Построить сечение тетраэдра плоскостью abc. Построение сечений в тетраэдре. Актуализация опорных понятий

Слайд 2

Информация для учителя. Цель создания этой презентации состоит в том, чтобы наглядно продемонстрировать алгоритмы построения точки пересечения прямой и плоскости, прямой пересечения плоскостей и сечений тетраэдра. Учитель может использовать презентацию при проведении уроков по этой теме, или рекомендовать её для самостоятельного изучения учащимся, пропустившим по какой-то причине её изучение, или для повторения ими отдельных вопросов. Ученики сопровождают изучение презентации заполнением краткого конспекта.

Слайд 3

Информация для ученика. Цель создания этой презентации состоит в том, чтобы наглядно продемонстрировать алгоритмы решения задач на построение в пространстве. Постарайтесь внимательно и, не спеша, изучать комментарии на выносках и сопоставлять их с рисунком. Заполняйте в кратком конспекте все пропуски. При самостоятельном решении задач необходимо вначале самому продумать решение, а затем просмотреть предложенное автором. Запишите вопросы к учителю и задайте их на уроке.

Слайд 4

I.Прямая а пересекает плоскость α. Построить точку пересечения.

α β P m а Ответ: I.Чтобы построить точку пересечения прямой а и плоскости αнужно: 1)провести(найти)плоскость β, проходящую через прямую а и пересекающую плоскость α по прямой т 2) построить точку Р пересечения прямых а и m. Через прямую а проведём плоскость β, пересекающую плоскость αпо прямой т Пересечём прямую а с линией пересечения плоскостей α и β: прямой т. Точка Р общая точка прямой а и плоскости α, т.к. прямая т лежит в плоскости α. Запишите алгоритм в краткий конспект.

Слайд 5

1)Построить точку пересечения прямой МN и плоскости BDC.

D B A C M N P {М, N} (АВС) Ответ: Через прямую МN проходит плоскость АВС, пересекающая плоскость BDC по прямой ВС. Прямая МN пересекается с прямой ВС в точке Р. Прямая ВС лежит в плоскости BDC, значит прямая МN пересекает плоскость BDC в точке Р.

Слайд 6

2)Построить точку пересечения прямой МN и плоскостиАBD.

D B A C M N P Ответ: Просмотреть решение Прямая MN принадлежит плоскостиВDC, которая пересекает плоскость AВD по прямой DB Пересечём прямые MN и DB. Далее

Слайд 7

II. Пусть прямая АВ не параллельна плоскости α. Построить линию пересечения плоскостей αи АВС, если точка С принадлежит плоскости α

B C A α β P m Построим точку пересечения прямой АВ с плоскостьюα. По условию и построению точки С и Р общие для плоскостей АВС и α. По условию и построению точки С и Р общие для плоскостей АВС и α. Значит прямая СР искомая прямая пересечения плоскостей АВС и α. II.Чтобы построить линию пересечения плоскости αи плоскости АВС (С α, {А, В} α, АВ || α),нужно: построить точку пересечения прямой АВ и плоскости α - точку Р; 2) точка Р и С общие точки плоскостей (АВС) и α, значит (АВС) α = СР Запишите алгоритм в краткий конспект.

Слайд 8

3).Построить прямую пересечения плоскостей МNP и АDB.

Построить отрезок пересечения плоскости МNP и грани АDB. M D B A C N P X Q R Ответ: Построим точку пересечения прямой МР с плоскостью ADB (точку Х). Прямая МР лежит в плоскости ADС, пересекающей плоскость ADВ по прямой AD. Прямая МР лежит в плоскости ADС, пересекающей плоскость ADВ по прямой AD. Точки Х и N общие точки плоскостей ADВ и MNP. Значит они пересекаются по прямой ХN. Запишите ход построения в краткий конспект.

Слайд 9

Сечение тетраэдра.

C D B A M N P α Многоугольник, составленный из отрезков, по которым секущая плоскость пересекает грани многогранника, называется сечением многогранника. Отрезки, из которых состоит сечение, называются следами секущей плоскости на гранях. ∆ MNP – сечение. Пусть плоскость пересекает тетраэдр, тогда она называется секущей плоскостью Плоскость пересекает рёбра тетраэдра в точках М,N,P, а грани - по отрезкам MN, MP, NP… Треугольник МNP называется сечением тетраэдра этой плоскостью… Запишите в краткий конспект.

Слайд 10

Сечение тетраэдра может быть так же четырёхугольником.

A C D B M N P Q α MNPQ – сечение.

Слайд 11

Алгоритм построения сечения тетраэдра плоскостью, проходящей через три данные точки M,N,P.

MNPQ – искомое сечение. D B A C M N P Q X Построить следы секущей плоскости в тех гранях, в которых есть 2 общие точки с ней. 3)Через построенные точки провести прямую, по которой секущая плоскость пересекает плоскость выбранной грани АВС. 4) Отметить и обозначить точки, в которых эта прямая пересекает рёбра грани АВС и достроить остальные следы. 2) Выбрать грань, в которой ещё нет следа. Построить точки пересечения прямых, содержащих уже построенные следы, с плоскостью выбранной грани: АВС.

Слайд 12

Построить сечение тетраэдраплоскостью MNP.2 способ.

D B A C M N P Q X MNPQ – искомое сечение.

Слайд 13

№1. (Решите самостоятельно задачу). Построить сечение тетраэдра плоскостью MNP.

Q D A C M N P X B X Просмотреть решение Второй способ: Далее

Слайд 14

№2. (Решите самостоятельно). Построить сечение тетраэдра плоскостью MNP, еслиР принадлежит грани АDC.

Слайд 15

№3. Построить сечение тетраэдраплоскостью α, параллельной ребру CD и проходящей через т. F, лежащую на плоскости DBC, и точку М.

3)α (ADB)= MN, α (ABC)=QP. Q D B A M N P F C Дано: α||DC, {M;F} α, F (BDC), M AD. Построить сечение тетраэдра DABC Т.к. α||DC, то (DBC) α=FP и FP||DC, FP BC=P, FP BD=N. 2) Т. к. α||DC, то (DAC) α=MQ и MQ||DC, MQ AC=Q. DC || NP и NP α, значит DC||α, следовательно MNPQ – искомое сечение. Продолжите фразу: Если данная прямая а параллельна некоторой плоскости α, то любая плоскость, проходящая через эту прямую а и непараллельная плоскости α, пересекает плоскость α по прямой b,……………………………………… параллельной прямой а. Продолжите… α||DC, значит плоскость BDC пересекает α по прямой, параллельной DC и проходящей через точку F α||DC, значит плоскость ADC пересекает α по прямой, параллельной DC и проходящей через точку M

Слайд 16

2)α||DВC, (ADC) (DBC)=CD, (ADC)α=MN MP||CD. P №4. Построить сечение тетраэдраплоскостью α, параллельной грани BDC и проходящей через точку М. B A C M N D Дано: α||DBC, M α, M AD. Построить сечение тетраэдра DABC плоскостью α α||DВC, (ADB) (DBC)=BD, MN||BD. (ADB)α=MN 3)α (ABC)=NP. ∆ MNP – искомое сечение, т.к………. Продолжите фразу: Если две параллельные плоскости пересечены третьей плоскостью, то линии их пересечения……………………… параллельны. две пересекающиеся прямые MN и MP плоскости α соответственно параллельны двум пересекающимся прямым DB и DC плоскости (DBC), значит α||(DBC). α||DВC, значит плоскости ADВ и ADC пересекают плоскости α и (ВDС) по прямым MN и МР, параллельным DB и DС соответственно и проходящим через точку M.

Слайд 17

Далее М R B A C N №5.Решите самостоятельно и запишите ход решения. Построить сечение тетраэдра плоскостью α, проходящей через точку М и отрезок PN, если PN||AB и М принадлежит плоскости (АВС). Р Q D 1)NP||АВ NP||(ABC) NP α, α (ABC)=MQ MQ||NP. 2)MQ AC=R. α (ADC)=NR, α (BDC)=PQ. RNPQ-искомое сечение. Просмотреть решение NP||(AВC), значит плоскость MNP пересекает плоскость AВС по прямой MQ, параллельной NP и проходящей через точку M.

Слайд 18

Не забудьте сформулировать вопросы учителю, если было что-то не понятно, а также свои рекомендации по совершенствованию этой презентации.

Слайд 19

При создании презентации были использованы учебники и пособия: 1. Л.С. Атанасян, В.Ф. Бутузов и др. Геометрия 10-11. М. «Просвещение» 2008. 2.Б.Г. Зив, В.М. Мейлер, А.Г. Баханский Задачи по геометрии 7-11.М. «Просвещение» 2000

Посмотреть все слайды

Тема: « Построение сечений тетраэдра и параллелепипеда».

Предмет : геометрия

Класс: 10

Используемые педагогические технологии:

технология проектного обучения, информационные технологии .

Тема урока : Построение сечений тетраэдра и параллелепипеда

Тип урока : урок закрепления и развития знаний.

Формы работы на уроке : фронтальная, индивидуальная

Список используемых источников и программно-педагогических средств:

1. . Геометрия. 10-11 классы,- М: Просвещение, 2006г.

2. . Задачи на развитие пространственных представлений. Книга для учителя. - М.: Просвещение, 1991.

3. Г. Прокопенко. Методы решения задач на построение сечений многогранников. 10 класс . ЧПГУ, г. Челябинск. Еженедельная учебно-методическая газета "Математика" 31/2001.

4. А. Мордкович. Семинар девятый. Тема: Построение сечений многогранников (позиционные задачи). Еженедельное приложение к газете "Первое сентября". Математика. 3/94.

5. Мультимедийный интерактивный курс "Открытая математика. Стереометрия." Физикон

6. «Живая геометрия»

Образовательные:

Проверить знание теоретического материала о многогранниках (тетраэдр, параллелепипед).

Продолжить формирование умения анализировать чертеж, выделять главные элементы при работе с моделью многогранника, намечать ход решения задачи, предвидеть конечный результат.

Отработать навыки решения задач на построение сечений многогранников.

Развивать графическую культуру и математическую речь.

Формировать навыки использования компьютерных технологий на уроках геометрии.

Развивающие:

Развивать познавательный интерес учащихся.

Формировать и развивать у учащихся пространственное воображение.

Воспитательные:

Воспитывать самостоятельность, аккуратность, трудолюбие.

Воспитывать умения работать индивидуально над задачей.

Воспитывать волю и настойчивость для достижения конечных результатов.

Техническое обеспечение:

Компьютер с установленными программами «Живая геометрия», Power Point, мультимедиапроектор.

Раздаточный материал:

Бланки-карточки с заданиями для практической работы, бланки-карточки с ответами для взаимопроверки, опоры – памятки, презентация по теме «Аксиомы стереометрии, следствия из них», презентация ученика «Построение сечений параллелепипеда», цветные карандаши.

Структура урока.

Приветствие. Организационный момент.

Постановка цели и задачи урока.

Повторение изученного материала с использованием презентации.

Актуализация опорных знаний.

Практическая работа на построение сечений.

Взаимопроверка.

Домашнее задание

Рефлексия.

Ход урока:

1)Приветствие. Организационный момент.

2) Постановка цели и задачи урока.

Задачи на построение сечений в многогранниках занимают заметное место в курсе стереометрии. Их роль обусловлена тем, что решение этого вида задач способствует усвоению аксиом стереометрии, следствий из них, развитию пространственных представлений и конструктивных навыков. Умение решать задачи на построение сечений являет­ся основой изучения почти всех тем курса стереометрии. При решении многих стереометрических задач используют сечения многогранников плоскостью.

На предыдущих уроках мы с вами познакомились с аксиомами стереометрии, следствиями из аксиом и с теоремами о параллельности прямых и плоскостей в пространстве. Мы рассмотрели алгоритмы построения несложных сечений куба, тетраэдра и параллелепипеда. Эти сечения, как правило, задавались точками, расположенными на ребрах или гранях многогранника. Сегодня на уроке мы с вами повторим геометрические утверждения, позволяющие сформулировать правила построения сечений. А также научимся применять эти знания при решении задачи на построение сечения тетраэдра и параллелепипеда плоскостью, проходящей через три данные точки, такие, что никакие три из этих точек не лежат в одной грани.

3) Повторение изученного материала с использованием презентации.

Давайте повторим некоторые вопросы теории.

    Что такое секущая плоскость? Как можно задать секущую плоскость? Что такое сечение тетраэдра (параллелепипеда)? Какие многоугольники мы получали при построении сечений тетраэдра? А какие многоугольники мы можем получить при построении сечений параллелепипеда? Давайте повторим аксиомы стереометрии, следствия из них и способы задания плоскости (презентация 1, слайды 1-10)

4) Актуализация опорных знаний.

Презентация ученика «Построение сечений параллелепипеда».

Теперь давайте вспомним алгоритм построения сечения тетраэдра на примере двух задач (презентация 1, слайды 11-12). (построение комментируется пошагово учителем).

Пащенко Алексей с помощью своей презентации напомнит нам об алгоритмах построения сечений параллелепипеда (презентация 2, слайды 1-5) (ученик демонстрирует слайды, комментируя последовательность построения)

https://pandia.ru/text/78/168/images/image002_167.gif" width="327" height="244">

Практическая работа по построению сечений параллелепипеда. Приложение 1

Приложение 2

Опора-памятка

    Аксиома 1 . Через любые три точки, не лежащие на одной прямой, проходит плоскость, и причем только одна. Аксиома 2 . Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. Аксиома 3 . Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.

Следствия из аксиом:

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения

, слайды 1-2)
  • научиться применять аксиомы стереометрии при решении задач;
  • научиться находить положение точек пересечения секущей плоскости с рёбрами тетраэдра;
  • освоить методы построения этих сечений
  • формировать познавательную активность, умения логически мыслить;
  • создать условия самоконтроля усвоения знаний и умений.

Тип урока: Формирование новых знаний.

Ход урока

I. Организационный момент

II. Актуализация знаний учащихся

Фронтальный опрос. (Аксиомы стереометрии, свойства параллельных плоскостей)

Слово учителя

Для решения многих геометрических задач, связанных с тетраэдром, полезно уметь строить на рисунке их сечения различными плоскостями. (слайд 3) . Назовём секущей плоскостью тетраэдра любую плоскость, по обе стороны от которой имеются точки данного тетраэдра. Секущая плоскость пересекает грани тетраэдра по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением тетраэдра . Так как тетраэдр имеет четыре грани, то его сечениями могут быть только треугольники и четырёхугольники. Отметим также, что для построения сечения достаточно построить точки пересечения секущей плоскости с рёбрами тетраэдра, после чего остаётся провести отрезки, соединяющие каждые две построенные точки, лежащие в одной и той же грани.

На этом уроке вы сможете подробно изучить сечения тетраэдра, освоить методы построения этих сечений. Вы узнаете пять правил построения сечений многогранников, научитесь находить положение точек пересечения секущей плоскости с рёбрами тетраэдра.

Актуализация опорных понятий

  • Первое правило. Если две точки принадлежат как секущей плоскости, так и плоскости некоторой грани многогранника, то прямая, проходящая через эти две точки, является линией пересечения секущей плоскости с плоскостью этой грани (следствие аксиомы о пересечении плоскостей).
  • Второе правило . Если секущая плоскость параллельна некоторой плоскости, то эти две плоскости пересекаются с любой гранью по параллельным прямым (свойство двух параллельных плоскостей, пересечённых третьей).
  • Третье правило. Если секущая плоскость параллельна прямой, лежащей в некоторой плоскости (например, плоскости какой-то грани), то линия пересечения секущей плоскости с этой плоскостью (гранью) параллельна этой прямой (свойство прямой, параллельной плоскости).
  • Четвёртое правило. Секущая плоскость пересекает параллельные грани по параллельным прямым (свойство параллельных плоскостей, пересечённых третьей).
  • Пятое правило . Пусть две точки А и В принадлежат секущей плоскости, а точки A 1 и B 1 являются параллельными проекциями этих точек на некоторую грань. Если прямые АВ и A 1 B 1 параллельны, то секущая плоскость пересекает эту грань по прямой, параллельной A 1 B 1 . Если же прямые АВ и A 1 B 1 пересекаются в некоторой точке, то эта точка принадлежит как секущей плоскости, так и плоскости этой грани (первая часть этой теоремы следует из свойства прямой, параллельной плоскости, а вторая вытекает из дополнительных свойств параллельной проекции).

III. Изучение нового материала (формирование знаний, умений)

Коллективное решение задач с объяснением (слайд 4)

Задача 1. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є АД, М є ДС, Е є ВС.

Внимательно посмотрим на чертёж. Так как точки К и М принадлежат одной плоскости, то мы находим пересечение секущей плоскости с гранью АДС – это отрезок КМ. Точки М и Е также лежат в одной плоскости, значит пересечением секущей плоскости, и грани ВДС является отрезок МЕ. Находим точку пересечения прямых КМ и АС, которые лежат в одной плоскости АДС. Теперь точка Х лежит в грани АВС, то её можно соединить с точкой Е. Проводим прямую ХЕ, которая пересекается с АВ в точке Р. Отрезок РЕ есть пересечение секущей плоскости с гранью АВС, а отрезок КР есть пересечение секущей плоскости с гранью АВС. Следовательно, четырёхугольник КМЕР наше искомое сечение. Запись решения в тетради:

Решение.

  1. КМ = α ∩ АДС
  2. МЕ = α ∩ ВДС
  3. Х = КМ ∩ АС
  4. Р = ХЕ ∩ АВ
  5. РЕ = α ∩ АВС
  6. КР = α ∩ АДВ
  7. КМЕР – искомое сечение

Задача 2. (слайд 5)

Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є АВС, М є ВДС, N є АД

Проанализируем этот рисунок. Здесь нет точек, лежащих в одной грани. В это случае воспользуемся правилом 5. Рассмотрим проекции каких-нибудь двух точек. В тетраэдре проекции точек находят из вершины на плоскость основания, т.е. М→М 1 , N→А. Находим пересечение прямых NM и AM 1 точку Х.Данная точка принадлежит секущей плоскости, так как лежит на прямой NM, принадлежит плоскости АВС, так как лежит на прямой АМ 1 . Значит, теперь в плоскости АВС у нас есть две точки, которые можно соединить, получаем прямую КХ. Прямая пересекает сторону ВС в точке L, а сторону АВ в точке Н. В грани АВC находим линию пересечения, она проходит через точки Н и К – это НL. В грани АВД линия пересечения – НN, в грани ВДС проводим линию пересечения через точки L и М – это LQ и в грани АДС получаем отрезок NQ. Четырёхугольник HNQL – искомое сечение.

Решение

  1. М → М 1 N → А
  2. Х = NМ ∩ АМ 1
  3. L = КХ ∩ ВС
  4. H = КХ ∩ АВ
  5. НL = α ∩ АВC, К є НL
  6. НN = α ∩ АВД,
  7. LQ = α ∩ ВДС, М є LQ
  8. NQ = α ∩ АДС
  9. HNQL – искомое сечение

IV. Закрепление знаний

Работа с анимационным объектом «Построение сечения тетраэдра с плоскостью» (диск «Уроки геометрии в 10 классе» урок №16)

Решение задачи с последующей проверкой

Задача 3. (слайд 6)

Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки К є ВС, М є АДВ, N є ВДС.

Решение

  1. 1. М → М 1 , N → N 1
  2. Х = NМ ∩ N 1 М 1
  3. R = КХ ∩ АВ
  4. RL = α ∩ АВД, М є RL
  5. КР = α ∩ ВДС, N є КР
  6. LP = α ∩ АДС
  7. RLPK – искомое сечение

V. Самостоятельная работа (по вариантам)

(слайд 7)

Задача 4. N є АС, К є АД.

Решение

  1. КМ = α ∩ АВД,
  2. МN = α ∩ АВС,
  3. КN = α ∩ АДС
  4. KMN – искомое сечение

Задача 5. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки М є АВ, К є ДС, N є ДВ.

Решение

  1. MN = α ∩ АВД
  2. NK = α ∩ ВДС
  3. Х = NК ∩ ВС
  4. Р = АС ∩ МХ
  5. РК = α ∩ АДС
  6. MNKP – искомое сечение

Задача 6. Постройте сечение тетраэдра ДАВС плоскостью, проходящей через точки М є АВС, К є ВД, N є ДС

Решение

  1. KN = α ∩ ДВС
  2. Х = КN ∩ ВС
  3. Т = МХ ∩ АВР = ТХ ∩ АС
  4. РТ = α ∩ АВС, М є РТ
  5. PN = α ∩ АДС
  6. ТР N K – искомое сечение

VI. Итог урока.

(слайд 8)

Итак, мы сегодня научились строить простейшие задачи на сечения тетраэдра. Напоминаю, что сечением многогранника называется многоугольник, полученный в результате пересечения многогранника с некоторой плоскостью. Сама плоскость при этом называется секущей плоскостью. Построить сечение значит определить, какие рёбра пересекает секущая плоскость, вид полученного сечения и точное положение точек пересечения секущей плоскости с этими рёбрами. То есть, те цели, которые были поставлены на уроке, решены.

VII. Домашнее задание.

(слайд 9)

Практическая работа «Построить сечения тетраэдра» в электронном виде или бумажном варианте. (Каждому было дано индивидуальное задание).

В каждой из этих граней отмечаются вершины противоположные вершине A, это будут вершины B, C и D. Полученные отрезки AB, AC, AD, BC, DC и BD между как граней куба, поэтому ABCD является правильным тетраэдром.

Обратите внимание

Тетраэдр является одним из пяти возможных правильных многогранников. К правильным многогранникам относятся так же: октаэдр, додекаэдр, икосаэдр и гексаэдр или куб. Куб – простейший для построения многогранник, все остальные могут быть построены с его помощью.

Стереометрия, как часть геометрии, гораздо ярче и интереснее именно тем, что фигуры здесь не плоскостные, а объемные. В многочисленных задачах требуется рассчитать параметры параллелепипедов, конусов, пирамид и других трехмерных фигур. Иногда уже на этапе построения возникают сложности, которые легко устраняются, если следовать простым принципам стереометрии.

Вам понадобится

  • - линейка;
  • - карандаш;
  • - циркуль;
  • - транспортир.

Инструкция

Определитесь с количеством граней, а также количеством углов в многоугольниках самих граней перед . Если в условии говорится о правильном многограннике, то стройте его так, чтобы он был выпуклый (не ломанный), чтобы грани представляли собой правильные многоугольники, а в каждой вершине трехмерной фигуры сходилось одинаковое количество ребер.

Помните об особых многогранниках, для которых есть постоянные характеристики:
- тетраэдр состоит из треугольников, имеет 4 вершины, 6 ребер, сходящихся в вершинах по 3, а также 4 грани;
- гесаэдр, или куб, состоит из квадратов, имеет 8 вершин, 12 ребер, сходящихся по по 3 на вершинах, а также ;
- октаэдр состоит из треугольников, имеет 6 вершин, 12 ребер, примыкающих по 4 к вершинам, а также 8 граней;
- – это двенадцатигранная фигура, состоящая из пятиугольников, имеющая 20 вершин, а также 30 ребер, примыкающих к вершине по 3;
- , в свою очередь, имеет 20 треугольных граней, 30 ребер, примыкающих по 5 к каждой из 12 вершин.

Начните построение с , если ребра многогранника параллельны. Это касается параллелепипеда, . При этом будет удобнее начинать построение с рисования основания многогранника, а затем достраивать грани соответственно заданным углам относительно плоскости основания. Для куба и прямого параллелепипеда это будет прямой угол между плоскостью основания и боковых граней. Для наклонного параллелепипеда соблюдайте условия задачи, при необходимости используя транспортир. Помните, что плоскости верхней и нижней грани этой фигуры параллельны.

Постройте неправильный с учетом количества углов в каждой из граней, а также числа смежных . При построении многогранника не забывайте, что грани многогранных фигур не всегда равновеликие, с одинаковым количеством углов. Например, в основании может быть ромб, а боковые грани ее будут составлять с разной длиной ребер.

Видео по теме

Обратите внимание

Если в задаче просят изобразить тетраэдр, гексаэдр (или куб), октаэдр, додекаэдр, икосаэдр, то сразу отмечайте, что речь идет об изначально правильном многограннике с соответствующим числом граней.

Полезный совет

Многогранник в общем смысле состоит из определенного количества плоских многоугольников. При этом обязательно соблюдаются следующие условия:
- смежность многоугольников, из которых состоит многогранник. Это означает, что сторона одного многоугольника одновременно является стороной и другого – смежного;
- все многоугольники непрерывно связаны между собой. Это так называемый принцип «связности».

Изготовить модель тетраэдра можно из самых разных материалов. Один из наиболее доступных вариантов - склеить его из бумаги. При этом клей требуется не всегда, поскольку самоклеющаяся бумага тоже подходит для таких целей.

Вам понадобится

  • - бумага для построения развертки;
  • - бумага для модели;
  • - линейка;
  • - карандаш;
  • - транспортир;
  • - ножницы;
  • - компьютер с AutoCAD.

Инструкция

Начните с построения развертки. Если вы собираетесь клеить тетраэдр из обычной плотной бумаги, развертку можно сделать прямо на ней. Для самоклеющейся бумаги лучше начертите выкройку, как это выполняется в классическом моделировании. Можно использовать и компьютер с AutoCAD или любым другим графическим редактором, позволяющим строить правильные многоугольники.