Уравнения с модулем решение. Уравнения с модулем. Защита персональной информации

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля - символ, которым это понятие обозначается при написании.

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль - это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а обозначается как |a| .

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5 , если, А больше или равняется нулю.

5-А , если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Не мы выбираем математику своей профессией, а она нас выбирает.

Российский математик Ю.И. Манин

Уравнения с модулем

Наиболее сложно решаемыми задачами школьной математики являются уравнения, содержащие переменные под знаком модуля. Для успешного решения таких уравнений необходимо знать определение и основные свойства модуля. Естественно, что учащиеся должны иметь навыки решения уравнений такого типа.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Рассмотрим типовые примеры решения задач на тему «Уравнения , содержащие переменные под знаком модуля».

Решение уравнений с модулем

Наиболее распространенным в школьной математике методом решения уравнений с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. В этой связи учащиеся должны знать и другие , более эффективные методы и приемы решения таких уравнений. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить уравнение . (1)

Решение. Уравнение (1) будем решать «классическим» методом –методом раскрытия модулей. Для этого разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и уравнение (1) принимает вид . Отсюда вытекает . Однако здесь , поэтому найденное значение не является корнем уравнения (1).

2. Если , то из уравнения (1) получаем или .

Так как , то корень уравнения (1).

3. Если , то уравнение (1) принимает вид или . Отметим , что .

Ответ: , .

При решении последующих уравнений с модулем будем активно использовать свойства модулей с целью повышения эффективности решения подобных уравнений.

Пример 2. Решить уравнение .

Решение. Так как и , то из уравнения следует . В этой связи , , , и уравнение принимает вид . Отсюда получаем . Однако , поэтому исходное уравнение корней не имеет.

Ответ: корней нет.

Пример 3. Решить уравнение .

Решение. Так как , то . Если , то , и уравнение принимает вид .

Отсюда получаем .

Пример 4. Решить уравнение .

Решение. Перепишем уравнение в равносильном виде . (2)

Полученное уравнение относится к уравнениям типа .

Принимая во внимание теорему 2, можно утверждать, что уравнение (2) равносильно неравенству . Отсюда получаем .

Ответ: .

Пример 5. Решить уравнение .

Решение. Данное уравнение имеет вид . Поэтому , согласно теореме 3 , здесь имеем неравенство или .

Пример 6. Решить уравнение .

Решение. Положим , что . Так как , то заданное уравнение принимает вид квадратного уравнения , (3)

где . Поскольку уравнение (3) имеет единственный положительный корень и , то . Отсюда получаем два корня исходного уравнения: и .

Пример 7. Решить уравнение . (4)

Решение. Так как уравнение равносильно совокупности двух уравнений: и , то при решении уравнения (4) необходимо рассмотреть два случая.

1. Если , то или .

Отсюда получаем , и .

2. Если , то или .

Так как , то .

Ответ: , , , .

Пример 8. Решить уравнение . (5)

Решение. Так как и , то . Отсюда и из уравнения (5) следует, что и , т.е. здесь имеем систему уравнений

Однако данная система уравнений является несовместной.

Ответ: корней нет.

Пример 9. Решить уравнение . (6)

Решение. Если обозначить , то и из уравнения (6) получаем

Или . (7)

Поскольку уравнение (7) имеет вид , то это уравнение равносильно неравенству . Отсюда получаем . Так как , то или .

Ответ: .

Пример 10. Решить уравнение . (8)

Решение. Согласно теореме 1 можно записать

(9)

Принимая во внимание уравнение (8), делаем вывод о том, что оба неравенства (9) обращаются в равенства, т.е. имеет место система уравнений

Однако по теореме 3 приведенная выше система уравнений равносильна системе неравенств

(10)

Решая систему неравенств (10) получаем . Так как система неравенств (10) равносильна уравнению (8), то исходное уравнение имеет единственный корень .

Ответ: .

Пример 11. Решить уравнение . (11)

Решение. Пусть и , тогда из уравнения (11) вытекает равенство .

Отсюда следует, что и . Таким образом, здесь имеем систему неравенств

Решением данной системы неравенств являются и .

Ответ: , .

Пример 12. Решить уравнение . (12)

Решение. Уравнение (12) будем решать методом последовательного раскрытия модулей. Для этого рассмотрим несколько случаев.

1. Если , то .

1.1. Если , то и , .

1.2. Если , то . Однако , поэтому в данном случае уравнение (12) корней не имеет.

2. Если , то .

2.1. Если , то и , .

2.2. Если , то и .

Ответ: , , , , .

Пример 13. Решить уравнение . (13)

Решение. Поскольку левая часть уравнения (13) неотрицательна, то и . В этой связи , и уравнение (13)

принимает вид или .

Известно , что уравнение равносильно совокупности двух уравнений и , решая которые получаем , . Так как , то уравнение (13) имеет один корень .

Ответ: .

Пример 14. Решить систему уравнений (14)

Решение. Так как и , то и . Следовательно, из системы уравнений (14) получаем четыре системы уравнений:

Корни приведенных выше систем уравнений являются корнями системы уравнений (14).

Ответ: ,, , , , , , .

Пример 15. Решить систему уравнений (15)

Решение. Так как , то . В этой связи из системы уравнений (15) получаем две системы уравнений

Корнями первой системы уравнений являются и , а из второй системы уравнений получаем и .

Ответ: , , , .

Пример 16. Решить систему уравнений (16)

Решение. Из первого уравнения системы (16) следует, что .

Так как , то . Рассмотрим второе уравнение системы. Поскольку , то , и уравнение принимает вид , , или .

Если подставить значение в первое уравнение системы (16) , то , или .

Ответ: , .

Для более глубокого изучения методов решения задач , связанных с решением уравнений , содержащих переменные под знаком модуля , можно посоветовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: задачи повышенной сложности. – М.: КД «Либроком» / URSS , 2017. – 200 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Среди примеров на модули часто встречаются уравнения где нужно найти корни модуля в модуле , то есть уравнение вида
||a*x-b|-c|=k*x+m .
Если k=0 , то есть правая сторона равна постоянной (m) то проще искать решение уравнения с модулями графически. Ниже приведена методика раскрытия двойных модулей на распространенных для практики примерах. Хорошо разберите алгоритм вычисления уравнений с модулями, чтобы не иметь проблем на контрольных, тестах, и просто, чтобы знать.

Пример 1. Решить уравнение модуль в модуле |3|x|-5|=-2x-2.
Решение: Всегда начинают раскрывать уравнения с внутреннего модуля
|x|=0 <-> x=0.
В точке x=0 уравнения с модулем разделяется на 2 .
При x < 0 подмодульная функция отрицательная, поэтому при раскрытии знак меняем на противоположный
|-3x-5|=-2x-2.
При x>0 или равно, раскрывая модуль получим
|3x-5|=-2x-2 .
Решим уравнение для отрицательных переменных (x < 0) . Оно разлагается на две системы уравнений. Первое уравнение получаем из условия, что функция после знака равенства неотрицательна. Второе - раскрывая модуль в одной системе принимаем, что подмодульная функция положительная, в иной отрицательная - меняем знак правой или левой части (зависит от методики преподавания).

Из первого уравнения получим что решение не должно превышать (-1) , т.е.

Это ограничение полностью принадлежит области в которой решаем. Перенесем переменные и постоянные по разные стороны равенства в первой и второй системе

и найдем решение


Оба значения принадлежат промежутку что рассматривается, то есть являются корнями.
Рассмотрим уравнение с модулями при положительных переменных
|3x-5|=-2x-2.
Раскрывая модуль получим две системы уравнений

Из первого уравнения, которое является общим для двух сиcтем, получим знакомое условие

которое в пересечении с множеством, на котором ищем решение дает пустое множество (нет точек пересечения). Итак единственными корнями модуля с модулем являются значения
x=-3; x=-1,4.

Пример 2. Решить уравнение с модулем ||x-1|-2|=3x-4.
Решение: Начнем с раскрытия внутреннего модуля
|x-1|=0 <=> x=1.
Подмодульная функция меняет знак в единице. При меньших значениях она отрицательная, при больших - положительная. В соответствии с этим при раскрытии внутреннего модуля получим два уравнения с модулем
x |-(x-1)-2|=3x-4;
x>=1 -> |x-1-2|=3x-4.

Обязательно проверяем правую сторону уравнения с модулем, она должна быть больше нуля.
3x-4>=0 -> x>=4/3.
Это означает, что первое из уравнений нет необхидноcти решать, поcкольку оно выпиcано для x< 1, что не соответствует найденному условию. Раскроем модуль во втором уравнении
|x-3|=3x-4 ->
x-3=3x-4
или x-3=4-3x;
4-3=3x-x или x+3x=4+3;
2x=1 или 4x=7;
x=1/2 или x=7/4.
Получили два значения, первое из которых отвергаем, поскольку не принадлежит нужному интервалу. Окончательно уравнение имеет одно решение x=7/4.

Пример 3. Решить уравнение с модулем ||2x-5|-1|=x+3.
Решение: Раскроем внутренний модуль
|2x-5|=0 <=> x=5/2=2,5.
Точка x=2,5 разбивает числовую ось на два интервала. Соответственно, подмодульная функция меняет знак при переходе через 2,5. Выпишем условие на решение с правой стороны уравнения с модулем.
x+3>=0 -> x>=-3 .
Итак решением могут быть значения, не меньше (-3) . Раскроем модуль для отрицательного значения внутреннего модуля
|-(2x-5)-1|=x+3;
|-2x+4|=x+3.

Этот модуль также при раскрытии даст 2 уравнения
-2x+4=x+3 или 2x-4=x+3;
2x+x=4-3 или 2x-x=3+4;
3x=1; x=1/3 или x=7 .
Значение x=7 отвергаем, поскольку мы искали решение на промежутке [-3;2,5]. Теперь раскрываем внутренний модуль для x>2,5 . Получим уравнение с одним модулем
|2x-5-1|=x+3;
|2x-6|=x+3.
При раскрытии модуля получим следующие линейные уравнения
-2x+6=x+3 или 2x-6=x+3;
2x+x=6-3 или 2x-x=3+6;
3x=3; x=1 или x=9 .
Первое значение x=1 не удовлетворяет условие x>2,5. Так что на этом интервале имеем один корень уравнения с модулем x=9, а всего их два (x=1/3) .Подстановкой можно проверять правильность выполненных вычислений
Ответ: x=1/3; x=9.

Пример 4. Найти решения двойного модуля ||3x-1|-5|=2x-3.
Решение: Раскроем внутренний модуль уравнения
|3x-1|=0 <=> x=1/3.
Точка x=2,5 делит числовую ось на два интервала, а заданное уравнение на два случая. Записываем условие на решение, исходя из вида уравнения с правой стороны
2x-3>=0 -> x>=3/2=1,5.
Отсюда следует, что нас интересуют значения >=1,5 . Таким образом модульное уравнения рассматриваем на двух интервалах
,
|-(3x-1)-5|=2x-3;
|-3x-4|=2x-3.

Полученный модуль при раскрытии делится на 2 уравнения
-3x-4=2x-3 или 3x+4=2x-3;
2x+3x=-4+3 или 3x-2x=-3-4;
5x=-1; x=-1/5 или x=-7 .
Оба значения не попадают в промежуток , то есть не являются решениями уравнения с модулями. Далее раскроем модуль для x>2,5 . Получим следующее уравнение
|3x-1-5|=2x-3;
|3x-6|=2x-3
.
Раскрывая модуль, получим 2 линейные уравнения
3x-6=2x-3 или –(3x-6)=2x-3;
3x-2x=-3+6
или 2x+3x=6+3;
x=3 или 5x=9; x=9/5=1,8.
Второе значение из найденных не соответствует условию x>2,5 , его мы отвергаем.
Наконец имеем один корень уравнения с модулями x=3 .
Выполняем проверку
||3*3-1|-5|=2*3-3 3=3 .
Корень уравнения с модулем вычислено правильно.
Ответ: x=1/3; x=9.

В этой статье мы детально разберем модуль числа . Мы дадим различные определения модуля числа, введем обозначения и приведем графические иллюстрации. При этом рассмотрим различные примеры нахождения модуля числа по определению. После этого мы перечислим и обоснуем основные свойства модуля. В конце статьи поговорим о том, как определяется и находится модуль комплексного числа.

Навигация по странице.

Модуль числа – определение, обозначение и примеры

Сначала введем обозначение модуля числа . Модуль числа a будем записывать как , то есть, слева и справа от числа будем ставить вертикальные черточки, образующие знак модуля. Приведем пару примеров. Например, модуль −7 можно записать как ; модуль 4,125 записывается как , а модуль имеет запись вида .

Следующее определение модуля относится к , а следовательно, и к , и к целым, и к рациональным, и к иррациональным числам, как к составляющим частям множества действительных чисел. О модуле комплексного числа мы поговорим в .

Определение.

Модуль числа a – это либо само число a , если a – положительное число, либо число −a , противоположное числу a , если a – отрицательное число, либо 0 , если a=0 .

Озвученное определение модуля числа часто записывают в следующем виде , эта запись означает, что , если a>0 , , если a=0 , и , если a<0 .

Запись можно представить в более компактной форме . Эта запись означает, что , если (a больше или равно 0 ), и , если a<0 .

Также имеет место и запись . Здесь отдельно следует пояснить случай, когда a=0 . В этом случае имеем , но −0=0 , так как нуль считают числом, которое противоположно самому себе.

Приведем примеры нахождения модуля числа с помощью озвученного определения. Для примера найдем модули чисел 15 и . Начнем с нахождения . Так как число 15 – положительное, то его модуль по определению равен самому этому числу, то есть, . А чему равен модуль числа ? Так как - отрицательное число, то его модуль равен числу, противоположному числу , то есть, числу . Таким образом, .

В заключение этого пункта приведем один вывод, который очень удобно применять на практике при нахождении модуля числа. Из определения модуля числа следует, что модуль числа равен числу под знаком модуля без учета его знака , а из рассмотренных выше примеров это очень отчетливо видно. Озвученное утверждение объясняет, почему модуль числа называют еще абсолютной величиной числа . Так модуль числа и абсолютная величина числа – это одно и то же.

Модуль числа как расстояние

Геометрически модуль числа можно интерпретировать как расстояние . Приведем определение модуля числа через расстояние .

Определение.

Модуль числа a – это расстояние от начала отсчета на координатной прямой до точки, соответствующей числу a.

Данное определение согласуется с определением модуля числа, данного в первом пункте. Поясним этот момент. Расстояние от начала отсчета до точки, которой соответствует положительное число, равно этому числу. Нулю соответствует начало отсчета, поэтому расстояние от начала отсчета до точки с координатой 0 равно нулю (не нужно откладывать ни одного единичного отрезка и ни одного отрезка, составляющего какую-нибудь долю единичного отрезка, чтобы от точки O попасть в точку с координатой 0 ). Расстояние от начала отсчета до точки с отрицательной координатой равно числу, противоположному координате данной точки, так как равно расстоянию от начала координат до точки, координатой которой является противоположное число.

Например, модуль числа 9 равен 9 , так как расстояние от начала отсчета до точки с координатой 9 равно девяти. Приведем еще пример. Точка с координатой −3,25 находится от точки O на расстоянии 3,25 , поэтому .

Озвученное определение модуля числа является частным случаем определения модуля разности двух чисел.

Определение.

Модуль разности двух чисел a и b равен расстоянию между точками координатной прямой с координатами a и b .


То есть, если даны точки на координатной прямой A(a) и B(b) , то расстояние от точки A до точки B равно модулю разности чисел a и b . Если в качестве точки В взять точку O (начало отсчета), то мы получим определение модуля числа, приведенное в начале этого пункта.

Определение модуля числа через арифметический квадратный корень

Иногда встречается определение модуля через арифметический квадратный корень .

Для примера вычислим модули чисел −30 и на основании данного определения. Имеем . Аналогично вычисляем модуль двух третьих: .

Определение модуля числа через арифметический квадратный корень также согласуется с определением, данным в первом пункте этой статьи. Покажем это. Пусть a – положительное число, при этом число −a – отрицательное. Тогда и , если же a=0 , то .

Свойства модуля

Модулю присущ ряд характерных результатов - свойства модуля . Сейчас мы приведем основные и наиболее часто используемые из них. При обосновании этих свойств мы будем опираться на определение модуля числа через расстояние.

    Начнем с самого очевидного свойства модуля – модуль числа не может быть отрицательным числом . В буквенном виде это свойство имеет запись вида для любого числа a . Это свойство очень легко обосновать: модуль числа есть расстояние, а расстояние не может выражаться отрицательным числом.

    Переходим к следующему свойству модуля. Модуль числа равен нулю тогда и только тогда, когда это число есть нуль . Модуль нуля есть нуль по определению. Нулю соответствует начало отсчета, никакая другая точка на координатной прямой нулю не соответствует, так как каждому действительному числу поставлена в соответствие единственная точка на координатной прямой. По этой же причине любому числу, отличному от нуля, соответствует точка, отличная от начала отсчета. А расстояние от начала отсчета до любой точки, отличной от точки O , не равно нулю, так как расстояние между двумя точками равно нулю тогда и только тогда, когда эти точки совпадают. Приведенные рассуждения доказывают, что нулю равен лишь модуль нуля.

    Идем дальше. Противоположные числа имеют равные модули, то есть, для любого числа a . Действительно, две точки на координатной прямой, координатами которых являются противоположные числа, находятся на одинаковом расстоянии от начала отсчета, значит модули противоположных чисел равны.

    Следующее свойство модуля таково: модуль произведения двух чисел равен произведению модулей этих чисел , то есть, . По определению модуль произведения чисел a и b равен либо a·b , если , либо −(a·b) , если . Из правил умножения действительных чисел следует, что произведение модулей чисел a и b равно либо a·b , , либо −(a·b) , если , что доказывает рассматриваемое свойство.

    Модуль частного от деления a на b равен частному от деления модуля числа a на модуль числа b , то есть, . Обоснуем это свойство модуля. Так как частное равно произведению , то . В силу предыдущего свойства имеем . Осталось лишь воспользоваться равенством , которое справедливо в силу определения модуля числа.

    Следующее свойство модуля записывается в виде неравенства: , a , b и c – произвольные действительные числа. Записанное неравенство представляет собой ни что иное как неравенство треугольника . Чтобы это стало понятно, возьмем точки A(a) , B(b) , C(c) на координатной прямой, и рассмотрим вырожденный треугольник АВС , у которого вершины лежат на одной прямой. По определению модуля разности равен длине отрезка АВ , - длине отрезка АС , а - длине отрезка СВ . Так как длина любой стороны треугольника не превосходит сумму длин двух других сторон, то справедливо неравенство , следовательно, справедливо и неравенство .

    Только что доказанное неравенство намного чаще встречается в виде . Записанное неравенство обычно рассматривают как отдельное свойство модуля с формулировкой: «Модуль суммы двух чисел не превосходит сумму модулей этих чисел ». Но неравенство напрямую следует из неравенства , если в нем вместо b положить −b , и принять c=0 .

Модуль комплексного числа

Дадим определение модуля комплексного числа . Пусть нам дано комплексное число , записанное в алгебраической форме , где x и y – некоторые действительные числа, представляющие собой соответственно действительную и мнимую части данного комплексного числа z , а – мнимая единица.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.