Второй признак равенства. Второй признак равенства треугольников. Полные уроки — Гипермаркет знаний

Теорема

Доказательство

Рассмотрим треугольники АВС и A 1 B 1 C 1 , у которых АВ = A 1 B 1 , ∠A = ∠A 1 , ∠B = ∠B 1 (рис. 68). Докажем, что Δ АВС = Δ А 1 В 1 С 1 .

Рис. 68

Наложим треугольник АВС на треугольник A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной А 1 , сторона АВ - с равной ей стороной AjBj, и вершины С и С 1 оказались по одну сторону от прямой А 1 В 1 .

Так как ∠A = ∠A 1 и ∠B = ∠B 1 , то сторона АС, наложится на луч А 1 С 1 , а сторона ВС - на луч В 1 С 1 . Поэтому вершина С - общая точка сторон АС и ВС - окажется лежащей как на луче А 1 С 1 , так и на луче B 1 C 1 и, следовательно, совместится с общей точкой этих лучей - вершиной С 1 . Значит, совместятся стороны АС и A 1 C 1 , ВС и В 1 С 1 .

Итак, треугольники АВС и А 1 В 1 С 1 полностью совместятся, поэтому они равны. Теорема доказана.

Третий признак равенства треугольников

Теорема

Доказательство

Рассмотрим треугольники АВС и A 1 B 1 C 1 , у которых АВ = А 1 В 1 , ВС = В 1 С 1 , СА = С 1 А 1 (рис. 69).


Рис. 69

Докажем, что Δ АВС = Δ А 1 В 1 С 1 . Приложим треугольник АВС к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной А 1 , вершина В - с вершйной В 1 , а вершины С и С 1 оказались по разные стороны от прямой A 1 B 1 (рис. 70).


Рис. 70

Возможны три случая: луч С 1 С проходит внутри угла А 1 С 1 В 1 (рис. 70, а); луч С 1 С совпадает с одной из сторон этого угла (рис. 70, б); луч С 1 С проходит вне угла А 1 С 1 В 1 (рис. 70, в). Рассмотрим первый случай (остальные случаи рассмотрите самостоятельно).

Так как по условию теоремы стороны АС и А 1 С 1 , ВС и В 1 С 1 равны, то треугольники А 1 С 1 С и В 1 С 1 С - равнобедренные (см. рис. 70, а). По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠A 1 CB 1 = ∠A 1 C 1 B 1 . Итак, АС = А 1 С 1 , ВС = В 1 С 1 , ∠C = ∠C 1 .

Следовательно, треугольники АВС и А 1 В 1 С 1 равны по первому признаку равенства треугольников. Теорема доказана.

Из третьего признака равенства треугольников следует, что треугольник - жёсткая фигура . Поясним, что это означает.

Представим себе две рейки, у которых два конца скреплены гвоздём (рис. 71, а). Такая конструкция не является жёсткой: сдвигая или раздвигая свободные концы реек, мы можем менять угол между ними. Теперь возьмём ещё одну рейку и скрепим её концы со свободными концами первых двух реек (рис. 71, б).


Рис. 71

Полученная конструкция - треугольник - будет уже жёсткой. В ней нельзя сдвинуть или раздвинуть никакие две стороны, т. е. нельзя изменить ни один угол. Действительно, если бы это удалось, то мы получили бы новый треугольник, не равный исходному. Но это невозможно, так как новый треугольник должен быть равен исходному по третьему признаку равенства треугольников.

Это свойство - жёсткость треугольника - широко используется на практике. Так, чтобы закрепить столб в вертикальном положении, к нему ставят подпорку (рис. 72, а); такой же принцип используется при установке кронштейна (рис. 72, б).


Рис. 72

Задачи

121. Отрезки АВ и CD пересекаются в середине О отрезка АВ, ∠OAD = ∠OBC.

    а) Докажите, что Δ СВО = Δ DAO;
    б) найдите ВС и СО, если CD = 26 см, AD = 15 см.

122. На рисунке 53 (см. с. 31) ∠1 = ∠2, ∠3 = ∠4.

    а) Докажите, что Δ АВС = Δ CDA;
    б) найдите АВ и ВС, если АО =19 см, CD = 11 см.

123. На биссектрисе угла А взята точка D, а на сторонах этого угла - точки В и С такие, что ∠ADB = ∠ADC. Докажите, что BD = CD.

124. По данным рисунка 73 докажите, что ОР = ОТ, ∠P = ∠T.


Рис. 73

125. На рисунке 74 ∠DAC = ∠DBC, АО = ВО. Докажите, что ∠C = ∠D и AC = BD.


Рис. 74

126. На рисунке 74 ∠DAB = ∠CBA, ∠CAB = ∠DBA, АС =13 см. Найдите BD.

127. В треугольниках АВС и А 1 B 1 С 1 АВ = А 1 В 1 , ВС = B 1 C 1 , ∠B - ∠B 1 . На сторонах АВ и A 1 B 1 отмечены точки D и D 1 так, что ∠ACO = ∠A 1 C 1 D 1 . Докажите, что Δ BCD = Δ B 1 C 1 D 1 .

128. Докажите, что в равных треугольниках биссектрисы, проведённые к соответственно равным сторонам, равны.

129. Отрезки АС и BD пересекаются в середине О отрезка АС, ∠BCO = ∠DAO. Докажите, что Δ ВОА = Δ DOC.

130. В треугольниках АВС и A 1 В 1 С 1 отрезки СО и С 1 О 1 - медианы, BC = B 1 C 1 , ∠B - ∠B 1 и ∠C = ∠C 1 . Докажите, что:

    а) Δ АСО = Δ А 1 С 1 О 1 ;
    б) Δ ВСO = Δ В 1 С 1 O.

131. В треугольниках DEF и MNP EF - NP, DF = MP и ∠F = ∠P. Биссектрисы углов Е и D пересекаются в точке О, а биссектрисы углов М и N - в точке К. Докажите, что ∠DOE = ∠MKN.

132. Прямая, перпендикулярная к биссектрисе угла А, пересекает стороны угла в точках М и N. Докажите, что треугольник AMN - равнобедренный.

133. Докажите, что если биссектриса треугольника является его высотой, то треугольник - равнобедренный.

134. Докажите, что равнобедренные треугольники равны, если основание и прилежащий к нему угол одного треугольника соответственно равны основанию и прилежащему к нему углу другого треугольника.

135. Докажите, что если сторона одного равностороннего треугольника равна стороне другого равностороннего треугольника, то треугольники равны.

136. На рисунке 52 (см. с. 31) АВ-АС, BD = DC и ∠BAC = 50°. Найдите ∠CAD.

137. На рисунке 53 (см. с. 31) BC = AD, AB = CD. Докажите, что ∠B = ∠D.

138. На рисунке 75 AB = CD и BD = АС. Докажите, что: a) ∠CAD = ∠ADB; б) ∠BAC = ∠CDB.


Рис. 75

139. На рисунке 76 AB = CD, AD = BC, BE - биссектриса угла ABC, a DF - биссектриса угла ADC. Докажите, что:

    а) ∠ABE = ∠ADF;
    б) Δ АВЕ = Δ CDF.


Рис. 76

140. В треугольниках АВС и А 1 В 1 С 1 медианы ВМ и В 1 М 1 равны, АВ = А 1 В 1 АС = А 1 С 1 . Докажите, что Δ АВС = Δ А 1 В 1 С 1 .

141. В треугольниках АВС и А 1 В 1 С 1 отрезки AD и A 1 D 1 - биссектрисы, АВ = А 1 В 1 , BD = B 1 D 1 и AD = A 1 D 1 . Докажите, что Δ АВС = Δ А 1 В 1 С 1 .

142. Равнобедренные треугольники ADC и BCD имеют общее основание DC. Прямая АВ пересекает отрезок CD в точке О. Докажите, что: a) ∠ADB = ∠ACB; б) DO = OC.

Ответы к задачам

    121. б) ВС = 15 см, СО = 13 см.

    122. б) АВ = 11 см, ВС =19см.

    142. Указание. Рассмотреть два случая. Точка В лежит: а) на луче АО; б) на продолжении луча АО.

Третий признак равенства треугольников по трем сторонам формулируется в виде теоремы.

Теорема : Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство. рассмотримΔABC и ΔA 1 B 1 C 1 у которых AB=A 1 B 1 , AC=A 1 C 1 , ВС=В 1 С 1 . Докажем, что ΔABC=ΔA 1 B 1 C 1

Пусть ABC и A 1 B 1 C 1 – треугольники, у которых AB=A 1 B 1 , AC=A 1 C 1 , BC=B 1 C 1 . Наложим ∆ABC на ∆A 1 B 1 C 1 так, чтобы вершина A совместиласьA 1 , а вершины B и B 1 , а вершины С и С 1 оказались по разные стороны от прямой A 1 В 1 . Возможны три случая: 1) луч С 1 С проходит внутри угла А 1 С 1 В 1 (рис. а)); 2)луч С 1 С совпадает с одной из сторон этого угла (рис. б)); луч С 1 С проходит вне угла А 1 С 1 В 1 (рис. в)). Рассмотрим первый случай. Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники А 1 С 1 С и В 1 С 1 С - равнобедренные. По теореме о свойстве углов равнобедренного треугольника Ðl = Ð2, Ð3 = Ð4, поэтому ÐA 1 CB 1 = =ÐA 1 С 1 B 1 . Итак, AC=A 1 C 1 , BC=B 1 C 1 , ÐС = ÐС 1 . Следовательно, треугольники ABC и А 1 В 1 С 1 равны по первому признаку равенства треугольников.

Запись на доске:

Дано: ΔABC, ΔA 1 B 1 C 1 , AB=A 1 B 1 , AC=A 1 C 1 , ВС=В 1 С 1

Доказать: ΔABC=ΔA 1 B 1 C 1

Доказательство. Наложим ∆ABC на ∆A 1 B 1 C 1 так, чтобы A →A 1 , а B → B 1 , а С и С 1 оказались по разные стороны от прямой A 1 В 1 . Рассмотрим случай. луч С 1 С проходит внутри ÐА 1 С 1 В 1 (рис. а)).

АС=A 1 C 1 , ВС=В 1 С 1 ═> ΔА 1 С 1 С и ΔВ 1 С 1 С - равноб. ═> Ðl = Ð2, Ð3 = Ð4 (по св-ву углов равноб. Δ), ═> ÐA 1 CB 1 =ÐA 1 С 1 B 1 ═> AC=A 1 C 1 , BC=B 1 C 1 , ÐС = ÐС 1 ═>

ΔABC=ΔА 1 В 1 С 1 по первому признаку равенства треугольников.

2.Ромб. Определение, свойства, признаки.

Ромб является разновидностью четырехугольника.

Определение : Ромбом называется параллелограмм, у которого все стороны равны.

На рисунке изображён параллелограмм ABCD у которого AB=BC=CD=DA. По определению этот параллелограмм – ромб. АС и ВD – диагонали ромба. Поскольку ромб – параллелограмм, для него справедливы все свойства и признаки параллелограмма.

Свойства :

1) В ромбе противоположные углы равны (ÐA=ÐC, ÐB=ÐD)

2) Диагонали ромба точкой пересечения делятся пополам. (BО=ОD, AО=ОC)



3) Диагонали ромба взаимно перпендикулярны и делятся его углы пополам. (АС DВ, ‌‌ÐАBО=ÐОВС, ÐADО=ÐОDC, ‌‌ÐBСО=ÐDСО, ÐDАО=ÐВАО) (особое свойство)

4) Сумма углов, прилежащих к одной стороне равна 180 0 (ÐA+ÐВ= ÐС+ÐD=ÐВ+ÐC=ÐА+ÐD=180 0)

признаками ромба:

1) Если диагонали параллелограмма взаимно перпендикулярны, то этот параллелограмм – ромб

2) Если диагональ параллелограмма делит его углы пополам, то этот параллелограмм ромб.

3) если в параллелограмме все стороны равны, то он является ромбом.

Запись на доске.

Свойства :

1) ÐA=ÐC, ÐB=ÐD2) BО=ОD, AО=ОC

3) АС DВ, ‌‌ÐАBО=ÐОВС, ÐADО=ÐОDC, ‌‌ÐBСО=ÐDСО, ÐDАО=ÐВАО

4) ÐA+ÐВ= ÐС+ÐD=ÐВ+ÐC=ÐА+ÐD=180 0

Обратные утверждения являются признаками ромба:

1 ) Если ABСD – парал-м, и АС DВ, то – ABСD - ромб.

2) Если ABСD – парал-м, и АС и DВ - биссектрисы, то – ABСD - ромб.

3) Если ABСD – парал-м, и АС=DВ и BC=AD, то – ABСD - ромб.

Задача.

Среди огромного количества многоугольников, которые по сути являются замкнутой непересекающейся ломаной линией, треугольник - это фигура с наименьшим количеством углов. Другими словами, это простейший многоугольник. Но, несмотря на всю свою простоту, эта фигура таит в себе много загадок и интересных открытий, которые освещаются особым разделом математики - геометрией. Эту дисциплину в школах начинают преподавать с седьмого класса, и теме «Треугольник» здесь уделяется особое внимание. Дети не только узнают правила о самой фигуре, но и сравнивают их, изучая 1, 2 и 3 признак равенства треугольников.

Первое знакомство

Один из первых правил, с которым знакомятся школьники, звучит примерно так: сумма величин всех углов треугольника равняется 180 градусам. Чтобы это подтвердить, достаточно при помощи транспортира измерить каждую из вершин и сложить все получившиеся значения. Исходя из этого, при двух известных величинах легко определить третью. Например : В треугольнике один из углов равен 70°, а другой - 85°, какова величина третьего угла?

180 - 85 - 70 = 25.

Ответ: 25°.

Задачи могут быть и более сложными, если указано лишь одно значение угла, а про вторую величину сказано лишь, на сколько или во сколько раз она больше или меньше.

В треугольнике для определения тех или иных его особенностей могут быть проведены особые линии, каждая из которых имеет свое название:

  • высота - перпендикулярная прямая, проведенная из вершины к противоположной стороне;
  • все три высоты, проведенные одновременно, в центре фигуры пересекаются, образуя ортоцентр, который в зависимости от вида треугольника может находиться как внутри, так и снаружи;
  • медиана - линия, соединяющая вершину с серединой противолежащей стороны;
  • пересечение медиан является точкой его тяжести, находится внутри фигуры;
  • биссектриса - линия, проходящая от вершины до точки пересечения с противолежащей стороной, точка пересечения трех биссектрис является центром вписанной окружности.

Простые истины о треугольниках

Треугольники, как, собственно, и все фигуры, имеют свои особенности и свойства. Как уже говорилось, эта фигура является простейшим многоугольником, но со своими характерными признаками:

  • против самой длинной стороны всегда лежит угол с большей величиной, и наоборот;
  • против равных сторон лежат равные углы, пример тому - равнобедренный треугольник;
  • сумма внутренних углов всегда равна 180°, что уже было продемонстрировано на примере;
  • при продлении одной стороны треугольника за его пределы образуется внешний угол, который всегда будет равен сумме углов, с ним не смежных;
  • любая из сторон всегда меньше суммы двух других сторон, но больше их разницы.

Виды треугольников

Следующий этап знакомства заключается в определении группы, к которой относится представленный треугольник. Принадлежность к тому или иному виду зависит от величин углов треугольника.

  • Равнобедренный - с двумя равными сторонами, которые называют боковыми, третья в этом случае выступает основанием фигуры. Углы у основания такого треугольника одинаковы, а медиана, проведенная из вершины, является биссектрисой и высотой.
  • Правильный, или равносторонний треугольник, - это тот, у которого все его стороны равны.
  • Прямоугольный: один из его углов равен 90°. В этом случае сторона, противолежащая этому углу, называется гипотенузой, а две другие - катетами.
  • Остроугольный треугольник - все углы меньше 90°.
  • Тупоугольный - один из углов больше 90°.

Равенство и подобие треугольников

В процессе обучения не только рассматривают отдельно взятую фигуру, но и сравнивают два треугольника. И эта, казалось бы, простая тема имеет массу правил и теорем, по которым можно доказать что рассматриваемые фигуры - равные треугольники. Признаки равенства треугольников имеют такое определение: треугольники равны, если их соответствующие стороны и углы одинаковы. При таком равенстве, если наложить эти две фигуры друг на друга, все их линии сойдутся. Также фигуры могут быть подобными, в частности, это касается практически одинаковых фигур, отличающихся лишь величиной. Для того чтобы сделать такое заключение о представленных треугольниках, необходимо соблюдение одного из следующих условий:

  • два угла одной фигуры равны двум углам другой;
  • две стороны одного пропорциональны двум сторонам второго треугольника, а величины углов, образованных сторонами, равны;
  • три стороны второй фигуры такие же, как и у первой.

Конечно, для бесспорного равенства, которое не вызовет ни малейшего сомнения, необходимо иметь одинаковые значения всех элементов обеих фигур, однако с использованием теорем задача значительно упрощается, и для доказательства равенства треугольников допускается наличие лишь нескольких условий.

Первый признак равенства треугольников

Задачи по этой теме решаются на основе доказательства теоремы, которая звучит так: "Если две стороны треугольника и угол, который они образуют, равны двум сторонам и углу другого треугольника, то и фигуры тоже равны между собой".

Как же звучит доказательство теоремы про первый признак равенства треугольников? Всем известно, что два отрезка равны, если они одной длины, или окружности равны, если имеют одинаковый радиус. А в случае с треугольниками есть несколько признаков, имея которые, можно предположить, что фигуры идентичны, что очень удобно использовать при решении разных геометрических задач.

Как звучит теорема «Первый признак равенства треугольников», описано выше, а вот ее доказательство:

  • Допустим, треугольники АВС и А 1 В 1 С 1 имеют одинаковые стороны АВ и А 1 В 1 и, соответственно, ВС и В 1 С 1 , а углы, которые образуются этими сторонами, имеют одну и ту же величину, то есть равны. Тогда, наложив △ ABC на △ А 1 В 1 С 1, получим совпадение всех линий и вершин. Отсюда вытекает, что эти треугольники абсолютно идентичны, а значит, равны между собой.

Теорему «Первый признак равенства треугольников» называют еще «По двум сторонам и углу». Собственно, в этом и заключается ее суть.

Теорема о втором признаке

Второй признак равенства доказывается аналогично, доказательство основывается на том, что при наложении фигур друг на друга они полностью совпадают по всем вершинам и сторонам. А звучит теорема так: "Если одна сторона и два угла, в образовании которых она участвует, соответствуют стороне и двум углам второго треугольника, то эти фигуры идентичны, то есть равны".

Третий признак и доказательство

Если как 2, так и 1 признак равенства треугольников касался как сторон, так и углов фигуры, то 3-й относится лишь к сторонам. Итак, теорема имеет следующую формулировку: "Если все стороны одного треугольника равны трем сторонам второго треугольника, то фигуры идентичны".

Чтобы доказать эту теорему, нужно более детально углубиться в само определение равенства. По сути, что означает выражение «треугольники равны»? Идентичность говорит о том, что если наложить одну фигуру на другую, все их элементы совпадут, это может быть только в том случае, когда их стороны и углы будут равны. В то же время угол, противолежащий одной из сторон, которая такая же, как у другого треугольника, будет равен соответствующей вершине второй фигуры. Следует отметить, что в этом месте доказательство легко перевести на 1 признак равенства треугольников. В случае если такая последовательность не наблюдается, равенство треугольников просто невозможно, за исключением тех случаев, когда фигура является зеркальным отражением первой.

Прямоугольные треугольники

В строении таких треугольников всегда есть вершины с величиной угла 90°. Поэтому справедливы следующие утверждения:

  • треугольники с прямым углом равны, если катеты одного идентичны катетам второго;
  • фигуры равны, если равны их гипотенузы и один из катетов;
  • такие треугольники равны, если их катеты и острый угол идентичны.

Этот признак относится к Для доказательства теоремы применяют приложение фигур друг к другу, в результате которого треугольники складывают катетами так, чтобы из двух прямых вышел со сторонами СА и СА 1 .

Практическое применение

В большинстве случаев на практике применяется первый признак равенства треугольников. На самом деле такая, казалось бы, простая тема 7 класса по геометрии и планиметрии используется и для вычисления длины, например, телефонного кабеля без замеров местности, по которой он будет проходить. При помощи этой теоремы легко сделать необходимые расчеты для определения длины острова, находящегося посреди реки, не переплывая на него. Либо укрепить забор, расположив планку в пролете так, чтобы она делила его на два равных треугольника, или же рассчитать сложные элементы работы в столярном деле, или при расчете стропильной системы крыши во время строительства.

Первый признак равенства треугольников имеет широкое применение в реальной «взрослой» жизни. Хотя в школьные годы именно эта тема для многих кажется скучной и совершенно ненужной.

>>Математика 7 класс. Полные уроки >>Геометрия: Второй признак равенства треугольников. Полные уроки

ТЕМА УРОКА: Второй признак равенства треугольников .

Цели урока:

  • Изучить второй признак равенства треугольников;
  • Уметь применять признак к решению простейших задач;
  • Продолжить развитие умений проводить рассуждения и доказательства, выполнять простейшие геометрические построения.

Задачи урока:

  • Усвоение материала через практикум и теорию;
  • Формирование логического мышления;
  • Научиться видеть различие и сходство в доказательствах признаков;
  • Пытаться развивать способности обучающихся к самообразованию;
  • Формирование умений саморегулирования своей учебно- познавательной деятельности.

Девиз урока:
Ни минуты покоя,
Ни секунды потерь,
Собственные знания
Тщательно проверь.

План урока:

  1. Вступительное слово;
  2. Повторение;
  3. Примеры решения задач;
  4. Проверка собственных знаний;
  5. Дополнительное творческое задание;
  6. Решение задач с практическим содержанием.

Вступительное слово.

ОШИБКУ надо уважать, если она не результат нашего невежества, не порождение нашей лени, не плод невыученных уроков, а только иногда спутница нашего старания в овладении геометрическими знаниями

Повторение.
Вопросы.

  1. Что такое треугольник?
  2. Какие треугольники называются равными?
  3. Как вы понимаете, что такое "признак равенства треугольников"?
  4. Сформулируйте первый признак равенства треугольников?
  5. Для чего нужны признаки?
  6. Обязательно ли каждый раз сравнивать треугольники наложением друг на друга?

Если треугольники равны , то равны их соответственные элементы. (т.к. они совместились при наложении треугольников, и значит равны (опр. Равных фигур)). Следствие: в равных треугольниках:

  1. Против соответственно равных сторон лежат равные углы
  2. Против соответственно равных углов лежат равные стороны

Признак в математике - то же, что и достаточное условие. В менее строгих науках слово «признак» употребляется как описание фактов, позволяющих (согласно существующей теории и т.п.) сделать вывод о наличии интересующего явления.

Что такое признак равенства треугольников и сколько существует признаков? Некоторые условия, при которых два данных треугольника оказываются равными, называются признаками равенства треугольников. Можно сказать, что признак – это примета, по которой можно узнать те или иные свойства фигур.

Иногда совместить треугольники нет возможности. Что же делать? Достаточно сравнить лишь три элемента одного треугольника с тремя элементами другого треугольника. Вот тут нам на помощь придут признаки равенства треугольников, они нам расскажут, какие именно элементы нужно сравнивать.

Примеры решения задач.

Теорема, второй признак равенства треугольников

Файл:T.gif Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.


Доказательство.

Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, ∠ B = ∠ B1, AB = A1B1.

Пусть A1B2C2 – треугольник, равный треугольнику ABC. Вершина B2 расположена на луче A1B1, а вершина С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1. Так как A1B2 = A1B1, то вершина B2 совпадает с вершиной B1. Так как ∠ B1A1C2 = ∠ B1A1C1 и ∠ A1B1C2 = ∠ A1B1C1, то луч A1C2 совпадает с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина С2 совпадает с вершиной С1. Треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.





Проверка собственных знаний.

Устные упражнения.

  1. Сколько видов треугольников вы знаете? (3)
  2. Назвать эти виды (остроугольный, прямоугольный, тупоугольный)
  3. Дать определения каждому виду.
  4. Каким прибором измеряется градусная мера углов? (транспортиром)
  5. Какая фигура называется углом? (образованная двумя лучами)
  • 2913 ≈ 2900 (о)
  • Найти 1/3 от 36 (12) (ж)
  • Найти число, если 1/5­­­­ этого числа = 10 (50) (е)
  • 4/9 2 = 8 (г)
  • 16 /17: 2 = 8/17 (10) (о)
  • 7/8: 2 = 7/16 (в)

Итак, получилось слово – ОЖЕГОВ .
Ожегов Сергей Иванович – один из авторов толкового словаря русского языка. В этом словаре написано значение 80 000 слов русского языка и фразеологических выражений.

  • Можно ли изобразить треугольник, у которого два угла тупых?
  • А можете ли вы изобразить треугольник, у которого один угол прямой, а другой – тупой?

Вопросы:

  1. Что такое второй признак равенства треугольников?
  2. Что она гласит?
  3. Для чего нужны признаки?
  4. Что такое "признак равенства треугольников"?

Список использованных источников:

  1. Урок на тему "Наглядная геометрия"
  2. Геометрия: Рабочая тетрадь для 7 класса общеобразовательных учреждений
  3. Уроки геометрии Кирилла и Мефодия. 7 класс (2005)
  4. Геометрия. 7 класс. Комплексная зачетная тетрадь. Стадник Л. Г.

Над уроком работали:

Самылина М.В.

Потурнак С.А.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав

Два треугольника называются равными, если их можно совместить наложением. На рисунке 1 изображены равные треугольники ABC и А 1 В 1 С 1 . Каждый из этих треугольников можно наложить на другой так, что они полностью совместятся, т. е. попарно совместятся их вершины и стороны. Ясно, что при этом совместятся попарно и углы этих треугольников.

Таким образом, если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Отметим, что в равных треугольниках против соответственно равных сторон (т. е. совмещающихся при наложении) лежат равные углы, и обратно: против соответственно равных углов лежат равные стороны.

Так, например, в равных треугольниках ABC и A 1 B 1 C 1 , изображенных на рисунке 1, против соответственно равных сторон АВ и А 1 В 1 лежат равные углы С и С 1 . Равенство треугольников ABC и А 1 В 1 С 1 будем обозначать так: Δ ABC = Δ А 1 В 1 С 1 . Оказывается, что равенство двух треугольников можно установить, сравнивая некоторые их элементы.

Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).

Доказательство. Рассмотрим треугольники ABC и A 1 B 1 C 1 , у которых АВ = A 1 B 1 , АС = A 1 C 1 ∠ А = ∠ А 1 (см. рис.2). Докажем, что Δ ABC = Δ A 1 B 1 C 1 .

Так как ∠ А = ∠ А 1 , то треугольник ABC можно наложить на треугольник А 1 В 1 С 1 так, что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А 1 В 1 и A 1 C 1 . Поскольку АВ = A 1 B 1 , АС = А 1 С 1 , то сторона АВ совместится со стороной А 1 В 1 а сторона АС - со стороной А 1 C 1 ; в частности, совместятся точки В и В 1 , С и C 1 . Следовательно, совместятся стороны ВС и В 1 С 1 . Итак, треугольники ABC и А 1 В 1 С 1 полностью совместятся, значит, они равны.

Аналогично методом наложения доказывается теорема 2.

Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).

Замечание. На основе теоремы 2 устанавливается теорема 3.

Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.

Из последней теоремы вытекает теорема 4.

Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны ().

Пример 1. В треугольниках ABC и DEF (рис. 4)

∠ А = ∠ Е, АВ = 20 см, АС = 18 см, DE = 18 см, EF = 20 см. Сравнить треугольники ABC и DEF. Какой угол в треугольнике DEF равен углу В?

Решение. Данные треугольники равны по первому признаку. Угол F треугольника DEF равен углу В треугольника ABC, так как эти углы лежат против соответственно равных сторон DE и АС.

Пример 2. Отрезки АВ и CD (рис. 5) пересекаются в точке О, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок АС равен 6 м?

Решение. Треугольники АОС и BOD равны (по первому признаку): ∠ АОС = ∠ BOD (вертикальные), АО = ОВ, СО = OD (по условию).
Из равенства этих треугольников следует равенство их сторон, т. е. АС = BD. Но так как по условию АС = 6 м, то и BD = 6 м.