Реферат: Закон Ома. История открытия. Различные виды закона Ома. Обобщенный закон ома Обобщенный закон Ома

Федеральное агентство по образованию

Ухтинский государственный технический университет

Кафедра электрификации и автоматизации технологических процессов

Отчет по лабораторной работе №1

«Закон Ома»

Выполнил

ст. гр. БТП-07 Таранова Е. А.

Проверил

Минчанкова Е. А.

Цель работы:

Изучение закона Ома, построение зависимости У(R), U(R).

Краткая теория.

  1. Закон Ома

Закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока без активных элементов (рис.1.1):

  1. Обобщенный закон Ома

Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):

;

Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (U ab ), идеального источника ЭДС (Е ) и положительного направления тока (I ).

    1. Взаимные преобразования звезды и треугольника сопротивлений

В сложных цепях встречаются соединения, которые нельзя отнести ни к последовательным, ни к параллельным. К таким соединениям относятся трехлучевая звезда и треугольник сопротивлений (рис.1.3). Их взаимное эквивалентное преобразование во многих случаях позволяет упростить схему и свести ее к схеме смешанного (параллельного и последовательного) соединения сопротивлений. При этом необходимо определенным образом пересчитать сопротивления элементов звезды или треугольника.

Формулы эквивалентного преобразования треугольника сопротивлений трехлучевую звезду:


Формулы эквивалентного преобразования трехлучевой звезды сопротивлений в треугольник:


    1. Законы Кирхгофа

Режимы электрических цепей определяются первым и вторым законами Кирхгофа.

Первый закон Кирхгофа для цепи постоянного тока:

Алгебраическая сумма токов в узле равна 0.

;

Второй закон Кирхгофа для цепи постоянного тока:

Алгебраическая сумма падений напряжений на элементах контура равна алгебраической сумме ЭДС, действующих в этом же контуре.

Для составления системы уравнений на основании законов Кирхгофа необходимо:

    Выбрать произвольно положительные направления искомых токов ветвей и обозначить их на схеме. Число токов должно быть равно числу ветвей схемы (В). Составить (Y - 1) – уравнений по первому закону Кирхгофа, где (Y) – число узлов схемы. Со знаком плюс учесть токи, втекающие в узел, а со знаком минус – вытекающие из узла.

    Выбрать независимые контуры, число которых равно:

(НК) = (В) – (Y- 1)

Независимые контуры - контуры, отличающиеся друг от друга хотя бы одной новой ветвью.

    Выбрать положительные направления обхода контуров (произвольно). Составить (В) - (Y - 1) уравнений по второму закону Кирхгофа для независимых контуров (НК), следуя правилу: если направление тока в ветви и направление обхода контура совпадают, напряжение на участке записать со знаком плюс. В противном случае - со знаком минус. Аналогично выбирают знак ЭДС.

    Объединить уравнения, составленные по первому и второму законам Кирхгофа в систему алгебраических уравнений. Подставить численные значения и решить систему уравнений.

Принципиальная электрическая схема.

Ход работы.

Проводили измерения силы тока при различных значениях сопротивления и напряжения.

У, мА при R=100 Ом

Получили зависимость У(U):

Аналогично проводили измерения силы тока при изменяющихся сопротивлении и напряжении.

У; мА при U=12 B

Получили зависимость У(R):

Вывод

В результате проведенных опытов получили, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению в цепи.

Библиографический список.

1. Электротехника. Под ред. В.Г.Герасимова. – М.: Высшая школа, 1985.

2. Борисов Ю.М., Липатов Д.Н., Зорин Ю.Н. Электротехника.- М.: Энергоатомиздат. 1985.

3. Волынский Б.А., Зейн Е.Н., Шатерников В.Е.Электротехника.- М.: Энергоатомиздат. 1987.

Исследовательская работа по физике:

Тема: «Закон Ома для участка цепи».

1. Цель работы

2. Закон Ома для участка цепи

3. Методы измерения

4. Результаты измерений

5. Выводы

6. Литература

Цель работы:

Выполняя эту работу, перед нами были поставлены цели:

1) Познакомиться с определением закона Ома с помощью программы «Открытая физика».

2) Измерить закон Ома на участке цепи.

3) Сделать выводы.

Закон Ома.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δ q , переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ t , к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

Рис 1.8.1. («Открытая физика 2.5 часть 2)

Упорядоченное движение электронов в металлическом проводнике и ток I . S – площадь поперечного сечения проводника, – электрическое поле

Для активного участка цепи (участка цепи, содержащего источник тока): сила тока на участке цепи, содержащем источник тока, равна отношению суммы ЭДС и напряжения на концах этого участка к его общему сопротивлению, т.е.

(1)

где U = φ1 - φ2, R - внешнее сопротивление участка, а r – внутреннее сопротивление имеющегося на этом участке источника тока.

Закон Ома для активного участка иначе называют обобщенным законом Ома.

Для вывода этого закона учтем, что работа, совершаемая электрическим полем для перемещения носителей тока по цепи (работа тока А), при отсутствии каких – либо химических действий в проводниках и механической работы, совершаемой ими, равна количеству теплоты Q, отдаваемому электрической цепью в окружающую среду:

A = Q.

Но по закону Джоуля - Ленца Q = I2 R0 t,

а по определению силы тока I t = q.

Поэтому работа тока A = I 2 R 0 t = q I R 0 (2)

Где R0 = R + r – общее сопротивление той части цепи, на которой рассматривается работа тока.

С другой стороны, эта работа складывается из работы, совершаемой кулоновскими электрическими силами, и работы, совершаемой сторонними силами, действующими внутри источника тока:

A = Aкул. + Aстор.

По Определению ЭДС Aстор / q = ξ,

По определению напряжения Aкул / q = U,

А согласно формуле (2) A / q = I R0 .

I R 0 = U + ξ ,

Откуда следует формула (1).

Иначе активный участок цепи называют неоднородным участком, а соответствующий закон – законом Ома для неоднородного участка цепи.

Для пассивного участка цепи (участка цепи не содержащего источник тока): сила тока на участке цепи равна отношению напряжения на его концах к его сопротивлению, т.е.

Установлен в 1827 г. немецким физиком Г. Омом. Может быть получен как следствие обобщенного закона Ома путем подстановки в него значений ξ = 0 и r = 0.

Для полной (замкнутой) цепи: сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению, т.е.

Где R – внешнее сопротивление, r – внутреннее сопротивление источника тока

Установлен в 1826 г. немецким физиком Г.Омом. Может быть получен как следствие обобщенного закона Ома путем подстановки в него значения U = 0 (при образовании из активного участка полной замкнутой цепи концы участка соединяются и потенциалы φ1 и φ2 на них становятся равными).

Из закона Ома для замкнутой цепи можно получить два важных следствия:

  1. Если внешнее сопротивление цепи много больше внутреннего сопротивления источника (R >> r), то напряжение на клеммах источника будет приблизительно равно ЭДС:

Примером такой ситуации является разомкнутая цепь.

  1. Если внешнее сопротивление мало по сравнению с внутренним

Подобная ситуация имеет место при коротком замыкании. Сила тока при этом становится большой, и поэтому провода могут расплавиться или сильно накалиться и стать причиной пожара; источник тока при этом может выйти из строя. Чтобы избежать этого, применяют предохранители.

Закон Ома - основной закон электродинамики, который устанавливает зависимость между величинами, характеризующим механизм движения электронов в проводнике.

Из-за невозможности демонстрации самого механизма движения электронов закон Ома воспринимается только количественно, что затрудняет изучение закона в целом.

С помощью компьютерных моделей этот скрытый механизм можно раскрыть. Лабораторная работа "Изучение закона Ома " способствует формированию правильного представления смысла закона Ома.

«Изучение закона Ома для участка цепи»

В соответствии с законом Ома сила тока через металлический проводник (резистор) прямо пропорциональна напряжению между его концами. При экспериментальном изучении зависимостей между величинами целесообразно пользоваться построением графиков.

При графической иллюстрации результат совместных измерений двух величин x и y изображается не просто точкой, а прямоугольниками, включающими погрешность измерений. Именно численные значения xoyo измеряемых величин являются координатами центра этого прямоугольника, а длина его сторон в 2 раза больше погрешности измерений (рис. 1).

Отсюда следует правило построения графика по точкам, координаты которых получены в результате эксперимента: линия проводится так, что одинаковое число точек оказываются по разные стороны от нее. На рисунке (рис. 2) показан пример такого графика.

Цель работы: экспериментальная проверка закона Ома для участка цепи.

Приборы и материалы: «Открытая физика 2.5 часть 2», модель «Цепи постоянного тока».

Задание 1.

Построение графика зависимости силы тока

от напряжения

Номер

измерения

Сила тока

I, А

Погреш-ность

∆ I, А

Напряжение

∆U, В

Погреш-ность

∆U, В

5. По результатам измерений постройте график зависимости силы тока от напряжения.

6. Сделайте вывод о характере этой функции.

Задание 2. Вычисление сопротивления резистора

Пользуясь одним из результатов измерений, рассчитайте погрешность сопротивления резистора, учитывая то, что относительная погрешность равна сумме относительных погрешностей силы тока и напряжения:

εR = εI + εU или ∆R = ∆I + ∆U

Слайд 2

Биография Георга Ома История закона Формулировка ЗАКОНА График зависимости силы тока от напряжения Зависимость силы тока от сопротивления Закон Ома в интегральной форме Закон Ома для участка цепи Закон Ома в дифференциальной форме Закон Ома для переменного тока Вывод Содержание

Слайд 3

Родился в Эрлангере, в семье бедного слесаря. Мать Георга - Мария Елизавет, умерла при родах, когда мальчику исполнилось десять лет. Отец его - Иоганн Вольфганг, весьма развитой и образованный человек, с детства внушал сыну любовь к математике и физике, и поместил его в гимназию, которая курировалась университетом; по окончании курса в 1806 г. Наиболее известные работы Ома касались вопросов о прохождении электрического тока и привели к знаменитому «закону Ома», связывающему сопротивление цепи гальванического тока, электродвижущей в нём силы и силы тока, и лежащему в основе всего современного учения об электричестве.

Слайд 4

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам: или Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1827 году. История Закона Ома

Слайд 5

Закон Ома - это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению I~U, I~

Слайд 6

График зависимости силы тока от напряжения

Сила тока пропорциональна напряжению I~U График – линейная зависимость I,А U,В 2 4 8 5 10 20 0

Слайд 7

Зависимость силы тока от сопротивления

Сила тока обратно пропорциональна сопротивлению График – ветвь гиперболы I,А R,Ом 0 3 2 1 1 2 5

Слайд 8

Закон Ома в интегральной форме Диаграмма, помогающая запомнить закон Ома. Нужно закрыть нужную величину, и два других символа дадут формулу для ее вычисления Закон Ома для участка электрической цепи имеет вид: U = RI где: U - напряжение I - сила тока, R - сопротивление.

Слайд 9

Магический треугольник: I U R I=U/R R=U/I U=IR Закон Ома для участка цепи

Слайд 10

Если цепь содержит не только активные, но и реактивные компоненты а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными: где: U - напряжение или разность потенциалов, I - сила тока, Z - комплексное сопротивление (импеданс), R - полное сопротивление, Rr - реактивное сопротивление (разность индуктивного и емкостного), Rа - активное (омическое) сопротивление, не зависящее от частоты, δ - сдвиг фаз между напряжением и силой тока. Закон Ома для переменного тока

План 1) Введение 2) Электрический ток 3) Источники постоянного тока 4) Электрическая цепь постоянного тока 5) Закон Ома для участка цепи 6) Последовательное и параллельное соединение проводников. 7) Работа и мощность электрического тока. 8) Внутреннее сопротивление источника тока. 9) Электродвижущая сила. 10) Закон Ома для полной цепи. 11) Литература


Введение Закон Ома (открыт в 1826 году) это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Геогра Ома. Закон Ома гласит: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка. (Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению) И записывается формулой: Где: I сила тока(А), U напряжение(В), R сопротивление(Ом).


Электрический ток Электрическим током называется упорядоченное движение электрических зарядов. Электрические заряды могут двигаться упорядоченно под действием электрического поля Электрическое поле может быть создано, например, двумя разноименно заряженными телами. Соединяя проводником разноименно заряженные тела, можно получить электрический ток, протекающий в течение короткого интервала времени.



Источники постоянного тока Для того чтобы в проводнике существовал электрический ток длительное время, необходимо поддерживать неизменными условия, при которых возникает электрический ток. Если в начальный момент времени потенциал точки А проводника выше потенциала точки В (рис. 148), то перенос положительного заряда q из точки А к точке В приводит к уменьшению разности потенциалов между ними.


Электрическая цепь постоянного тока На внешнем участке цепи электрические заряды движутся под действием сил электрического поля. Перемещение зарядов внутри проводника не приводит к выравниванию потенциалов всех точек проводника, так как в каждый момент времени источник тока доставляет к одному концу электрической цепи точно такое же число заряженных частиц, какое из него перешло к другому концу внешней электрической цепи. Поэтому сохраняется неизменным напряжение между началом и концом внешнего участка электрической цепи; напряженность электрического поля внутри проводников в этой цепи отлична от нуля и постоянна во времени.


Последовательное и параллельное соединение проводников. Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно. При последовательном соединении проводников конец первого проводника соединяется с началом второго и т. д. U = U 1 + U 2 + U 3 По закону Ома для участка цепи U 1 = IR 1, U 2 = IR 2, U 3 = IR 3 и U = IR При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.,


Закон Ома для участка цепи. Немецкий физик Георг Ом () в 1826 г. обнаружил, что отношение напряжения U между концами металлического проводника, являющегося участком электрической цепи, к силе тока I в цепи есть величина постоянная: Единица электрического сопротивления в СИ ом (Ом). Электрическим сопротивлением 1 Ом обладает такой участок цепи, на котором при силе тока 1 А напряжение равно 1 В:


Закон Ома для участка цепи. Опыт показывает, что электрическое сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади S поперечного сечения: Экспериментально установленную зависимость силы тока I от напряжения U и электрического сопротивления R участка цепи называют законом Ома для участка цепи:


Работа и мощность электрического тока. Работу сил электрического поля, создающего электрический ток, называют работой тока. Работа А сил электрического поля или работа электрического тока на участке цепи с электрическим сопротивлением R за время равна Мощность электрического тока равна отношению работы тока А ко времени, за которое эта работа совершена:


Работа и мощность электрического тока. Если на участке цепи под действием электрического поля не совершается механическая работа и не происходят химические превращения веществ, то работа электрического поля приводит только к нагреванию проводника. (43.12) Закон (43.12) был экспериментально установлен английским ученым Джеймсом Джоулем () и русским ученым Эмилием Христиановичем Ленцем (), поэтому носит название закона Джоуля Ленца.


Внутреннее сопротивление источника тока. В электрической цепи, состоящей из источника тока и проводников с электрическим сопротивлением R, электрический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Электрическое сопротивление источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением является электрическое сопротивление провода обмотки генератора. На внутреннем участке электрической цепи выделяется количество теплоты, равное: Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r, равно


Электродвижущая сила. Полная работа сил электростатического поля при движении зарядов по замкнутой цепи постоянного тока равна нулю. Следовательно, вся работа электрического тока в замкнутой электрической цепи оказывается совершенной за счет действия сторонних сил, вызывающих разделение зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока.



Закон Ома для полной цепи. Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического тока в замкнутой цепи, равная работе сторонних сил источника тока, равна количеству теплоты, выделившейся на внешнем и внутреннем участках цепи:


Литература 1) Учебник физики за 10 класс. Авторы: Г. Я. Мякишев 2) Интернет сайт «Закон Ома»(om_content&view=article&id=215#q10)

Закон Ома

Электрическое сопротивление проводника не зависит от поданного на него напряжения.

Что такое электрическое сопротивление? Проще всего объяснить это по аналогии с водопроводной трубой. Представьте себе, что вода - некое подобие электрического тока, образуемого направленным движением электронов в проводнике, а напряжение - аналог давления (напора) воды. Сопротивление - это та сила противодействия среды их движению, которую электронам или воде приходится преодолевать, в результате чего производится работа и выделяется теплота. Именно такая модель представлялась в 1820-е годы Георгу Ому, когда он занялся исследованием природы происходящего в электрических цепях.

В водопроводной трубе всё обстоит так, что чем выше давление воды, тем относительно большая доля энергии расходуется на преодоление сопротивления в трубах, поскольку в них усиливается турбулентность потока. Из этого исходил Ом, приступая к опытам по измерению зависимости силы тока от напряжения. И очень скоро выяснилось, что ничего подобного в электрических проводниках не происходит: сопротивление вещества электрическому току вовсе не зависит от приложенного напряжения. В этом, по сути, и заключается закон Ома, который (для отдельного участка цепи) записывается очень просто:

U = IR

где U - напряжение, приложенное к участку цепи, I - сила тока, а R - электрическое сопротивление участка цепи.

Сегодня мы понимаем, что электрическая проводимость обусловлена движением свободных электронов, а сопротивление - столкновением этих электронов с атомами кристаллической решетки (см. Электронная теория проводимости). При каждом таком столкновении часть энергии свободного электрона передается атому, который, в результате, начинает колебаться более интенсивно, и в результате мы наблюдаем нагревание проводника под действием электрического тока. Повышение напряжения в цепи никак не сказывается на доле тепловых потерь такого рода, и соотношение напряжения и электрического тока остается постоянным.

Однако, когда Георг Ом экспериментально открыл свой закон, атомная теория строения вещества находилась в зачаточном состоянии, а до открытия электрона оставалось несколько десятилетий. Таким образом, для него формула U = IR была чисто экспериментальным результатом. Сегодня мы имеем достаточно стройную и, одновременно, сложную теорию электропроводности и понимаем, что закон Ома в его первозданном виде - всего лишь грубое приближение. Однако это не мешает нам с успехом использовать его для расчета самых сложных электрических цепей, использующихся в промышленности и быту. Единица электрического сопротивления системы СИ называется Ом в честь этого выдающегося ученого.

Георг Симон ОМ

Georg Simon Ohm, 1789 – 1854

Немецкий физик. Родился в Эрлангене в 1789 году (по другим источникам - в 1787-м). Окончил местный университет. Преподавал математику и естественные науки. Признание в академических кругах получил достаточно поздно, лишь в 1849 году став профессором Мюнхенского университета, хотя уже в 1827 году опубликовал закон, который теперь носит его имя. Помимо электричества занимался акустикой и изучением человеческого слуха.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://elementy.ru/