тем самым возвращая в биотоп "изъятые" продуцентами минеральные вещества. Это, например, некоторые виды одноклеточных грибов и бактерий.

Динамическое равновесие системы

Виды биогеоценоза

Биогеоценоз может быть естественным и искусственным. К видам последнего относятся агробиоценозы и городские биогеоценозы. Остановимся подробнее на каждом из них.

Биогеоценоз естественный

Отметим, что каждый природный естественный биогеоценоз - это система, сложившаяся в течение длительного времени - тысяч и миллионов лет. Поэтому все ее элементы являются "притертыми" друг к другу. Это приводит к тому, что устойчивость биогеоценоза к различным изменениям, происходящим в окружающей среде, очень высока. "Прочность" экосистем не беспредельна. Глубокие и резкие изменения условий существования, сокращение числа видов организмов (например, в результате масштабного вылова промысловых видов) приводят к тому, что равновесие может быть нарушено и он может быть разрушен. В этом случае происходит смена биогеоценозов.

Агробиоценозы

Агробиоценозы - это особые сообщества организмов, которые складываются на территориях, используемых людьми в сельскохозяйственных целях (посадки, посевы культурных растений). Продуценты (растения), в отличие от биогеоценозов естественного вида, представлены здесь одним видом культуры, выращиваемой человеком, а также определенным числом видов сорных растений. Разнообразие (грызунов, птиц, насекомых и т. п.) определяет растительный покров. Это виды, которые могут питаться произрастающими на территории агробиоценозов растениями, а также находиться в условиях их культивирования. Данные условия определяют наличие и других видов животных, растений, микроорганизмов и грибов.

Агробиоценоз зависит, прежде всего, от деятельности человека (внесение удобрений, механическая обработка почвы, орошение, обработка ядохимикатами и др.). Устойчивость биогеоценоза этого вида слабая - он очень быстро разрушится без вмешательства людей. Это вызвано отчасти тем, что растения культурные намного более прихотливы, нежели дикорастущие. Поэтому они не могут выдерживать конкуренции с ними.

Городские биогеоценозы

Городские биогеоценозы представляют особый интерес. Это еще одна разновидность антропогенных экосистем. В качестве примера можно привести парки. Основные как и в случае с агробиоценозами, являются в них антропогенными. Видовой состав растений определяет человек. Он сажает их, а также осуществляет уход за ними и их обработку. Наиболее сильно изменения внешней среды выражены именно в городах - повышение температуры (от 2 до 7 °С), специфические особенности почвенного и атмосферного состава, особый режим влажности, освещенности, действия ветров. Все эти факторы формируют городские биогеоценозы. Это очень интересные и специфические системы.

Примеры биогеоценоза многочисленны. Различные системы отличаются друг от друга по видовому составу организмов, а также по свойствам среды, в которой они обитают. Примеры биогеоценоза, на которых мы подробно остановимся, - это листопадный лес и пруд.

Листопадный лес как пример биогеоценоза

Листопадный лес является сложной экологической системой. В состав биогеоценоза в нашем примере входят такие виды растений, как дубы, буки, липы, грабы, березы, клены, рябины, осины и другие деревья, листва которых осенью опадает. Несколько их ярусов выделяется в лесу: низкий и высокий древесный, мохового напочвенного покрова, трав, кустарников. Растения, населяющие верхние ярусы, являются более светолюбивыми. Они лучше выдерживают колебания влажности и температуры, нежели представители нижних ярусов. Мхи, травы и кустарники теневыносливы. Они существуют летом в полумраке, образующимся после развертывания листвы деревьев. Подстилка лежит на поверхности почвы. Она образуется из полуразложившихся остатков, веточек кустарников и деревьев, опавшей листвы, мертвых трав.

Лесные биогеоценозы, в том числе листопадные леса, характеризуются богатой фауной. Их населяет множество норных грызунов, хищников (медведь, барсук, лисица), землероющих насекомоядных. Встречаются и живущие на деревьях млекопитающие (бурундук, белка, рысь). Косули, лоси, олени входят в состав группы крупных травоядных. Кабаны широко распространены. В разных ярусах леса гнездятся птицы: на стволах, в кустарниках, на земле или на вершинах деревьев и в дуплах. Имеется множество насекомых, питающихся листьями (к примеру, гусеницы), а также древесиной (короеды). В верхних слоях почвы, а также в подстилке обитает, кроме насекомых, огромное число и других позвоночных (клещи, дождевые черви, личинки насекомых), множество бактерий и грибов.

Пруд как биогеоценоз

Рассмотрим теперь пруд. Это пример биогеоценоза, средой жизни организмов в котором является вода. Крупные плавающие или укореняющиеся растения (рдесты, кувшинки, камыш) поселяются на мелководье прудов. Мелкие плавающие растения распространены по всей толще воды, до той глубины, куда проникает свет. В основном это водоросли, которые называются фитопланктоном. Их иногда много, в результате чего вода делается зеленой, "цветет". Множество сине-зеленых, зеленых и диатомовых водорослей содержится в фитопланктоне. Головастики, личинки насекомых, ракообразные питаются растительными остатками или живыми растениями. Рыбы и хищные насекомые поедают мелких животных. А за растительноядными и более мелкими хищными рыбами охотятся крупные хищные. Разлагающие органические вещества организмы (грибы, жгутиковые, бактерии) широко распространены по всей территории пруда. В особенности много их на дне, поскольку здесь скапливаются остатки мертвых животных и растений.

Сравнение двух примеров

Сравнив примеры биогеоценоза, мы видим, насколько непохожи и по видовому составу, и по внешнему виду экосистемы пруда и леса. Это обусловлено тем, что у организмов, населяющих их, разная среда обитания. В пруду это вода и воздух, в лесу - почва и воздух. Тем не менее функциональные группы организмов являются однотипными. В лесу продуценты - это мхи, травы, кустарники, деревья; в пруду - водоросли и плавающие растения. В лесу в состав консументов входят насекомые, птицы, звери и другие беспозвоночные, населяющие подстилку и почву. К консументам в пруду относятся различные земноводные, насекомые, ракообразные, хищные и растительноядные рыбы. В лесу редуценты (бактерии и грибы) представлены наземными формами, а в пруду - водными. Отметим также, что и пруд, и лиственный лес, - это естественный биогеоценоз. Примеры искусственных мы приводили выше.

Почему биогеоценозы сменяют друг друга?

Биогеоценоз не может существовать вечно. Он неизбежно рано или поздно сменяется другим. Это происходит в результате изменения среды живыми организмами, под влиянием человека, в процессе эволюции, при изменении климатических условий.

Пример смены биогеоценоза

Рассмотрим в качестве примера случай, когда сами живые организмы являются причиной смены экосистем. Это заселение скальных пород растительностью. Большое значение на первых стадиях этого процесса имеет выветривание пород: частичное растворение минералов и изменение их химических свойств, разрушение. На начальных этапах очень большую роль играют первые поселенцы: водоросли, бактерии, сине-зеленые. Продуцентами являются в составе лишайников и водоросли свободноживущие. Они создают органическое вещество. Сине-зеленые из воздуха берут азот и обогащают им еще малопригодную для обитания среду. Лишайники растворяют выделениями органических кислот скальную породу. Они способствуют тому, что элементы минерального питания постепенно накапливаются. Грибы и бактерии разрушают созданные продуцентами органические вещества. Последние не полностью минерализуются. Постепенно накапливается смесь, состоящая из минеральных и органических соединений и обогащенных азотом растительных остатков. Создаются условия для существования кустистых лишайников и мхов. Ускоряется процесс накопления азота и органического вещества, образуется тонкая прослойка почвы.

Формируется примитивное сообщество, которое может существовать в данной неблагоприятной обстановке. К суровым условиям скал хорошо приспособлены первые поселенцы - они выдерживают и мороз, и жару, и сушь. Постепенно они изменяют среду обитания, создавая условия для образования новых популяций. После того как появляются травянистые растения (клевер, злаки, осоки, колокольчик и др.), ужесточается конкуренция за питательные элементы, свет, воду. В этой борьбе пионеры-поселенцы вытесняются новыми видами. Кустарники поселяются за травами. Они скрепляют своими корнями формирующуюся почву. Лесными сообществами сменяются травяно-кустарниковые.

В ходе длительного процесса развития и смены биогеоценоза количество входящих в него видов живых организмов постепенно растет. Более сложным становится сообщество, все более разветвленной делается его Увеличивается разнообразие связей, существующих между организмами. Все полнее сообщество использует ресурсы среды. Так оно превращается в зрелое, которое хорошо приспособлено к условиям среды и обладает саморегуляцией. В нем популяции видов хорошо воспроизводятся и другими видами не замещаются. Тысячи лет длится описанная смена биогеоценозов. Однако существуют смены, которые происходят на глазах всего лишь одного поколения людей. К примеру, это зарастание мелких водоемов.

Итак, мы рассказали о том, что такое биогеоценоз. Примеры с описанием, представленные выше, дают наглядное представление о нем. Все, о чем мы рассказали, важно для понимания этой темы. Типы биогеоценозов, их структура, особенности, примеры - все это следует изучить для того, чтобы иметь полное представление о них.

Что такое экосистема? Какой учёный ввел понятие «экосистема»? Перечислите компоненты экосистемы. В чём заключается биологическая продуктивность экосистемы? Какова структура экосистемы. Дайте определение биоценоза, биогеоценоза, биотопа. Какова трофическая и видовая структуры экосистем.

Экосистема (1935г) (от греч. oikos - жилище, местопребывание и systema - сочетание, объединение) - совокупность всех популяций разных биологических видов, проживающих на общей территории вместе с окружающей их неживой средой.

Биогеоценоз (1942г) - участок территории однородный по экологическим условиям и занятый одним биоценозом

Особенности экосистем

Открытая (есть входящий и исходящий потоки энергии)

Автономная . Если ее изолировать и обеспечить приток энергии, то она сможет существовать практически неограниченное время.

Проявляет способность к саморегуляции и самоподдержанию , т. е. у нее есть буфферность.

Обладает гомеостазом относительной устойчивостью во времени и пространстве.

Размытость границ, как по вертикали, так и по горизонтали .

Может существовать без какого-либо компонента . Например, в болотных экосистемах нет почвы, в подземных (пещеры) нет притока световой энергии.

Экотон – граница между экосистемами (биогеоценозами). Экотон всегда отличается более высоким видовым разнообразием и плотностью популяций по отношению к центральной части биогеоценоза. Например, опушка леса всегда более насыщена видами древесной, травянистой и кустарниковой растительности, по отношению к участкам, расположенным в глубине лесного массива

Классификация экосистем

По размерам

Макро экосистемы. Например, море, океан, континент…

Мезо экосистемы. Например, участок леса, поле, луг, река, озеро.… Такие экосистемы обычно называют биогеоценозами.

Микро экосистемы (опушка, поляна, лужа…).

По происхождению:

Естественные – образованные спонтанно (тундра, степь, лес…).

Искусственные – образованы в результате человеческой деятельности

Компоненты экосистемы

Биоценоз – биотичекая составляющая

Биотоп – абиотическая составляющая

Иерархия экосистем

Водоросль" href="/text/category/vodoroslmz/" rel="bookmark">водоросли и некоторые виды бактерий) используют солнечную энергию для получения органических веществ из воды и углекислого газа в процессе фотосинтеза. Хемоавтотрофы (хемосинтезирующие бактерии) используют химическую энергию неорганических веществ, образуя органические вещества в процессах хемосинтеза.

Гетеротрофные организмы используют для построения своих тел и в качестве источника энергии готовое органическое вещество, созданное автотрофами. Гетеротрофы в основном представлены животными, которые получают органическое вещество с пищей, а также бактериями и грибами, получающими энергию путем усвоения веществ в процессе разложения мертвого органического вещества. Образующиеся в процессе жизнедеятельности гетеротрофов неорганические соединения усваиваются автотрофами.

Согласно роли в переносе энергии через экосистему и в круговороте веществ, выделяют три эколого-функциональные группы организмов.

Продуценты – это автотрофные организмы, синтезирующие органическое вещество из неорганических составляющих с использованием внешних источников энергии. Таким образом, продуценты являются производителями органического вещества в природных сообществах, при этом они превращают энергию солнечного излучения в «запасенную» энергию химических связей органических веществ и вовлекают в круговорот элементы неживой природы, включая их в состав тканей организмов.

Редуценты – гетеротрофные организмы, которые используют в качестве пищи мертвое органическое вещество и в процессе метаболизма (совокупности биохимических реакций, обеспечивающих жизнедеятельность организма) разлагают его до неорганических составляющих. Редуцентами в экосистемах являются грибы и бактерии.

Процесс разложения мертвого органического вещества начинается с разрушения его особой группой консументов – сапрофагами . Крупные сапрофаги (например, членистоногие) механически разрушают мертвые ткани, подготавливая вещество к воздействию редуцентов – бактерий и грибов, осуществляющих процесс минерализации.

В результате взаимодействия продуцентов, консументов и редуцентов в экосистеме осуществляется перенос энергии и круговорот вещества (рис.3).

Органические вещества, синтезированные автотрофными организмами, претерпевают многочисленные химические превращения и в конечном итоге возвращаются в среду в виде неорганических продуктов жизнедеятельности, вновь вовлекаемых в круговорот.

Функционально все виды, составляющие экосистему, распределяются на несколько групп в зависимости от их места в общей системе круговорота веществ и потока энергии. Равнозначные в этом смысле виды образуют отдельные трофические (пищевые) уровни , связанные системой пищевых (трофических) цепей по принципу пища – потребитель.

Трофические цепи, представленные продуцентами и консументами, определяют как пастбищные пищевые цепи (цепи выедания) . Пищевые цепи, в которых осуществляются процессы деструкции и минерализации органических веществ определяются как детритные пищевые цепи .

Поток органического вещества в экосистеме на уровне консументов разделяется: живое вещество следует по цепям выедания, мертвое – по цепям разложения.

https://pandia.ru/text/78/410/images/image003_20.gif" width="576" height="371 src=">

Что такое гомеостаз экосистемы. Функционирование и динамика экосистемы. Энергия и продуктивность экосистемы. Сукцессия

Экологические сукцессии

Экологической сукцессией называется последовательная смена биоценозов в рамках одного биотопа.

Закон сукцессионого замещения: природные биотические сообщества последовательно формируют закономерный ряд экосистем, ведущий к наиболее устойчивому в данных условиях состоянию (климаксу)

Климакс (климаксное сообщество) - завершающая стабильная стадия развития экосистемы

Основные стадии сукцессий

Первопоселенцы (пионерные виды) →серии сукцессий → климаксовое сообщество

Виды экологических сукцессий

1. По характеру биотопа

Первичные сукцессии. Сукцессии на территориях, впервые осваиваемых организмами.

Вторичные сукцессии. Сообщество развивается на месте, где ранее существовала хорошо развитая экосистема

2. По заключительной стадии

Прогрессивные - существовавшее на данном месте коренное биотическое сообщество, которое по каким либо причинам было удалено (вырубка) полностью восстанавливается

Регрессивные – не завершаются конечным климаксом, коренная экосистема полностью исчезает (напр. опустынивание)

3. По причинам, вызывающим сукцессию

Экзогенные сукцессии – связаны с действием внешних факторов

Климатические

Почвенные.

Геологические

Антропогенные

Эндогенные сукцессии – связаны с внутренними процессами экосистемы

Примеры экологических сукцессий

https://pandia.ru/text/78/410/images/image005_12.gif" width="624" height="164">

Пример сукцессии в водной экосистеме

https://pandia.ru/text/78/410/images/image007_7.gif" width="624" height="225">

Гомеостаз экосистем

Гомеостаз – способность экосистемы сохранять состояние подвижного равновесия, не смотря на внешнее воздействие.

Гомеостаз – способность биологических систем – организма, популяции и экосистем – противостоять изменениям и сохранять равновесие.

Функционирование и динамика экосистемы:

Цикличность – суточная, сезонная и многолетняя периодичность внешних условий и проявление внутренних (эндогенных) ритмов организмов.

Суточные циклы наиболее резко выражены в условиях климата высокой континентальности, где значительная разница между дневными и ночными температурами.

Сезонная цикличность – на определенный период из биоценоза «выпадают» группы животных и даже целые популяции, впадающие в спячку, в период диапауз или оцепенений, при исчезновении однолетних трав, опаде листвы и так далее.

Многолетняя цикличность – благодаря флуктуациям климата. Многолетняя периодичность в изменении численности биоценоза, вызванная резко неравномерным выпадением осадков по годам, с периодическим повторением засух и так далее.

Энергия экосистемы

Энергия может переходить из одной формы (энергии света) в другую (потенциальную энергию пищи), но она никогда не создается вновь и не исчезает бесследно.

Закон максимизации энергии:

в соперничестве с другими экосистемами сохраняется та из них, которая наилучшим образом способствует поступлению энергии и использует максимальное ее количество наиболее эффективным способом.

Продуктивность экосистемы

Биологическая продуктивность – скорость создания органического вещества в экосистемах.

Биомасса – масса тела живых организмов.

Первичная продукция сообщества – органическая масса, создаваемая растениями за единицу времени. А продукция животных или других консументов – вторичная.

Правило пирамиды продукции: на каждом предыдущем трофическом уровне количество биомассы , создаваемой за единицу времени, больше, чем на последующем.

Если связь «хищник-жертва», то правило пирамиды чисел: общее число особей, которые участвуют в цепях питания, с каждым последующим звеном уменьшается.

Сукцессия – последовательная необратимая смена биоценозов, преемственно возникающих на одной и той же территории в результате влияния природных факторов или воздействия человека.

Первоисточником энергии для экосистем является Солнце. Земля получает ~ 1,КДж/м2 . год солнечной энергии. Около 40% ее отражается от облаков, атмосферной пыли и от поверхности Земли,~ 15% поглощается атмосферой (в частности, озоновым слоем) и превращается в тепло, либо расходуется на испарение воды. Остальная энергия поглощается земной поверхностью и растениями, при этом большая часть поглощенной энергии повторно излучается земной поверхностью и нагревает атмосферу, и лишь небольшая часть (~ КДж/м2 . год) поступает в биотический компонент экосистем через продуцентов. Биомасса органического вещества, синтезированного в экосистеме продуцентами- автотрофами, определяется как первичная продукция . Общая сумма биомассы рассматривается как валовая первичная продукция (ВПП). Значительная часть энергии, аккумулированной в виде валовой первичной продукции экосистемы, расходуется на дыхание и фотодыхание растений. Та часть биомассы, которая определяет прирост в экосистеме, рассматривается как чистая первичная продукция (ЧПП). Разница между валовой и чистой первичной продукцией определяется затратами энергии на жизнедеятельность организмов. Накопленная в виде биомассы организмов-автотрофов чистая первичная продукция служит источником питания (вещества и энергии) для следующих трофических уровней. Обычно чистая первичная продукция составляет не более 20% от валовой первичной продукции. Вещество и энергия, содержащиеся в пище, при поедании одних организмов другими переходят с одного трофического уровня на следующий. Непереваренная часть пищи, содержащая некоторое количество энергии, выделяется с экскрементами. Некоторое количество энергии содержат также органические отходы метаболизма (экскреты). Наконец, часть энергии теряется животными на дыхание. Энергия, оставшаяся после указанных потерь, идет на рост, поддержание жизнедеятельности и размножение организмов. Количество энергии, накопленное организмами-гетеротрофами на каждом трофическом уровне, составляет вторичную продукцию (ВП) данного уровня.

Средняя эффективность переноса энергии к продуцентам составляет ~ 1%; переноса энергии от растений к фитофагам - ~ 10%, а переноса энергии от животного к животному – 10 – 20 %. Энергия, теряющаяся при дыхании, не передается другим организмам. Энергия, заключенная в экскрементах и экскретах, наоборот, не теряется для экосистем, т. к. передается детритофагам (организмам, питающимся детритом) и редуцентам. Если экосистема стабильна, в ней не происходит увеличения биомассы (продуктивность – скорость накопления биомассы - равна нулю).

Главной особенностью экологического равновесия экосистемы является его подвижность. Любая экосистема, приспосабливаясь к изменениям внешней среды, находится в состоянии динамики. Различают динамику циклическую и направленную. Примером циклической динамики является сезонное изменение активности жизнедеятельности организмов, или периодическое изменение численности отдельных видов в многолетнем ряду. Направленная динамика представляет собой поступательное развитие экосистем. Для такого вида динамики характерно либо внедрение в экосистемы новых видов, либо смена одних видов другими, что в конечном итоге приводит к смене биоценозов и экосистем в целом. Изменение видовой структуры и биоценотических процессов в экосистеме называют сукцессией. экосистемы. Таким образом, сукцессия представляет собой протекающий во времени процесс последовательной смены экосистем при постепенном направленном изменении условий среды.

Сукцессии, обусловленные действием внешних факторов, называют экзогенетическими, Такие сукцессии могут быть вызваны, например, изменением климата в одном направлении (похолодание или потепление) и другими изменениями абиотических условий. Такие смены могут происходить в течение столетий и тысячелетий и их называют вековыми сукцессиями . Если в результате изменения условий среды одни виды вымирают, а другие изменяются под действием естественного отбора, данный процесс рассматривается как эволюционная сукцессия .

Если сукцессия происходит вследствие внутренних взаимодействий, она называется эндогенетической. . Эндогенетические сукцессии наблюдаются в природе, когда в процессе своего развития сообщество изменяет среду так, что она становится более благоприятной для другого сообщества. Формирующееся новое сообщество в свою очередь делает среду еще более неблагоприятной для прежнего сообщества. Происходит процесс смены экосистем, проходящий несколько стадий, до тех пор, пока не будет достигнуто окончательное популяционное равновесие. Сукцессия заканчивается формированием сообщества, адаптированного к климатическим условиям, способного поддерживать себя неограниченно долго, внутренние компоненты которого уравновешены друг с другом и с окружающей средой. Завершающее сукцессию сообщество - устойчивое, самовозобновляющееся и находящееся в равновесии со средой – называется климаксным сообществом.

Процесс развития и смены экосистем, который начинается на новом, незаселенном ранее участке, определяется как первичная сукцессия . Типичным примером является заселение обнажений горных пород. Вначале на скалах появляются лишайники и водоросли формируется комплекс видов микроскопических водорослей, простейших, .нематод, некоторых насекомых и клещей, который способствует образованию первичной почвы. Позже возникают другие формы лишайников, специализированные виды мхов, затем поселяются сосудистые растения и обогащается фауна.

Восстановление нарушенной экосистемы, ранее существовавшей на данной территории, называется вторичной сукцессией. Такие сукцессии возникают, например, после вырубок леса или лесных пожаров, при зарастании площадей, находившихся ранее под сельскохозяственными угодьями. Вторичные сукцессии развиваются на субстрате, уже обогащенном органическим веществом, они. начинаются с промежуточных стадий и происходят значительно быстрее, чем первичные сукцессии.

Общими закономерностями эндогенетических сукцессий являются увеличение видового разнообразия, усиление связей между популяциями различных видов организмов, уменьшение числа свободных экологических ниш, повышение продуктивности экосистем и в конечном итоге, формирование климаксного биоценоза. При этом каждой сукцессии и на каждой стадии присущ набор видов, которые характерны для данного региона и наиболее приспособлены к той или иной ее стадии.

Насколько бысто меняются экосистемы зависит от степени сдвига их равновесия. Сукцессии представляют собой естественный пароцесс развития экосистемы. При сукцессиях изменения происходят медленно и постепенно. На всех стадиях процесса замещения одних видов другими система является достаточно сбалансированной. В процессе сукцессии происходит формирование все более сложных биоценозов и экосистем, повышение их продуктивности.

В случае внезапных резких изменений, вызывающих «популяционный взрыв» некоторых видов за счет гибели большинства других видов, говорят об экологическом нарушении .

Нарушения могут возникать при вторжении интродуцированных видов или при необдуманном воздействии человека на природу. В современных условиях постоянный рост антропогенной нагрузки на природные экосистемы (осушение болот, чрезмерные нагрузки на леса, например, в результате отдыха населения, пожары, усиленный выпас скота, химическое загрязнение среды) часто приводит к относительно быстрому изменению их структуры. Антропогенные воздействия часто ведут к упрощению экосистем. Такие явления обычно называют дигрессиями (например, пастбищные, рекреационные и другие дигрессии). Когда нарушения столь велики, что не сохраняется практически ни один компонент экосистемы, говорят о ее гибели . После гибели экосистемы на освободившемся участке может начаться новая сукцессия.

Что такое экологическая ниша? Дайте определение закона конкурентного исключения (правило Гаузе)

Экологическая ниша – место вида в природе, преимущественно в биоценозе, включающее как положение его в пространстве, так и функциональную его роль в сообществе, отношение к абиотическим условиям существования.

Не существует двух различных видов, занимающих одинаковые экологические ниши, но есть близкородственные виды, часто настолько сходные, что им требуется, по существу, одна и та же ниша. В этом случае, когда ниши частично перекрываются, возникает особо жесткая конкуренция, но в конечном итоге нишу занимает один вид. Явление экологического разобщения близкородственных (или сходных по иным признакам) видов получило название принципа конкурентного исключения, или принципа Гаузе, в честь ученого, доказавшего его существование экспериментально.

Что такое популяция? Показатели популяции

Популяция – элементарная группировка организмов определенного вида, обладающая всеми необходимыми условиями для поддержания своей численности необозримо длительное время в постоянно изменяющихся условиях среды.

Статические показатели:

Численность – общее количество особей на выделяемой территории или в данном объеме;

Плотность – среднее число особей (или биомассы) на единицу площади или объема занимаемого популяцией пространства.

Динамические показатели:

Рождаемость (плодовитость) – число новых особей, появившихся за единицу времени в результате размножения;

Смертность – число погибших в популяции особей в определенный отрезок времени;

Прирост популяции – разница между рождаемостью и смертностью;

Темп роста популяции – средний прирост за единицу времени.

Популяции в природе не существуют изолированно. Популяции разных видов, входящие в состав сообществ, взаимосвязаны между собой и находятся в тесном единстве с окружающей средой.

К числу важнейших свойств популяций относится динамика численности особей и механизмы ее регулирования.

В каждой экосистеме существует сумма внешних и внутренних факторов, под влиянием которых численность каждого вида устанавливается на каком-то среднем уровне, соответствующем пригодности и возможностям среды. Всякое отклонение численности популяции от оптимальной связано с отрицательными последствиями для ее существования. В связи с этим, популяции обычно имеют адаптационные механизмы, способствующие снижению численности, если она значительно превышает оптимальную, и ее восстановлению, если она уменьшается ниже оптимальных значений.

Каждой популяции свойственен так называемый биотический потенциал , под которым понимается теоретически возможное потомство от одной пары особей при отсутствии факторов, ограничивающих рост численности. Биотический потенциал обычно тем выше, чем ниже уровень организации живых существ.

К факторам, определяющим рост популяции относятся: рождаемость, способность к расселению и захвату новых местообитаний, защитные механизмы, способность выдерживать неблагоприятные условия среды.

Скорость увеличения численности при отсутствии ограничивающих факторов, характеризуется графически экспоненциальной кривой (1) в координатах « численность – время» (рис.2). Это так называемая «кривая биотического потенциала». Такое изменение численности в значительной степени реализуется лишь в отдельных случаях и в течение коротких промежутков времени (например, при освоении быстроразмножающимися организмами богатой питательными веществами среды, где отсутствует конкуренция).

Для большинства популяций и видов выживаемость характеризуется кривой (2) другого типа (S - образной или логистической ), которая отражает высокую смертность молодых особей или зачатков (рис.2). Численность популяции в этом случае ассимптотически стремится к пределу, представляющему максимальную численность популяции, которую может поддерживать окружающая среда.

Сопротивление среды росту популяции возрастает при возрастании численности, и для каждой популяции характеризуется площадью между кривыми (1) и (2) на графике (рис.2).

Для популяции человека в настоящее время характерен тип роста численности, близкий к экспоненциальному, что обусловлено преодолением действия многих факторов сопротивления среды, прежде всего недостатка пищи и болезней, и резким снижением смертности в детском возрасте.