Находится радиус вписанной окружности. Радиус вписанной окружности в ромб. Касательная к окружности

В данной статье речь пойдёт о том, как выразить площадь многоугольника, в который можно вписать окружность, через радиус этой окружности. Сразу стоит отметить, что не во всякий многоугольник можно вписать окружность. Однако, если это возможно, то формула, по которой вычисляется площадь такого многоугольника, становится очень простой. Дочитайте эту статью до конца или посмотрите прилагающийся видеоурок, и вы узнаете, как же выразить площадь многоугольника через радиус вписанной в него окружности.

Формула площади многоугольника через радиус вписанной окружности


Нарисуем многоугольник A 1 A 2 A 3 A 4 A 5 , не обязательно правильный, но такой, в который можно вписать окружность. Напомню, что вписанной называется окружность, которая касается всех сторон многоугольника. На рисунке это зелёная окружность с центром в точке O :

Мы взяли здесь для примера 5-угольник. Но на самом деле это не имеет существенного значения, поскольку дальнейшее доказательство справедливо и для 6-угольника и для 8-угольника и вообще для любого сколь угодно «угольника».

Если соединить центр вписанной окружности со всеми вершинами многоугольника, то он разобьётся на столько треугольников, сколько вершин в данном многоугольнике. В нашем случае: на 5 треугольников. Если же соединить точку O со всеми точками касания вписанной окружности со сторонами многоугольника, то получится 5 отрезков (на рисунке снизу это отрезки OH 1 , OH 2 , OH 3 , OH 4 и OH 5), которые равны радиусу окружности и перпендикулярны сторонам многоугольника, к которым они проведены. Последнее справедливо, поскольку радиус, проведенный в точку касания, перпендикулярен касательной:

Как же найти площадь нашего описанного многоугольника? Ответ прост. Нужно сложить площади всех полученных в результате разбиения треугольников:

Рассмотрим, чему равна площадь треугольника . На рисунке снизу он выделен жёлтым цветом:

Она равна половине произведения основания A 1 A 2 на высоту OH 1 , проведённую к этому основанию. Но, как мы уже выяснили, эта высота равна радиусу вписанной окружности. То есть формула площади треугольника принимает вид: , где r — радиус вписанной окружности. Аналогично находятся площади всех оставшихся треугольников. В результате искомая площадь многоугольника оказывается равна:

Видно, что во всех слагаемых этой суммы ест общий множитель , который можно вынести за скобки. В результате получится вот такое выражение:

То есть в скобках осталась просто сумма всех сторон многоугольника, то есть его периметр P . Чаще всего в этой формуле выражение заменяют просто на p и называют эту букву «полупериметром». В результате, окончательная формула принимает вид:

То есть площадь многоугольника, в который вписана окружность известного радиуса, равна произведению этого радиуса на полупериметр многоугольника. Это и есть тот результат, в которому мы стремились.

Отметит напоследок, что в треугольник, который является частным случаем многоугольника, всегда можно вписать окружность. Поэтому для треугольника эту формулу можно применять всегда. Для остальных многоугольников, с количеством сторон большим 3, сперва нужно убедиться, что в них можно вписать окружность. Если это так, можно смело использовать эту простую формулу и находить по ней площадь этого многоугольника.

Материал подготовил , Сергей Валерьевич

Если окружность располагается внутри угла и касается его сторон, её называют вписанной в этот угол. Центр такой вписанной окружности располагается на биссектрисе этого угла .

Если же она лежит внутри выпуклого многоугольника и соприкасается со всеми его сторонами, она называется вписанной в выпуклый многоугольник.

Окружность, вписанная в треугольник, соприкасается с каждой стороной этой фигуры лишь в одной точке. В один треугольник возможно вписать лишь одну окружность.

Радиус такой окружности будет зависеть от следующих параметров треугольника:

  1. Длин сторон треугольника.
  2. Его площади.
  3. Его периметра.
  4. Величины углов треугольника.

Для того чтобы вычислить радиус вписанной окружности в треугольник, не всегда обязательно знать все перечисленные выше параметры, поскольку они взаимосвязаны между собой через тригонометрические функции.

Вычисление с помощью полупериметра

  1. Если известны длины всех сторон геометрической фигуры (обозначим их буквами a, b и c), то вычислять радиус придётся путём извлечения квадратного корня.
  2. Приступая к вычислениям, необходимо добавить к исходным данным ещё одну переменную - полупериметр (р). Его можно рассчитать, сложив все длины и полученную сумму разделив на 2. p = (a+b+c)/2. Таким образом можно существенно упростить формулу нахождения радиуса.
  3. В целом формула должна включать в себя знак радикала, под который помещается дробь, знаменателем этой дроби будет величина полупериметра р.
  4. Числителем данной дроби будет представлять собой произведение разностей (p-a)*(p-b)*(p-c)
  5. Таким образом, полный вид формулы будет представлен следующим образом: r = √(p-a)*(p-b)*(p-c)/p).

Вычисление с учётом площади треугольника

Если нам известна площадь треугольника и длины всех его сторон, это позволит найти радиус интересующей нас окружности, не прибегая к извлечению корней.

  1. Для начала нужно удвоить величину площади.
  2. Результат делится на сумму длин всех сторон. Тогда формула будет выглядеть следующим образом: r = 2*S/(a+b+c).
  3. Если воспользоваться величиной полупериметра, можно получить совсем простую формулу: r = S/p.

Расчёт с помощью тригонометрических функций

Если в условии задачи присутствует длина одной из сторон, величина противоположного угла и периметр, можно воспользоваться тригонометрической функцией - тангенсом. В этом случае формула расчёта будет иметь следующий вид:

r = (P /2- a)* tg (α/2), где r - искомый радиус, Р - периметр, а - значение длины одной из сторон, α - величина противоположного стороне, а угла.

Радиус окружности, которую необходимо будет вписывать в правильный треугольник, можно найти по формуле r = a*√3/6.

Окружность, вписанная в прямоугольный треугольник

В прямоугольный треугольник можно вписать только одну окружность . Центр такой окружности одновременно служит точкой пересечения всех биссектрис. Эта геометрическая фигура имеет некоторые отличительные черты, которые необходимо учесть, вычисляя радиус вписанной окружности.

  1. Для начала необходимо выстроить прямоугольный треугольник с заданными параметрами. Построить такую фигуру можно по размеру её одной стороны и величинам двух углов или же по двум сторонам и углу между этими сторонами. Все эти параметры должны быть указаны в условии задачи. Треугольник обозначается как АВС, причём С - это вершина прямого угла. Катеты при этом обозначаются переменными, а и b , а гипотенуза - переменной с .
  2. Для построения классической формулы и вычисления радиуса окружности необходимо найти размеры всех сторон описанной в условии задачи фигуры и по ним вычислить полупериметр. Если в условиях даются размеры двух катетов, по ним можно вычислить величину гипотенузы, исходя из теоремы Пифагора.
  3. Если в условии дан размер одного катета и одного угла, необходимо понять, прилежащий этот угол или противолежащий. В первом случае гипотенуза находится с помощью теоремы синусов: с=a/sinСАВ , во втором случае применяют теорему косинусов с=a/cosCBA .
  4. Когда все расчёты выполнены и величины всех сторон известны, находят полупериметр по формуле, описанной выше.
  5. Зная величину полупериметра, можно найти радиус. Формула представляет собой дробь. Её числителем является произведение разностей полупериметра и каждой из сторон, а знаменателем -величина полупериметра.

Следует заметить, что числитель данной формулы является показателем площади. В этом случае формула нахождения радиуса гораздо упрощается - достаточно разделить площадь на полупериметр.

Определить площадь геометрической фигуры можно и в том случае, если известны оба катета. По сумме квадратов этих катетов находится гипотенуза, далее вычисляется полупериметр. Вычислить площадь можно, умножив друг на друга величины катетов и разделив полученное на 2.

Если в условиях даны длины и катетов и гипотенузы, определить радиус можно по очень простой формуле: для этого складываются длины катетов, из полученного числа вычитается длина гипотенузы. Результат необходимо разделить пополам.

Видео

Из этого видео вы узнаете, как находить радиус вписанной в треугольник окружности.

Не получили ответ на свой вопрос? Предложите авторам тему.

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже.

Вконтакте

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра . Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла , после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя ?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь;
  • градусная мера каждого угла;
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке . Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым , скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника :

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

Окружность, вписанная в треугольник

Существование окружности, вписанной в треугольник

Напомним определение биссектрисы угла .

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Рис. 1

Доказательство D , лежащую на биссектрисе угла BAC , и DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

DF = DE,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая , то она лежит на биссектрисе угла (рис.2).

Рис. 2

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны , поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Рис.3

a , b , c – стороны треугольника, S –площадь,

r радиус вписанной окружности, p – полупериметр

.

Посмотреть вывод формулы

a боковая сторона равнобедренного треугольника , b – основание, r радиус вписанной окружности

a r радиус вписанной окружности

Посмотреть вывод формул

,

где

,

то, в случае равнобедренного треугольника, когда

получаем

что и требовалось.

Теорема 7 . Для справедливо равенство

где a – сторона равностороннего треугольника, r радиус вписанной окружности (рис. 8).

Рис. 8

Доказательство .

,

то, в случае равностороннего треугольника, когда

b = a,

получаем

что и требовалось.

Замечание . Я рекомендую вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

где a , b – катеты прямоугольного треугольника, c гипотенуза , r радиус вписанной окружности.

Доказательство . Рассмотрим рисунок 9.

Рис. 9

Поскольку четырёхугольник CDOF является , у которого соседние стороны DO и OF равны, то этот прямоугольник – . Следовательно,

СВ = СF= r,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание , получаем

что и требовалось.

Подборка задач по теме «Окружность, вписанная в треугольник».

1.

Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, длины которых равны 5 и 3, считая от вершины, противолежащей основанию. Найдите периметр треугольника.

2.

3

В треугольнике ABC АС=4, ВС=3, угол C равен 90º. Найдите радиус вписанной окружности.

4.

Катеты равнобедренного прямоугольного треугольника равны 2+. Найдите радиус окружности, вписанной в этот треугольник.

5.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите с(–1).

Приведем ряд задач из ЕГЭ с решениями.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

Ответ: .

Задача 2.

1. В произвольном две боковые стороны 10см и 6см (AB и BC). Найти радиусы описанной и вписанной окружностей
Задача решается самостоятельно с комментированием.

Решение:


В .

1) Найти:
2) Доказать:
и найти СK
3) Найти: радиусы описанной и вписанной окружностей

Решение:


Задача 6.

Р адиус окружности вписанной в квадрат равен . Найти радиус окружности описанной около этого квадрата. Дано :

Найти : ОС=?
Решение : в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.


Задача 7.

Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу с этого треугольника. В ответе укажите .

S – площадь треугольника

Нам неизвестны ни стороны треугольника, ни его площадь. Обозначим катеты как х, тогда гипотенуза будет равна:

А площадь треугольника будет равна 0,5х 2 .

Значит


Таким образом, гипотенуза будет равна:

В ответе требуется записать:

Ответ: 4

Задача 8.

В треугольнике ABC АС = 4, ВС = 3, угол C равен 90 0 . Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Две стороны известны (это катеты), можем вычислить третью (гипотенузу), также можем вычислить и площадь.

По теореме Пифагора:

Найдём площадь:

Таким образом:

Ответ: 1

Задача 9.

Боковые стороны равнобедренного треугольника равны 5, основание равно 6. Найдите радиус вписанной окружности.

Воспользуемся формулой радиуса окружности вписанной в треугольник:

где a, b, c – стороны треугольника

S – площадь треугольника

Известны все стороны, вычислим и площадь. Её мы можем найти по формуле Герона:


Тогда

Очень часто при решении геометрических задач приходится совершать действия со вспомогательными фигурами. Например, находить радиус вписанной или описанной окружности и т.д. Данная статья покажет, как находить радиус окружности, описанной около треугольника. Или, иными словами, радиус окружности, в которую вписан треугольник.

Как найти радиус окружности, описанной около треугольника – общая формула

Общая формула выглядит следующим образом: R = abc/4√p(p – a)(p – b)(p – c), где R – радиус описанной окружности, p – периметр треугольника поделенный на 2 (полупериметр). a, b, c – стороны треугольника.

Найти радиус описанной окружности треугольника, если a = 3, b = 6, c = 7.

Таким образом, исходя из вышеприведенной формулы, вычисляем полупериметр:
p = (a + b + c)/2 = 3 + 6 + 7 = 16. => 16/2 = 8.

Подставляем значения в формулу и получаем:
R = 3 × 6 × 7/4√8(8 – 3)(8 – 6)(8 – 7) = 126/4√(8 × 5 × 2 × 1) = 126/4√80 = 126/16√5.

Ответ: R = 126/16√5

Как найти радиус окружности, описанной около равностороннего треугольника

Для нахождения радиуса окружности, описанной около равностороннего треугольника, существует довольно простая формула: R = a/√3, где a – величина его стороны.

Пример: Сторона равностороннего треугольника равна 5. Найти радиус описанной окружности.

Так как у равностороннего треугольника все стороны равны, для решения задачи нужно всего лишь вписать ее значение в формулу. Получим: R = 5/√3.

Ответ: R = 5/√3.


Как найти радиус окружности, описанной около прямоугольного треугольника

Формула выглядит следующим образом: R = 1/2 × √(a² + b²) = c/2, где a и b – катеты и c – гипотенуза. Если сложить квадраты катетов в прямоугольном треугольнике, то получим квадрат гипотенузы. Как видно из формулы, данное выражение находится под корнем. Вычислив корень из квадрата гипотенузы, мы получим саму длину. Умножение получившегося выражения на 1/2 в итоге приводит нас к выражению 1/2 × c = c/2.

Пример: Вычислить радиус описанной окружности, если катеты треугольника равны 3 и 4. Подставим значения в формулу. Получим: R = 1/2 × √(3² + 4²) = 1/2 × √25 = 1/2 × 5 = 2.5.

В данном выражение 5 – длина гипотенузы.

Ответ: R = 2.5.


Как найти радиус окружности, описанной около равнобедренного треугольника

Формула выглядит следующим образом: R = a²/√(4a² – b²), где a – длина бедра треугольника и b – длина основания.

Пример: Вычислить радиус окружности, если его бедро = 7, а основание = 8.

Решение: Подставляем в формулу данные значения и получаем: R = 7²/√(4 × 7² – 8²).

R = 49/√(196 – 64) = 49/√132. Ответ можно записать прямо так.

Ответ: R = 49/√132


Онлайн ресурсы для вычисления радиуса окружности

Можно очень легко запутаться во всех этих формулах. Поэтому при необходимости можно воспользоваться онлайн калькуляторами, которые помогут вам в решении задач на нахождение радиуса. Принцип работы таких мини-программ очень прост. Подставляете значение стороны в соответствующее поле и получаете готовый ответ. Можно выбрать несколько вариантов округления ответа: до десятичных, сотых, тысячных и т.д.