Решение однородных дифференциальных уравнений второго порядка. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Линейные однородные уравнения высших порядков

В этом параграфе будет рассмотрен частный случай линейных уравнений второго порядка, когда коэффициенты уравнения постоянны, т. е. являются числами. Такие уравнения называются уравнениями с постоянными коэффициентами. Этот вид уравнений находит особенно широкое применение.

1. Линейные однородные дифференциальные уравнения

второго порядка с постоянными коэффициентами

Рассмотрим уравнение

в котором коэффициенты постоянны. Полагая, что деля все члены уравнения на и обозначая

запишем данное уравнение в виде

Как известно, для нахождения общего решения линейного однородного уравнения второго порядка достаточно знать его фундаментальную систему частных решений. Покажем, как находится фундаментальная система частных решений для однородного линейного дифференциального уравнения с постоянными коэффициентами. Будем искать частное решение этого уравнения в виде

Дифференцируя эту функцию два раза и подставляя выражения для в уравнение (59), получим

Так как , то, сокращая на получим уравнение

Из этого уравнения определяются те значения k, при которых функция будет решением уравнения (59).

Алгебраическое уравнение (61) для определения коэффициента к называется характеристическим уравнением данного дифференциального уравнения (59).

Характеристическое уравнение является уравнением второй степени и имеет, следовательно, два корня. Эти корни могут быть либо действительными различными, либо действительными и равными, либо комплексными сопряженными.

Рассмотрим, какой вид имеет фундаментальная система частных решений в каждом из этих случаев.

1. Корни характеристического уравнения действительные и различные: . В этом случае по формуле (60) находим два частных решения:

Эти два частных решения образуют фундаментальную систему решений на всей числовой оси, так как определитель Вронского нигде не обращается в нуль:

Следовательно, общее решение уравнения согласно формуле (48) имеет вид

2. Корни характеристического уравнения равные: . В этом случае оба корня будут действительными. По формуле (60) получаем только одно частное решение

Покажем, что второе частное решение образующее вместе с первым фундаментальную систему, имеет вид

Прежде всего проверим, что функция является решением уравнения (59). Действительно,

Но , так как есть корень характеристического уравнения (61). Кроме того, по теореме Виета Поэтому . Следовательно, , т. е. функция действительно является решением уравнения (59).

Покажем теперь, что найденные частные решения образуют фундаментальную систему решений. Действительно,

Таким образом, в этом случае общее решение однородного линейного уравнения имеет вид

3. Корни характеристического уравнения комплексные. Как известно, комплексные корни квадратного уравнения с действительными коэффициентами являются сопряженными комплексными числами, т. е. имеют вид: . В этом случае частные решения уравнения (59), согласно формуле (60), будут иметь вид:

Применяя формулы Эйлера (см. гл. XI, § 5 п. 3), выражения для можно записать в виде:

Эти решения являются комплексными. Чтобы получить действительные решения, рассмотрим новые функции

Они являются линейными комбинациями решений и, следовательно, сами являются решениями уравнения (59) (см. § 3, п. 2, теорему 1).

Легко показать, что определитель Вронского для этих решений отличен от нуля и, следовательно, решения образуют фундаментальную систему решений.

Таким образом, общее решение однородного линейного дифференциального уравнения в случае комплексных корней характеристического уравнения имеет вид

Приведем в заключение таблицу формул общего решения уравнения (59) в зависимости от вида корней характеристического уравнения.

Данная статья раскрывает вопрос о решении линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Будет рассмотрена теория вместе с примерами приведенных задач. Для расшифровки непонятных терминов необходимо обращаться к теме об основных определениях и понятиях теории дифференциальных уравнений.

Рассмотрим линейное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами вида y "" + p · y " + q · y = f (x) , где произвольными числами являются p и q , а имеющаяся функция f (х) непрерывная на интервале интегрирования x .

Перейдем к формулировке теоремы общего решения ЛНДУ.

Yandex.RTB R-A-339285-1

Теорема общего решения ЛДНУ

Теорема 1

Общим решением, находящимся на интервале х, неоднородного дифференциального уравнения вида y (n) + f n - 1 (x) · y (n - 1) + . . . + f 0 (x) · y = f (x) с непрерывными коэффициентами интегрирования на x интервале f 0 (x) , f 1 (x) , . . . , f n - 1 (x) и непрерывной функцией f (x) равняется сумме общего решения y 0 , которое соответствует ЛОДУ и каким-нибудь частным решением y ~ , где исходным неоднородным уравнением является y = y 0 + y ~ .

Отсюда видно, что решение такого уравнения второго порядка имеет вид y = y 0 + y ~ . Алгоритм нахождения y 0 рассмотрен в статье о линейных однородных дифференциальных уравнениях второго порядка с постоянными коэффициентами. После чего следует переходить к определению y ~ .

Выбор частного решения ЛНДУ зависит от вида имеющейся функции f (x) , располагающейся в правой части уравнения. Для этого необходимо рассмотреть отдельно решения линейных неоднородных дифференциальных уравнений второго порядка при постоянных коэффициентах.

Когда f (x) считается за многочлен n -ой степени f (x) = P n (x) , отсюда следует, что частное решение ЛНДУ находим по формуле вида y ~ = Q n (x) · x γ , где Q n (x) является многочленом степени n , r – это количество нулевых корней характеристического уравнения. Значение y ~ является частным решением y ~ "" + p · y ~ " + q · y ~ = f (x) , тогда имеющиеся коэффициенты, которые определены многочленом
Q n (x) , отыскиваем при помощи метода неопределенных коэффициентов из равенства y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 1

Вычислить по теореме Коши y "" - 2 y " = x 2 + 1 , y (0) = 2 , y " (0) = 1 4 .

Решение

Иначе говоря, необходимо перейти к частному решению линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами y "" - 2 y " = x 2 + 1 , которое будет удовлетворять заданным условиям y (0) = 2 , y " (0) = 1 4 .

Общим решением линейного неоднородного уравнения является сумма общего решения, которое соответствует уравнению y 0 или частному решению неоднородного уравнения y ~ , то есть y = y 0 + y ~ .

Для начала найдем общее решение для ЛНДУ, а после чего – частное.

Перейдем к нахождению y 0 . Запись характеристического уравнения поможет найти корни. Получаем, что

k 2 - 2 k = 0 k (k - 2) = 0 k 1 = 0 , k 2 = 2

Получили, что корни различные и действительные. Поэтому запишем

y 0 = C 1 e 0 x + C 2 e 2 x = C 1 + C 2 e 2 x .

Найдем y ~ . Видно, что правая часть заданного уравнения является многочленом второй степени, тогда один из корней равняется нулю. Отсюда получим, что частным решением для y ~ будет

y ~ = Q 2 (x) · x γ = (A x 2 + B x + C) · x = A x 3 + B x 2 + C x , где значения А, В, С принимают неопределенные коэффициенты.

Найдем их из равенства вида y ~ "" - 2 y ~ " = x 2 + 1 .

Тогда получим, что:

y ~ "" - 2 y ~ " = x 2 + 1 (A x 3 + B x 2 + C x) "" - 2 (A x 3 + B x 2 + C x) " = x 2 + 1 3 A x 2 + 2 B x + C " - 6 A x 2 - 4 B x - 2 C = x 2 + 1 6 A x + 2 B - 6 A x 2 - 4 B x - 2 C = x 2 + 1 - 6 A x 2 + x (6 A - 4 B) + 2 B - 2 C = x 2 + 1

Приравняв коэффициенты с одинаковыми показателями степеней x , получим систему линейных выражений - 6 A = 1 6 A - 4 B = 0 2 B - 2 C = 1 . При решении любым из способов найдем коэффициенты и запишем: A = - 1 6 , B = - 1 4 , C = - 3 4 и y ~ = A x 3 + B x 2 + C x = - 1 6 x 3 - 1 4 x 2 - 3 4 x .

Эта запись называется общим решением исходного линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.

Для нахождения частного решения, которое удовлетворяет условиям y (0) = 2 , y " (0) = 1 4 , требуется определить значения C 1 и C 2 , исходя из равенства вида y = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x .

Получаем, что:

y (0) = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x x = 0 = C 1 + C 2 y " (0) = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x " x = 0 = = 2 C 2 e 2 x - 1 2 x 2 + 1 2 x + 3 4 x = 0 = 2 C 2 - 3 4

Работаем с полученной системой уравнений вида C 1 + C 2 = 2 2 C 2 - 3 4 = 1 4 , где C 1 = 3 2 , C 2 = 1 2 .

Применив теорему Коши, имеем, что

y = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x = = 3 2 + 1 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x

Ответ: 3 2 + 1 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x .

Когда функция f (x) представляется в виде произведения многочлена со степенью n и экспоненты f (x) = P n (x) · e a x , тогда отсюда получаем, что частным решением ЛНДУ второго порядка будет уравнение вида y ~ = e a x · Q n (x) · x γ , где Q n (x) является многочленом n -ой степени, а r – количеством корней характеристического уравнения, равняющиеся α .

Коэффициенты, принадлежащие Q n (x) находятся по равенству y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 2

Найти общее решение дифференциального уравнения вида y "" - 2 y " = (x 2 + 1) · e x .

Решение

Уравнение общего вида y = y 0 + y ~ . Указанное уравнение соответствует ЛОДУ y "" - 2 y " = 0 . По предыдущему примеру видно, что его корни равняются k 1 = 0 и k 2 = 2 и y 0 = C 1 + C 2 e 2 x по характеристическому уравнению.

Видно, что правой частью уравнения является x 2 + 1 · e x . Отсюда ЛНДУ находится через y ~ = e a x · Q n (x) · x γ , где Q n (x) , являющимся многочленом второй степени, где α = 1 и r = 0 , потому как у характеристического уравнения отсутствует корень, равный 1 . Отсюда получаем, что

y ~ = e a x · Q n (x) · x γ = e x · A x 2 + B x + C · x 0 = e x · A x 2 + B x + C .

А, В, С являются неизвестными коэффициентами, которые можно найти по равенству y ~ "" - 2 y ~ " = (x 2 + 1) · e x .

Получили, что

y ~ " = e x · A x 2 + B x + C " = e x · A x 2 + B x + C + e x · 2 A x + B = = e x · A x 2 + x 2 A + B + B + C y ~ " " = e x · A x 2 + x 2 A + B + B + C " = = e x · A x 2 + x 2 A + B + B + C + e x · 2 A x + 2 A + B = = e x · A x 2 + x 4 A + B + 2 A + 2 B + C

y ~ "" - 2 y ~ " = (x 2 + 1) · e x ⇔ e x · A x 2 + x 4 A + B + 2 A + 2 B + C - - 2 e x · A x 2 + x 2 A + B + B + C = x 2 + 1 · e x ⇔ e x · - A x 2 - B x + 2 A - C = (x 2 + 1) · e x ⇔ - A x 2 - B x + 2 A - C = x 2 + 1 ⇔ - A x 2 - B x + 2 A - C = 1 · x 2 + 0 · x + 1

Показатели при одинаковых коэффициентах приравниваем и получаем систему линейных уравнений. Отсюда и находим А, В, С:

A = 1 - B = 0 2 A - C = 1 ⇔ A = - 1 B = 0 C = - 3

Ответ: видно, что y ~ = e x · (A x 2 + B x + C) = e x · - x 2 + 0 · x - 3 = - e x · x 2 + 3 является частным решением ЛНДУ, а y = y 0 + y = C 1 e 2 x - e x · x 2 + 3 - общим решением для неоднородного дифуравнения второго порядка.

Когда функция записывается как f (x) = A 1 cos (β x) + B 1 sin β x , а А 1 и В 1 являются числами, тогда частным решением ЛНДУ считается уравнение вида y ~ = A cos β x + B sin β x · x γ , где А и В считаются неопределенными коэффициентами, а r числом комплексно сопряженных корней, относящихся к характеристическому уравнению, равняющимся ± i β . В этом случае поиск коэффициентов проводится по равенству y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 3

Найти общее решение дифференциального уравнения вида y "" + 4 y = cos (2 x) + 3 sin (2 x) .

Решение

Перед написанием характеристического уравнения находим y 0 . Тогда

k 2 + 4 = 0 k 2 = - 4 k 1 = 2 i , k 2 = - 2 i

Имеем пару комплексно сопряженных корней. Преобразуем и получим:

y 0 = e 0 · (C 1 cos (2 x) + C 2 sin (2 x)) = C 1 cos 2 x + C 2 sin (2 x)

Корни из характеристического уравнения считаются сопряженной парой ± 2 i , тогда f (x) = cos (2 x) + 3 sin (2 x) . Отсюда видно, что поиск y ~ будет производиться из y ~ = (A cos (β x) + B sin (β x) · x γ = (A cos (2 x) + B sin (2 x)) · x . Неизвестные коэффициенты А и В будем искать из равенства вида y ~ "" + 4 y ~ = cos (2 x) + 3 sin (2 x) .

Преобразуем:

y ~ " = ((A cos (2 x) + B sin (2 x) · x) " = = (- 2 A sin (2 x) + 2 B cos (2 x)) · x + A cos (2 x) + B sin (2 x) y ~ "" = ((- 2 A sin (2 x) + 2 B cos (2 x)) · x + A cos (2 x) + B sin (2 x)) " = = (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 2 A sin (2 x) + 2 B cos (2 x) - - 2 A sin (2 x) + 2 B cos (2 x) = = (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 4 A sin (2 x) + 4 B cos (2 x)

Тогда видно, что

y ~ "" + 4 y ~ = cos (2 x) + 3 sin (2 x) ⇔ (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 4 A sin (2 x) + 4 B cos (2 x) + + 4 (A cos (2 x) + B sin (2 x)) · x = cos (2 x) + 3 sin (2 x) ⇔ - 4 A sin (2 x) + 4 B cos (2 x) = cos (2 x) + 3 sin (2 x)

Необходимо приравнять коэффициенты синусов и косинусов. Получаем систему вида:

4 A = 3 4 B = 1 ⇔ A = - 3 4 B = 1 4

Следует, что y ~ = (A cos (2 x) + B sin (2 x) · x = - 3 4 cos (2 x) + 1 4 sin (2 x) · x .

Ответ: общим решением исходного ЛНДУ второго порядка с постоянными коэффициентами считается

y = y 0 + y ~ = = C 1 cos (2 x) + C 2 sin (2 x) + - 3 4 cos (2 x) + 1 4 sin (2 x) · x

Когда f (x) = e a x · P n (x) sin (β x) + Q k (x) cos (β x) , тогда y ~ = e a x · (L m (x) sin (β x) + N m (x) cos (β x) · x γ . Имеем, что r – это число комплексно сопряженных пар корней, относящихся к характеристическому уравнению, равняются α ± i β , где P n (x) , Q k (x) , L m (x) и N m (x) являются многочленами степени n , k , т, m , где m = m a x (n , k) . Нахождение коэффициентов L m (x) и N m (x) производится, исходя из равенства y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 4

Найти общее решение y "" + 3 y " + 2 y = - e 3 x · ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x)) .

Решение

По условию видно, что

α = 3 , β = 5 , P n (x) = - 38 x - 45 , Q k (x) = - 8 x + 5 , n = 1 , k = 1

Тогда m = m a x (n , k) = 1 . Производим нахождение y 0 , предварительно записав характеристическое уравнение вида:

k 2 - 3 k + 2 = 0 D = 3 2 - 4 · 1 · 2 = 1 k 1 = 3 - 1 2 = 1 , k 2 = 3 + 1 2 = 2

Получили, что корни являются действительными и различными. Отсюда y 0 = C 1 e x + C 2 e 2 x . Далее необходимо искать общее решение, исходя из неоднородного уравнения y ~ вида

y ~ = e α x · (L m (x) sin (β x) + N m (x) cos (β x) · x γ = = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x)) · x 0 = = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x))

Известно, что А, В, С являются коэффициентами, r = 0 , потому как отсутствует пара сопряженных корней, относящихся к характеристическому уравнению с α ± i β = 3 ± 5 · i . Данные коэффициенты находим из полученного равенства:

y ~ "" - 3 y ~ " + 2 y ~ = - e 3 x ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x)) ⇔ (e 3 x ((A x + B) cos (5 x) + (C x + D) sin (5 x))) "" - - 3 (e 3 x ((A x + B) cos (5 x) + (C x + D) sin (5 x))) = - e 3 x ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x))

Нахождение производной и подобных слагаемых дает

E 3 x · ((15 A + 23 C) · x · sin (5 x) + + (10 A + 15 B - 3 C + 23 D) · sin (5 x) + + (23 A - 15 C) · x · cos (5 x) + (- 3 A + 23 B - 10 C - 15 D) · cos (5 x)) = = - e 3 x · (38 · x · sin (5 x) + 45 · sin (5 x) + + 8 · x · cos (5 x) - 5 · cos (5 x))

После приравнивания коэффициентов получаем систему вида

15 A + 23 C = 38 10 A + 15 B - 3 C + 23 D = 45 23 A - 15 C = 8 - 3 A + 23 B - 10 C - 15 D = - 5 ⇔ A = 1 B = 1 C = 1 D = 1

Из всего следует, что

y ~ = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x)) = = e 3 x · ((x + 1) cos (5 x) + (x + 1) sin (5 x))

Ответ: теперь получено общее решение заданного линейного уравнения:

y = y 0 + y ~ = = C 1 e x + C 2 e 2 x + e 3 x · ((x + 1) cos (5 x) + (x + 1) sin (5 x))

Алгоритм решения ЛДНУ

Определение 1

Любой другой вид функции f (x) для решения предусматривает соблюдение алгоритма решения:

  • нахождение общего решения соответствующего линейного однородного уравнения, где y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 являются линейно независимыми частными решениями ЛОДУ, С 1 и С 2 считаются произвольными постоянными;
  • принятие в качестве общего решения ЛНДУ y = C 1 (x) ⋅ y 1 + C 2 (x) ⋅ y 2 ;
  • определение производных функции через систему вида C 1 " (x) + y 1 (x) + C 2 " (x) · y 2 (x) = 0 C 1 " (x) + y 1 " (x) + C 2 " (x) · y 2 " (x) = f (x) , а нахождение функций C 1 (x) и C 2 (x) посредствам интегрирования.

Пример 5

Найти общее решение для y "" + 36 y = 24 sin (6 x) - 12 cos (6 x) + 36 e 6 x .

Решение

Переходим к написанию характеристического уравнения, предварительно записав y 0 , y "" + 36 y = 0 . Запишем и решим:

k 2 + 36 = 0 k 1 = 6 i , k 2 = - 6 i ⇒ y 0 = C 1 cos (6 x) + C 2 sin (6 x) ⇒ y 1 (x) = cos (6 x) , y 2 (x) = sin (6 x)

Имеем, что запись общего решения заданного уравнения получит вид y = C 1 (x) · cos (6 x) + C 2 (x) · sin (6 x) . Необходимо перейти к определению производных функций C 1 (x) и C 2 (x) по системе с уравнениями:

C 1 " (x) · cos (6 x) + C 2 " (x) · sin (6 x) = 0 C 1 " (x) · (cos (6 x)) " + C 2 " (x) · (sin (6 x)) " = 0 ⇔ C 1 " (x) · cos (6 x) + C 2 " (x) · sin (6 x) = 0 C 1 " (x) (- 6 sin (6 x) + C 2 " (x) (6 cos (6 x)) = = 24 sin (6 x) - 12 cos (6 x) + 36 e 6 x

Необходимо произвести решение относительно C 1 " (x) и C 2 " (x) при помощи любого способа. Тогда запишем:

C 1 " (x) = - 4 sin 2 (6 x) + 2 sin (6 x) cos (6 x) - 6 e 6 x sin (6 x) C 2 " (x) = 4 sin (6 x) cos (6 x) - 2 cos 2 (6 x) + 6 e 6 x cos (6 x)

Каждое из уравнений следует проинтегрировать. Тогда запишем получившиеся уравнения:

C 1 (x) = 1 3 sin (6 x) cos (6 x) - 2 x - 1 6 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) - 1 2 e 6 x sin (6 x) + C 3 C 2 (x) = - 1 6 sin (6 x) cos (6 x) - x - 1 3 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) + 1 2 e 6 x sin (6 x) + C 4

Отсюда следует, что общее решение будет иметь вид:

y = 1 3 sin (6 x) cos (6 x) - 2 x - 1 6 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) - 1 2 e 6 x sin (6 x) + C 3 · cos (6 x) + + - 1 6 sin (6 x) cos (6 x) - x - 1 3 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) + 1 2 e 6 x sin (6 x) + C 4 · sin (6 x) = = - 2 x · cos (6 x) - x · sin (6 x) - 1 6 cos (6 x) + + 1 2 e 6 x + C 3 · cos (6 x) + C 4 · sin (6 x)

Ответ: y = y 0 + y ~ = - 2 x · cos (6 x) - x · sin (6 x) - 1 6 cos (6 x) + + 1 2 e 6 x + C 3 · cos (6 x) + C 4 · sin (6 x)

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Линейным дифференциальным уравнением второго порядка называется уравнение вида

y "" + p (x )y " + q (x )y = f (x ) ,

где y - функция, которую требуется найти, а p (x ) , q (x ) и f (x ) - непрерывные функции на некотором интервале (a, b ) .

Если правая часть уравнения равна нулю (f (x ) = 0 ), то уравнение называется линейным однородным уравнением . Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю (f (x ) ≠ 0 ), то уравнение называется .

В задачах от нас требуется разрешить уравнение относительно y "" :

y "" = −p (x )y " − q (x )y + f (x ) .

Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши .

Линейное однородное дифференциальное уравнение второго порядка и его решение

Рассмотрим линейное однородное дифференциальное уравнение второго порядка:

y "" + p (x )y " + q (x )y = 0 .

Если y 1 (x ) и y 2 (x ) - частные решения этого уравнения, то верны следующие высказывания:

1) y 1 (x ) + y 2 (x ) - также является решением этого уравнения;

2) Cy 1 (x ) , где C - произвольная постоянная (константа), также является решением этого уравнения.

Из этих двух высказываний следует, что функция

C 1 y 1 (x ) + C 2 y 2 (x )

также является решением этого уравнения.

Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка , то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?

Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x ) и y 2 (x ) .

И это условие называется условием линейной независимости частных решений.

Теорема . Функция C 1 y 1 (x ) + C 2 y 2 (x ) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x ) и y 2 (x ) линейно независимы.

Определение . Функции y 1 (x ) и y 2 (x ) называются линейно независимыми, если их отношение является константой, отличной от нуля:

y 1 (x )/y 2 (x ) = k ; k = const ; k ≠ 0 .

Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W (x ) :

Если определитель Вронского не равен нулю, то решения - линейно независимые . Если определитель Вронского равен нулю, то решения - линейно зависимымые.

Пример 1. Найти общее решение линейного однородного дифференциального уравнения .

Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .

Так как определитель Вронского

не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде

.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

y "" + py " + qy = 0 ,

где p и q - постоянные величины.

На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность - нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.

Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами , нужно сначала решить так называемое характеристическое уравнение вида

k ² + pq + q = 0 ,

которое, как видно, является обычным квадратным уравнением .

В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами , которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.

Корни характеристического уравнения - действительные и различные

Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 2. Решить линейное однородное дифференциальное уравнение

.

Пример 3. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет вид , его корни и - вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

.

Корни характеристического уравения - вещественные и равные

То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

.

Пример 4. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Пример 5. Решить линейное однородное дифференциальное уравнение

.

Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид

Основы решения линейных неоднородных дифференциальных уравнений второго порядка (ЛНДУ-2) с постоянными коэффициентами (ПК)

ЛНДУ 2-го порядка с постоянными коэффициентами $p$ и $q$ имеет вид $y""+p\cdot y"+q\cdot y=f\left(x\right)$, где $f\left(x\right)$ - непрерывная функция.

В отношении ЛНДУ 2-го с ПК справедливы два следующих утверждения.

Предположим, что некоторая функция $U$ является произвольным частным решением неоднородного дифференциального уравнения. Предположим также, что некоторая функция $Y$ является общим решением (ОР) соответствующего линейного однородного дифференциального уравнения (ЛОДУ) $y""+p\cdot y"+q\cdot y=0$. Тогда ОР ЛНДУ-2 равно сумме указанных частного и общего решений, то есть $y=U+Y$.

Если правая часть ЛНДУ 2-го порядка представляет собой сумму функций, то есть $f\left(x\right)=f_{1} \left(x\right)+f_{2} \left(x\right)+...+f_{r} \left(x\right)$, то сначала можно найти ЧР $U_{1} ,U_{2} ,...,U_{r} $, которые соответствуют каждой из функций $f_{1} \left(x\right),f_{2} \left(x\right),...,f_{r} \left(x\right)$, а уже после этого записать ЧР ЛНДУ-2 в виде $U=U_{1} +U_{2} +...+U_{r} $.

Решение ЛНДУ 2-го порядка с ПК

Очевидно, что вид того или иного ЧР $U$ данного ЛНДУ-2 зависит от конкретного вида его правой части $f\left(x\right)$. Простейшие случаи поиска ЧР ЛНДУ-2 сформулированы в виде четырех следующих правил.

Правило № 1.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=P_{n} \left(x\right)$, где $P_{n} \left(x\right)=a_{0} \cdot x^{n} +a_{1} \cdot x^{n-1} +...+a_{n-1} \cdot x+a_{n} $, то есть называется многочленом степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных нулю. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом неопределенных коэффициентов (НК).

Правило № 2.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot P_{n} \left(x\right)$, где $P_{n} \left(x\right)$ представляет собой многочлен степени $n$. Тогда его ЧР $U$ ищут в виде $U=Q_{n} \left(x\right)\cdot x^{r} \cdot e^{\alpha \cdot x} $, где $Q_{n} \left(x\right)$ - другой многочлен той же степени, что и $P_{n} \left(x\right)$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha $. Коэффициенты многочлена $Q_{n} \left(x\right)$ находят методом НК.

Правило № 3.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=a\cdot \cos \left(\beta \cdot x\right)+b\cdot \sin \left(\beta \cdot x\right)$, где $a$, $b$ и $\beta $ - известные числа. Тогда его ЧР $U$ ищут в виде $U=\left(A\cdot \cos \left(\beta \cdot x\right)+B\cdot \sin \left(\beta \cdot x\right)\right)\cdot x^{r} $, где $A$ и $B$ - неизвестные коэффициенты, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $i\cdot \beta $. Коэффициенты $A$ и $B$ находят методом НК.

Правило № 4.

Правая часть ЛНДУ-2 имеет вид $f\left(x\right)=e^{\alpha \cdot x} \cdot \left$, где $P_{n} \left(x\right)$ - многочлен степени $n$, а $P_{m} \left(x\right)$ - многочлен степени $m$. Тогда его ЧР $U$ ищут в виде $U=e^{\alpha \cdot x} \cdot \left\cdot x^{r} $, где $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ - многочлены степени $s$, число $s$ - максимальное из двух чисел $n$ и $m$, а $r$ - количество корней характеристического уравнения соответствующего ЛОДУ-2, равных $\alpha +i\cdot \beta $. Коэффициенты многочленов $Q_{s} \left(x\right)$ и $R_{s} \left(x\right)$ находят методом НК.

Метод НК состоит в применении следующего правила. Для того чтобы найти неизвестные коэффициенты многочлена, которые входят в состав частного решения неоднородного дифференциального уравнения ЛНДУ-2, необходимо:

  • подставить ЧР $U$, записанное в общем виде, в левую часть ЛНДУ-2;
  • в левой части ЛНДУ-2 выполнить упрощения и сгруппировать члены с одинаковыми степенями $x$;
  • в полученном тождестве приравнять коэффициенты при членах с одинаковыми степенями $x$ левой и правой частей;
  • решить полученную систему линейных уравнений относительно неизвестных коэффициентов.

Пример 1

Задача: найти ОР ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. Найти также ЧР, удовлетворяющее начальным условиям $y=6$ при $x=0$ и $y"=1$ при $x=0$.

Записываем соответствующее ЛОДУ-2: $y""-3\cdot y"-18\cdot y=0$.

Характеристическое уравнение: $k^{2} -3\cdot k-18=0$. Корни характеристического уравнения: $k_{1} =-3$, $k_{2} =6$. Эти корни действительны и различны. Таким образом, ОР соответствующего ЛОДУ-2 имеет вид: $Y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} $.

Правая часть данного ЛНДУ-2 имеет вид $\left(36\cdot x+12\right)\cdot e^{3\cdot x} $. В ней необходимо рассматривать коэффициент показателя степени экспоненты $\alpha =3$. Этот коэффициент не совпадает ни с одним из корней характеристического уравнения. Поэтому ЧР данного ЛНДУ-2 имеет вид $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $.

Будем искать коэффициенты $A$, $B$ методом НК.

Находим первую производную ЧР:

$U"=\left(A\cdot x+B\right)^{{"} } \cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=A\cdot e^{3\cdot x} +\left(A\cdot x+B\right)\cdot 3\cdot e^{3\cdot x} =\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot e^{3\cdot x} .$

Находим вторую производную ЧР:

$U""=\left(A+3\cdot A\cdot x+3\cdot B\right)^{{"} } \cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot \left(e^{3\cdot x} \right)^{{"} } =$

$=3\cdot A\cdot e^{3\cdot x} +\left(A+3\cdot A\cdot x+3\cdot B\right)\cdot 3\cdot e^{3\cdot x} =\left(6\cdot A+9\cdot A\cdot x+9\cdot B\right)\cdot e^{3\cdot x} .$

Подставляем функции $U""$, $U"$ и $U$ вместо $y""$, $y"$ и $y$ в данное ЛНДУ-2 $y""-3\cdot y"-18\cdot y=\left(36\cdot x+12\right)\cdot e^{3\cdot x}. $ При этом, поскольку экспонента $e^{3\cdot x} $ входит как множитель во все составляющие, то её можно опустить. Получаем:

$6\cdot A+9\cdot A\cdot x+9\cdot B-3\cdot \left(A+3\cdot A\cdot x+3\cdot B\right)-18\cdot \left(A\cdot x+B\right)=36\cdot x+12.$

Выполняем действия в левой части полученного равенства:

$-18\cdot A\cdot x+3\cdot A-18\cdot B=36\cdot x+12.$

Применяем метод НК. Получаем систему линейных уравнений с двумя неизвестными:

$-18\cdot A=36;$

$3\cdot A-18\cdot B=12.$

Решение этой системы таково: $A=-2$, $B=-1$.

ЧР $U=\left(A\cdot x+B\right)\cdot e^{3\cdot x} $ для нашей задачи выглядит следующим образом: $U=\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

ОР $y=Y+U$ для нашей задачи выглядит следующим образом: $y=C_{1} \cdot e^{-3\cdot x} +C_{2} \cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

С целью поиска ЧР, удовлетворяющего заданным начальным условиям, находим производную $y"$ ОР:

$y"=-3\cdot C_{1} \cdot e^{-3\cdot x} +6\cdot C_{2} \cdot e^{6\cdot x} -2\cdot e^{3\cdot x} +\left(-2\cdot x-1\right)\cdot 3\cdot e^{3\cdot x} .$

Подставляем в $y$ и $y"$ начальные условия $y=6$ при $x=0$ и $y"=1$ при $x=0$:

$6=C_{1} +C_{2} -1; $

$1=-3\cdot C_{1} +6\cdot C_{2} -2-3=-3\cdot C_{1} +6\cdot C_{2} -5.$

Получили систему уравнений:

$C_{1} +C_{2} =7;$

$-3\cdot C_{1} +6\cdot C_{2} =6.$

Решаем её. Находим $C_{1} $ по формуле Крамера, а $C_{2} $ определяем из первого уравнения:

$C_{1} =\frac{\left|\begin{array}{cc} {7} & {1} \\ {6} & {6} \end{array}\right|}{\left|\begin{array}{cc} {1} & {1} \\ {-3} & {6} \end{array}\right|} =\frac{7\cdot 6-6\cdot 1}{1\cdot 6-\left(-3\right)\cdot 1} =\frac{36}{9} =4; C_{2} =7-C_{1} =7-4=3.$

Таким образом, ЧР данного дифференциального уравнения имеет вид: $y=4\cdot e^{-3\cdot x} +3\cdot e^{6\cdot x} +\left(-2\cdot x-1\right)\cdot e^{3\cdot x} $.

Здесь мы применим метод вариации постоянных Лагранжа для решения линейных неоднородных дифференциальных уравнений второго порядка. Подробное описание этого метода для решения уравнений произвольного порядка изложено на странице
Решение линейных неоднородных дифференциальных уравнений высших порядков методом Лагранжа >>> .

Пример 1

Решить дифференциальное уравнение второго порядка с постоянными коэффициентами методом вариации постоянных Лагранжа:
(1)

Решение

Вначале мы решаем однородное дифференциальное уравнение:
(2)

Это уравнение второго порядка.

Решаем квадратное уравнение :
.
Корни кратные: . Фундаментальная система решений уравнения (2) имеет вид:
(3) .
Отсюда получаем общее решение однородного уравнения (2):
(4) .

Варьируем постоянные C 1 и C 2 . То есть заменим в (4) постоянные и на функции:
.
Ищем решение исходного уравнения (1) в виде:
(5) .

Находим производную :
.
Свяжем функции и уравнением:
(6) .
Тогда
.

Находим вторую производную:
.
Подставляем в исходное уравнение (1):
(1) ;



.
Поскольку и удовлетворяют однородному уравнению (2), то сумма членов в каждом столбце последних трех строк дает нуль и предыдущее уравнение приобретает вид:
(7) .
Здесь .

Вместе с уравнением (6) мы получаем систему уравнений для определения функций и :
(6) :
(7) .

Решение системы уравнений

Решаем систему уравнений (6-7). Выпишем выражения для функций и :
.
Находим их производные :
;
.

Решаем систему уравнений (6-7) методом Крамера. Вычисляем определитель матрицы системы:

.
По формулам Крамера находим:
;
.

Итак, мы нашли производные функций:
;
.
Интегрируем (см. Методы интегрирования корней). Делаем подстановку
; ; ; .

.
.





;
.

Ответ

Пример 2

Решить дифференциальное уравнение методом вариации постоянных Лагранжа:
(8)

Решение

Шаг 1. Решение однородного уравнения

Решаем однородное дифференциальное уравнение:

(9)
Ищем решение в виде . Составляем характеристическое уравнение:

Это уравнение имеет комплексные корни:
.
Фундаментальная система решений, соответствующая этим корням, имеет вид:
(10) .
Общее решение однородного уравнения (9):
(11) .

Шаг 2. Вариация постоянных - замена постоянных функциями

Теперь варьируем постоянные C 1 и C 2 . То есть заменим в (11) постоянные на функции:
.
Ищем решение исходного уравнения (8) в виде:
(12) .

Далее ход решения получается таким же, как в примере 1. Мы приходим к следующей системе уравнений для определения функций и :
(13) :
(14) .
Здесь .

Решение системы уравнений

Решаем эту систему. Выпишем выражения функций и :
.
Из таблицы производных находим:
;
.

Решаем систему уравнений (13-14) методом Крамера. Определитель матрицы системы:

.
По формулам Крамера находим:
;
.

.
Поскольку , то знак модуля под знаком логарифма можно опустить. Умножим числитель и знаменатель на :
.
Тогда
.

Общее решение исходного уравнения:


.