Что называется током в газах. Электрический ток в газах: определение, особенности и интересные факты. Свободные заряды в газе

Линзой называется прозрачное тело, ограниченное двумя криволинейными (чаще всего сферическими) или криволинейной и плоской поверхностями. Линзы делятся на выпуклые и вогнутые.

Линзы, у которых середина толще, чем края, называются выпуклыми. Линзы, у которых середина тоньше, чем края, называются вогнутыми.

Если показатель преломления линзы больше, чем показатель преломления окружающей среды, то в выпуклой линзе параллельный пучок лучей после преломления преобразуется в сходящий пучок. Такие линзы называются собирающими (рис. 89, а). Если в линзе параллельный пучок преобразуется в расходящийся пучок, то эти линзы называются рассеивающими (рис. 89, б). Вогнутые линзы, у которых внешней средой служит воздух, являются рассеивающими.

O 1 , О 2 - геометрические центры сферических поверхностей, ограничивающих линзу. Прямая О 1 О 2 , соединяющая центры этих сферических поверхностей, называется главной оптической осью. Обычно рассматриваем тонкие линзы, у которых толщина мала по сравнению с радиусами кривизны ее поверхностей, поэтому точки C 1 и С 2 (вершины сегментов) лежат близко друг к другу, их можно заменить одной точкой О, называемой оптическим центром линзы (см. рис. 89а). Всякая прямая, проведенная через оптический центр линзы под углом к главной оптической оси, называется побочной оптической осью (А 1 A 2 B 1 B 2).

Если на собирающую линзу падает пучок лучей, параллельных главной оптической оси, то после преломления в линзе они собираются в одной точке F, которая называется главным фокусом линзы (рис. 90, а).

В фокусе рассеивающей линзы пересекаются продолжения лучей, которые до преломления были параллельны ее главной оптической оси (рис. 90, б). Фокус рассеивающей линзы мнимый. Главных фокусов - два; они расположены на главной оптической оси на одинаковом расстоянии от оптического центра линзы по разные стороны.

Величина, обратная фокусному расстоянию линзы, называется ее оптической силой . Оптическая сила линзы - D.

За единицу оптической силы линзы в СИ принимают диоптрию. Диоптрия - оптическая сила линзы, фокусное расстояние которой равно 1 м.

Оптическая сила собирающей линзы положительная, рассеивающей - отрицательная.

Плоскость, проходящая через главный фокус линзы перпендикулярно к главной оптической оси, называется фокальной (рис. 91). Пучок лучей, падающих на линзу параллельно какой-либо побочной оптической оси, собирается в точке пересечения этой оси с фокальной плоскостью.

Построение изображения точки и предмета в собирающей линзе.

Для построения изображения в линзе достаточно взять по два луча от каждой точки предмета и найти их точку пересечения после преломления в линзе. Удобно пользоваться лучами, ход которых после преломления в линзе известен. Так, луч, падающий на линзу параллельно главной оптической оси, после преломления в линзе проходит через главный фокус; луч, проходящий через оптический центр линзы, не преломляется; луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси; луч, падающий на линзу параллельно побочной оптической оси, после преломления в линзе проходит через точку пересечения оси с фокальной плоскостью.

Пусть светящаяся точка S лежит на главной оптической оси.

Выбираем произвольно луч и параллельно ему проводим побочную оптическую ось (рис. 92). Через точку пересечения побочной оптической оси с фокальной плоскостью пройдет выбранный луч после преломления в линзе. Точка пересечения данного луча с главной оптической осью (второй луч) даст действительное изображение точки S - S`.

Рассмотрим построение изображения предмета в выпуклой линзе.

Пусть точка лежит вне главной оптической оси, тогда изображение S` можно построить с помощью любых двух лучей, приведенных на рис. 93.

Если предмет расположен в бесконечности, то лучи пересекутся в фокусе (рис. 94).

Если предмет расположен за точкой двойного фокуса, то изображение получится действительным, обратным, уменьшенным (фотоаппарат, глаз) (рис. 95).

Линзой называется оптическая деталь, ограниченная двумя преломляющими поверхностями, являющимися поверхностями тел вращения, причем одна из них может быть плоской. Обычно линзы бывают круглой формы, но могут также иметь прямоугольную, квадратную или какую-либо другую конфигурацию. Как правило, преломляющие поверхности линзы являются сферическими. Применяются также асферические поверхности, которые могут иметь форму поверхностей вращения эллипса, гиперболы, параболы и кривых высшего порядка. Кроме того, существуют линзы, поверхности которых представляют собой часть боковой поверхности цилиндра, называемые цилиндрическими. Применяются также торические линзы с поверхностями, имеющими различную кривизну по двум взаимно перпендикулярным направлениям.

В качестве, отдельных оптических деталей линзы почти не применяются в оптических системах за исключением простых луп и полевых линз (коллективов). Обычно они используются в различных сложных комбинациях, например, склеенных из двух или трех линз и наборов из ряда отдельных и склеенных линз.

В зависимости от форм различают собирательные (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих -- линзы, края которых толще середины. Следует отметить, что это верно, только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырек воздуха в воде -- двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием, а также апертурой. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего -- хроматической, обусловленной дисперсией света, -- ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления.

Виды линз

Собирательные:

1 -- двояковыпуклая

2 -- плоско-выпуклая

3 -- вогнуто-выпуклая (положительный мениск)

Рассеивающие:

4 -- двояковогнутая

5 -- плоско-вогнутая

6 -- выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине) или рассеивающей (утолщается к краям). Мениск, у которого радиусы поверхностей равны, имеет оптическую силу, равную нулю (применяется для коррекции дисперсии или как покровная линза). Так, линзы очков для близоруких -- как правило, отрицательные мениски. Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.


Основные элементы линзы

NN -- главная оптическая ось -- прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O -- оптический центр -- точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись, а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса, или просто фокуса.

Если на линзу будет падать свет от очень удаленного источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под большим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется главным фокусом F", а расстояние от центра линзы до главного фокуса -- главным фокусным расстоянием.

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым.


Сказанное о фокусе на главной оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на побочной или наклонной оптической оси, т. е. линии, проходящей через центр линзы под углом к главной оптической оси. Плоскость, перпендикулярная главной оптической оси, расположенная в главном фокусе линзы, называется главной фокальной плоскостью, а в сопряжённом фокусе -- просто фокальной плоскостью.

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса -- передний и задний. Расположены они на оптической оси по обе стороны линзы.

Вогнуто-выпуклая линза

Плоско-выпуклая линза

Характеристики тонких линз

В зависимости от форм различают собирательные (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих - линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде - двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием .

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего - хроматической, обусловленной дисперсией света , - ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления , коффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления (см. иммерсионный микроскоп, иммерсионные жидкости).

Виды линз:
Собирающие :
1 - двояковыпуклая
2 - плоско-выпуклая
3 - вогнуто-выпуклая (положительный мениск)
Рассеивающие :
4 - двояковогнутая
5 - плоско-вогнутая
6 - выпукло-вогнутая (отрицательный мениск)

Выпукло-вогнутая линза называется мениском и может быть собирательной (утолщается к середине) или рассеивающей (утолщается к краям). Мениск, у которого радиусы поверхностей равны, имеет оптическую силу, равную нулю (применяется для коррекции дисперсии или как покровная линза). Так, линзы очков для близоруких - как правило, отрицательные мениски.

Отличительным свойством собирательной линзы является способность собирать падающие на её поверхность лучи в одной точке, расположенной по другую сторону линзы.

Основные элементы линзы: NN - главная оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу; O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре).
Примечание . Ход лучей показан, как в идеализированной (плоской) линзе, без указания на преломление на реальной границе раздела фаз. Дополнительно показан несколько утрированный образ двояковыпуклой линзы

Если на некотором расстоянии перед собирательной линзой поместить светящуюся точку S, то луч света, направленный по оси, пройдёт через линзу не преломившись , а лучи, проходящие не через центр, будут преломляться в сторону оптической оси и пересекутся на ней в некоторой точке F, которая и будет изображением точки S. Эта точка носит название сопряжённого фокуса , или просто фокуса .

Если на линзу будет падать свет от очень удалённого источника, лучи которого можно представить идущими параллельным пучком, то по выходе из неё лучи преломятся под бо́льшим углом и точка F переместится на оптической оси ближе к линзе. При данных условиях точка пересечения лучей, вышедших из линзы, называется главным фокусом F’, а расстояние от центра линзы до главного фокуса - главным фокусным расстоянием .

Лучи, падающие на рассеивающую линзу, по выходе из неё будут преломляться в сторону краёв линзы, то есть рассеиваться. Если эти лучи продолжить в обратном направлении так, как показано на рисунке пунктирной линией, то они сойдутся в одной точке F, которая и будет фокусом этой линзы. Этот фокус будет мнимым .

Мнимый фокус рассеивающей линзы

Сказанное о фокусе на главной оптической оси в равной степени относится и к тем случаям, когда изображение точки находится на побочной или наклонной оптической оси, т. е. линии, проходящей через центр линзы под углом к главной оптической оси. Плоскость, перпендикулярная главной оптической оси, расположенная в главном фокусе линзы, называется главной фокальной плоскостью , а в сопряжённом фокусе - просто фокальной плоскостью .

Собирательные линзы могут быть направлены к предмету любой стороной, вследствие чего лучи по прохождении через линзу могут собираться как с одной, так и с другой её стороны. Таким образом, линза имеет два фокуса - передний и задний . Расположены они на оптической оси по обе стороны линзы на фокусном расстоянии от центра линзы.

Построение изображения тонкой собирающей линзой

При изложении характеристики линз был рассмотрен принцип построения изображения светящейся точки в фокусе линзы. Лучи, падающие на линзу слева, проходят через её задний фокус, а падающие справа - через передний фокус. Следует учесть, что у рассеивающих линз, наоборот, задний фокус расположен спереди линзы, а передний позади.

Построение линзой изображения предметов, имеющих определённую форму и размеры, получается следующим образом: допустим, линия AB представляет собой объект, находящийся на некотором расстоянии от линзы, значительно превышающем её фокусное расстояние. От каждой точки предмета через линзу пройдёт бесчисленное количество лучей, из которых, для наглядности, на рисунке схематически изображён ход только трёх лучей.

Три луча, исходящие из точки A, пройдут через линзу и пересекутся в соответствующих точках схода на A 1 B 1 , образуя изображение. Полученное изображение является действительным и перевёрнутым .

В данном случае изображение получено в сопряжённом фокусе в некоторой фокальной плоскости FF, несколько удалённой от главной фокальной плоскости F’F’, проходящей параллельно ей через главный фокус.

Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным , перевёрнутым и уменьшенным до подобия точки.

Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным , перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.

Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным , перевёрнутым и равным по величине предмету.

Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным , перевёрнутым и увеличенным .

Если предмет находится в плоскости переднего главного фокуса линзы, то лучи, пройдя через линзу, пойдут параллельно, и изображение может получиться лишь в бесконечности.

Если предмет поместить на расстоянии, меньшем главного фокусного расстояния, то лучи выйдут из линзы расходящимся пучком, нигде не пересекаясь. Изображение при этом получается мнимое , прямое и увеличенное , т. е. в данном случае линза работает как лупа.

Нетрудно заметить, что при приближении предмета из бесконечности к переднему фокусу линзы изображение удаляется от заднего фокуса и по достижении предметом плоскости переднего фокуса оказывается в бесконечности от него.

Эта закономерность имеет большое значение в практике различных видов фотографических работ, поэтому для определения зависимости между расстоянием от предмета до линзы и от линзы до плоскости изображения необходимо знать основную формулу линзы .

Формула тонкой линзы

Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями .

Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы :

где - расстояние от линзы до предмета; - расстояние от линзы до изображения; - главное фокусное расстояние линзы. В случае толстой линзы формула остаётся без изменения с той лишь разницей, что расстояния отсчитываются не от центра линзы, а от главных плоскостей .

Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:

Следует отметить, что знаки величин u , v , f выбираются исходя из следующих соображений - для действительного изображения от действительного предмета в собирающей линзе - все эти величины положительны. Если изображение мнимое - расстояние до него принимается отрицательным, если предмет мнимый - расстояние до него отрицательно, если линза рассеивающая - фокусное расстояние отрицательно.

Масштаб изображения

Масштабом изображения () называется отношение линейных размеров изображения к соответствующим линейным размерам предмета. Это отношение может быть косвенно выражено дробью , где - расстояние от линзы до изображения; - расстояние от линзы до предмета.

Здесь есть коэффициент уменьшения, т. е. число, показывающее во сколько раз линейные размеры изображения меньше действительных линейных размеров предмета.

В практике вычислений гораздо удобнее это соотношение выражать в значениях или , где - фокусное расстояние линзы.

.

Расчёт фокусного расстояния и оптической силы линзы

Линзы симметричны, то есть они имеют одинаковое фокусное расстояние независимо от направления света - слева или справа, что, однако, не относится к другим характеристикам, например, аберрациям , величина которых зависит от того, какой стороной линза повёрнута к свету.

Комбинация нескольких линз (центрированная система)

Линзы могут комбинироваться друг с другом для построения сложных оптических систем. Оптическая сила системы из двух линз может быть найдена как простая сумма оптических сил каждой линзы (при условии, что обе линзы можно считать тонкими и они расположены вплотную друг к другу на одной оси):

.

Если линзы расположены на некотором расстоянии друг от друга и их оси совпадают (система из произвольного числа линз, обладающих таким свойством, называется центрированной системой), то их общую оптическую силу с достаточной степенью точности можно найти из следующего выражения:

,

где - расстояние между главными плоскостями линз.

Недостатки простой линзы

В современной фотоаппаратуре к качеству изображения предъявляются высокие требования.

Изображение, даваемое простой линзой, в силу целого ряда недостатков не удовлетворяет этим требованиям. Устранение большинства недостатков достигается соответствующим подбором ряда линз в центрированную оптическую систему - объектив . Изображения, полученные при помощи простых линз, имеют различные недостатки. Недостатки оптических систем называются аберрациями , которые делятся на следующие виды:

  • Геометрические аберрации
  • Дифракционная аберрация (эта аберрация вызывается другими элементами оптической системы, и к самой линзе отношения не имеет).

Линзы со специальными свойствами

Линзы из органических полимеров

Линзы контактные

Линзы из кварца

Линзы из кремния

Кремний сочетает сверхвысокую дисперсию с самым большим абсолютным значением коэффициента преломления n=3,4 в диапазоне ИК-излучения и полной непрозрачностью в видимом диапазоне спектра.

ЛИНЗА

(нем. Linse, от лат. lens - чечевица), прозрачное тело, ограниченное двумя поверхностями, преломляющими световые лучи, способное формировать оптич. изображения предметов, светящихся собственным или отражённым светом. Л. явл. одним из осн. элементов оптич. систем. Наиболее употребительны Л., обе поверхности к-рых обладают общей осью симметрии, а из них - Л. со сферич. поверхностями, изготовление к-рых наиболее просто. Менее распространены Л. с двумя взаимно перпендикулярными плоскостями симметрии; их поверхности цилиндрич. или тороидальные. Таковы Л. в очках, предписываемых при астигматизме глаза, Л. для анаморфотных насадок и т. д.

Материалом для Л. обычно служит оптич. и органич. стекло. Спец. Л., предназначенные для работы в УФ области спектра, изготовляют из кристаллов кварца, флюорита, фтористого лития и др., в ИК - из особых сортов стекла, кремния, германия, флюорита, фтористого лития, йодистого цезия и др.

Описывая оптич. св-ва осесимметричной Л., чаще всего рассматривают лучи, падающие на неё под малым углом к оси, т. н. параксиальный пучок лучен.

Действие Л. на эти лучи определяется положением её кардинальных точек - т. н, главных точек Н и Н", в к-рых пересекаются с осью главные плоскости Л., а также переднего и заднего главных фокусов F и F" (рис. 1). Отрезки HF=f и H"F"=f наз. фокусными расстояниями Л. (если среды, с к-рыми граничит Л., обладают одинаковыми показателями преломления, всегда f=f"); точки пересечения О и О" поверхностей Л. с осью наз. её вершинами, а расстояния между вершинами - толщиной Л. d.

Если направления фокусного расстояния совпадают с направлением лучей света, то его считают положительным, так, напр., на рис. 1 лучи проходят через Л. направо и так же ориентирован отрезок Н"F". Поэтому здесь f">0, а f

Л. изменяют направления падающих на неё лучей. Если Л. преобразует параллельный пучок в сходящийся, её называют собирающей; если параллельный пучок превращается в расходящийся, Л. называют рассеивающей. В главном фокусе F" собирающей Л. пересекаются лучи, к-рые до преломления были параллельны её оси. Для такой Л. f" всегда положительно. В рассеивающей Л. F" - точка пересечения не самих лучей, а их воображаемых продолжений в сторону, противоположную направлению распространения света. Поэтому для них всегда f"

Мерой преломляющего действия Л. служит её Ф - величина, обратная фокусному расстоянию (Ф=1/f") и измеряемая в диоптриях (м-1). У собирающих Л. Ф>0, поэтому их ещё именуют положительными, рассеивающие Л. (Ф фокусное расстояние равно бесконечности). Они не собирают и не рассеивают лучей, но создают аберрации (см. АБЕРРАЦИИ ОПТИЧЕСКИХ СИСТЕМ) и применяются в зеркально-линзовых (а иногда и в линзовых) объективах как компенсаторы аберраций.

Все параметры, определяющие оптич. св-ва Л., ограниченной сферич. поверхностями, могут быть выражены через радиусы кривизны r1 и r2 её поверхностей, толщину Л. по оси d и n её материала. Напр., оптич. и фокусное расстояние Л. задаются соотношением (верным лишь для параксиальных лучей) :

Радиусы r1 и r2 считаются положительными, если направление от вершин Л. до центра соответствующей поверхности совпадает с направлением лучей (на рис. 1 r1=OF">0, r2=O"F

Первые три - положительны, последние три - отрицательны. Л. наз. тонкой, если её толщина d мала по сравнению с r1 и r2. Достаточно точное выражение для оптич. силы такой Л. получают и без учёта второго члена в (1).

Положение гл. плоскостей Л. относительно её вершин (расстояния ОН и О"Н") тоже можно определить, зная r1, r2, n и d. Расстояние между главными плоскостями мало зависит от формы и оптич. силы Л. и приблизительно равно d(n-1)/n. В случае тонкой Л. это расстояние мало и практически можно считать, что главные плоскости совпадают.

Когда положение кардинальных точек известно, положение оптич. изображения точки, даваемого Л. (рис. 1), определяется ф-лами:

где V - линейное увеличение Л. (см. УВЕЛИЧЕНИЕ ОПТИЧЕСКОЕ); l и l" - расстояния от точки и её изображения до оси (положительные, если они расположены выше оси); х - расстояние от переднего фокуса до точки; х" - расстояние от заднего фокуса до изображения. Если t и t" - расстояния от главных точек до плоскостей и изображения соответственно, то

т. к. x=t-f, x"=t"-f")

f"/t"+f/t=1 или 1/t"-1/t=1/f". (3)

В тонких Л. t и t" можно отсчитывать от соответствующих поверхностей Л.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЛИНЗА

(нем. Linse, от лат. lens - чечевица) - простейший оптич. элемент, изготавливаемый из прозрачного материала, ограниченный двумя преломляющими поверхностями, имеющими общую ось либо две взаимно перпендикулярные плоскости симметрии. При изготовлении Л. для видимой области применяют оптическое стекло или органическое стекло (массовое тиражирование непрецизионных деталей), в УФ-диапазоне - , флюорит и др., в ИК-диапазоне - спец. сорта стёкол, германий, ряд солей и т. д.

Рабочие поверхности Л. обычно имеют сферич. форму, реже - цилиндрическую, тороидальную, конусообразную или с заданными небольшими отступлениями от сферы (асферическую). Л. со сферич. поверхностями наиб. просты в изготовлении и являются осн. элементами большинства оптич. систем.

В параксиальном приближении (углы между лучами и оптич. осью столь малы, что можно заменить sinи на свойства Л. со сферич. поверхностями могут быть однозначно охарактеризованы положением главных плоскостей и оптической силой Ф, представляющей собой выражаемую в диоптриях величину, обратную фокусному расстоянию (в м). Связь этих характеристик с геом. параметрами Л. ясны из рис., в к-ром для наглядности углы наклона лучей изображены преувеличенно большими. Расстояния от первой по ходу лучей поверхности линзы до первой гл. плоскости Я и от второй поверхности до второй гл. плоскости H " равны соответственно

S 1, 2

Фокусное расстояние от H до переднего фокуса (F)f = -1/Ф, от до заднего фокуса I оптич. сила Л., являющаяся мерой её преломляющего действия, равна

Здесь п - показатель преломления вещества Л. (или отношение этого показателя к показателю преломления окружающей среды, если последний 1), d - измеренная вдоль оси толщина Л., r 1 и r 2 - радиусы кривизны её поверхностей (считаются положительными, если центры кривизны расположены дальше по ходу лучей; так, у изображённой на рис. двояковыпуклой Л. r 1 >0, r 2 <0), расстояния отсчитываются вдоль направления распространения света.

Способ построения и расчёта траекторий проходящих через Л. меридиональных (лежащих в осевой плоскости) лучей с использованием гл. плоскостей ясен из рис. После прохождения Л. кажется исходящим из точки на удалённой от оси на то же расстояние h, что и точка пересечения исходного луча с Я. Угол между лучом и осью изменяется на Для нахождения траектории произвольного немеридионального луча последний проецируется на две взаимно перпендикулярные осевые плоскости. Каждая проекция является по существу меридиональным лучом и ведёт себя указанным выше образом.

Положение даваемого Л. изображения точки определяется ф-лами

где l и - расстояния от гл. плоскостей до плоскостей предмета и изображения соответственно (рис.), b и - расстояния точки и её изображения от оси (отсчитываемые вверх).


Если Л. наз. положительной или собирающей, при - отрицательной или рассеивающей; линзы с Ф=0 наз. афокальными и используются гл. обр. для исправления аберраций др. оптич. элементов. Положительные Л. дают действительные изображения всех действительных объектов, находящихся до переднего фокуса (на рис.- левее F), и всех мнимых объектов, находящихся за Л. Рассеивающие Л. дают расположенное между Л. и передним фокусом прямое, мнимое, уменьшенное изображение действит. объектов.

Расстояние между гл. плоскостями Л. почти не зависит от её оптич. силы и формы и примерно равно d (1-1/n ). Когда пренебрежимо мало по сравнению с Л. наз. тонкой. У тонких Л. знак оптич. силы Ф совпадает со знаком разности 1/r 1 -1/r 2 ; при этом толщина собирающих Л. по мере удаления от оси уменьшается, а рассеивающих - возрастает. Обе гл. плоскости тонких Л. можно считать совпадающими с плоскостью Л. и отсчитывать введённые выше расстояния /,l, прямо от последней. Чёткой границы между толстыми Л. (когда нельзя пренебречь) и тонкими не существует - всё зависит от конкретных применений.

Для преобразования высококогерентных световых пучков (обычно лазерного происхождения) используются преим. тонкие Л. Их часто наз. квадратичными фазовыми корректорами: при прохождении когерентного пучка через тонкую Л. к распределению фазы по его сечению добавляется величина где k = - волновой вектор, = ( п- 1) - вносимая Л. дополнит. , являющаяся квадратичной ф-цией удаления r от оси. Распределение комплексной амплитуды поля в фокальной плоскости Л. с точностью до фазового множителя является фурье-образом распределения амплитуды поля перед Л., вычисленным для пространственных частот (х, у - поперечные координаты на фокальной плоскости). Распределение интенсивности в той же плоскости подобно угл. распределению излучения с коэф. Поэтому Л. широко применяются в системах пространственной фильтрации излучения, обычно представляющих собой комбинацию Л. с установленными в их фокальных плоскостях диафрагмами, растрами, и в устройствах для измерения угл. излучения.

Л. обладают всеми аберрациями, присущими цент-риров. оптич. системам (см. Аберрации оптических систем ). Проблема аберраций особенно важна при использовании широкополосных и обладающих большими угл. апертурами световых пучков обычных (некогерентных) источников. Сферич. и хроматич. аберрации, а также могут быть в значит. степени исправлены путём комбинирования двух Л. разл. формы и из материалов с разл. дисперсией. Такие двухлинзовые системы широко используются в качестве объективов для зрительных труб и т. п. Иногда сферич. аберрации уничтожаются с помощью Л. с асферической, в частности параболоидальной, формой поверхности.

Для коррекции разл. дефектов глаза применяются Л. не только со сферическими, но также с цилиндрич. и торич. поверхностями. Цилиндрич. Л. сравнительно часто используются в тех случаях, когда изображение точечного источника должно быть "растянуто" в полосу или линию (напр., в спектральных приборах).

Лит.: Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Гудмен Д ж., Введение в Фурье-оптику, пер. с англ.. М.. 1970. Ю. А . Ананьев.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .