Акриловая кислота применение. Химические и физические свойства. Формула акриловой кислоты

Акриловая кислота (пропеновая кислота , этенкарбоновая кислота ) СН 2 =СН−СООН - простейший представитель одноосновных непредельных карбоновых кислот .

Физические свойства

Акриловая кислота представляет собой бесцветную жидкость с резким запахом, растворимую в воде и органических растворителях

Синтез

Для синтеза акриловой кислоты применяют парофазное окисление пропилена кислородом воздуха на висмутовых , кобальтовых или молибденовых катализаторах:

CH 2 =CH−CH 3 + O 2 → CH 2 =CH−COOH

Раньше использовалась реакция взаимодействия ацетилена , оксида углерода (II) и воды:

HC≡CH + CO + H 2 O → CH 2 =CH−COOH CH 2 =C=O + HCHO → CH 2 =CH−COOH n -ClC 6 H 4 N 2 Cl + CH 2 =CH−COOH → n -ClC 6 H 5 −CH=CH−COOH + N 2

Безопасность

Акриловая кислота сильно раздражает кожные покровы. Раздражает слизистую оболочку глаз (порог раздражающего действия 0,04 мг/л). При попадании в глаза вызывает сильные ожоги роговицы глаза и может вызвать необратимые повреждения. Вдыхание паров может вызвать раздражение дыхательных путей, головную боль, при больших концентрациях или экспозиции - отёк лёгких . Хотя наличие запаха ещё не означает какой-либо угрозы здоровью, необходим мониторинг воздуха. Предельно допустимая концентрация составляет 5 мг/м³.

Напишите отзыв о статье "Акриловая кислота"

Примечания

  • Kirk-Othmer encyclopedia, 3 ed., v. I, N.Y.-, 1978, p. 330-54. А. В. Девекки.
  • Рабинович В. А., Хавин З. Я. «Краткий химический справочник» Л.: Химия, 1977 стр. 121

См. также

Литература

Отрывок, характеризующий Акриловая кислота

В начале зимы, князь Николай Андреич Болконский с дочерью приехали в Москву. По своему прошедшему, по своему уму и оригинальности, в особенности по ослаблению на ту пору восторга к царствованию императора Александра, и по тому анти французскому и патриотическому направлению, которое царствовало в то время в Москве, князь Николай Андреич сделался тотчас же предметом особенной почтительности москвичей и центром московской оппозиции правительству.
Князь очень постарел в этот год. В нем появились резкие признаки старости: неожиданные засыпанья, забывчивость ближайших по времени событий и памятливость к давнишним, и детское тщеславие, с которым он принимал роль главы московской оппозиции. Несмотря на то, когда старик, особенно по вечерам, выходил к чаю в своей шубке и пудренном парике, и начинал, затронутый кем нибудь, свои отрывистые рассказы о прошедшем, или еще более отрывистые и резкие суждения о настоящем, он возбуждал во всех своих гостях одинаковое чувство почтительного уважения. Для посетителей весь этот старинный дом с огромными трюмо, дореволюционной мебелью, этими лакеями в пудре, и сам прошлого века крутой и умный старик с его кроткою дочерью и хорошенькой француженкой, которые благоговели перед ним, – представлял величественно приятное зрелище. Но посетители не думали о том, что кроме этих двух трех часов, во время которых они видели хозяев, было еще 22 часа в сутки, во время которых шла тайная внутренняя жизнь дома.
В последнее время в Москве эта внутренняя жизнь сделалась очень тяжела для княжны Марьи. Она была лишена в Москве тех своих лучших радостей – бесед с божьими людьми и уединения, – которые освежали ее в Лысых Горах, и не имела никаких выгод и радостей столичной жизни. В свет она не ездила; все знали, что отец не пускает ее без себя, а сам он по нездоровью не мог ездить, и ее уже не приглашали на обеды и вечера. Надежду на замужество княжна Марья совсем оставила. Она видела ту холодность и озлобление, с которыми князь Николай Андреич принимал и спроваживал от себя молодых людей, могущих быть женихами, иногда являвшихся в их дом. Друзей у княжны Марьи не было: в этот приезд в Москву она разочаровалась в своих двух самых близких людях. М lle Bourienne, с которой она и прежде не могла быть вполне откровенна, теперь стала ей неприятна и она по некоторым причинам стала отдаляться от нее. Жюли, которая была в Москве и к которой княжна Марья писала пять лет сряду, оказалась совершенно чужою ей, когда княжна Марья вновь сошлась с нею лично. Жюли в это время, по случаю смерти братьев сделавшись одной из самых богатых невест в Москве, находилась во всем разгаре светских удовольствий. Она была окружена молодыми людьми, которые, как она думала, вдруг оценили ее достоинства. Жюли находилась в том периоде стареющейся светской барышни, которая чувствует, что наступил последний шанс замужества, и теперь или никогда должна решиться ее участь. Княжна Марья с грустной улыбкой вспоминала по четвергам, что ей теперь писать не к кому, так как Жюли, Жюли, от присутствия которой ей не было никакой радости, была здесь и виделась с нею каждую неделю. Она, как старый эмигрант, отказавшийся жениться на даме, у которой он проводил несколько лет свои вечера, жалела о том, что Жюли была здесь и ей некому писать. Княжне Марье в Москве не с кем было поговорить, некому поверить своего горя, а горя много прибавилось нового за это время. Срок возвращения князя Андрея и его женитьбы приближался, а его поручение приготовить к тому отца не только не было исполнено, но дело напротив казалось совсем испорчено, и напоминание о графине Ростовой выводило из себя старого князя, и так уже большую часть времени бывшего не в духе. Новое горе, прибавившееся в последнее время для княжны Марьи, были уроки, которые она давала шестилетнему племяннику. В своих отношениях с Николушкой она с ужасом узнавала в себе свойство раздражительности своего отца. Сколько раз она ни говорила себе, что не надо позволять себе горячиться уча племянника, почти всякий раз, как она садилась с указкой за французскую азбуку, ей так хотелось поскорее, полегче перелить из себя свое знание в ребенка, уже боявшегося, что вот вот тетя рассердится, что она при малейшем невнимании со стороны мальчика вздрагивала, торопилась, горячилась, возвышала голос, иногда дергала его за руку и ставила в угол. Поставив его в угол, она сама начинала плакать над своей злой, дурной натурой, и Николушка, подражая ей рыданьями, без позволенья выходил из угла, подходил к ней и отдергивал от лица ее мокрые руки, и утешал ее. Но более, более всего горя доставляла княжне раздражительность ее отца, всегда направленная против дочери и дошедшая в последнее время до жестокости. Ежели бы он заставлял ее все ночи класть поклоны, ежели бы он бил ее, заставлял таскать дрова и воду, – ей бы и в голову не пришло, что ее положение трудно; но этот любящий мучитель, самый жестокий от того, что он любил и за то мучил себя и ее, – умышленно умел не только оскорбить, унизить ее, но и доказать ей, что она всегда и во всем была виновата. В последнее время в нем появилась новая черта, более всего мучившая княжну Марью – это было его большее сближение с m lle Bourienne. Пришедшая ему, в первую минуту по получении известия о намерении своего сына, мысль шутка о том, что ежели Андрей женится, то и он сам женится на Bourienne, – видимо понравилась ему, и он с упорством последнее время (как казалось княжне Марье) только для того, чтобы ее оскорбить, выказывал особенную ласку к m lle Bоurienne и выказывал свое недовольство к дочери выказываньем любви к Bourienne.

Акриловая кислота - это один из простейших представителей карбоновых непредельных одноосновных кислот. Ее формула следующая: СН2=СН-СООН. Это бесцветная жидкость, имеющая резкий и неприятный запах. Растворима в воде, хлороформе, диэтиловом спирте и этаноле, с легкостью полимеризуется с дальнейшим образованием полиакриловой кислоты. У акриловой кислоты есть и другие названия: этенкарбоновая кислота и пропеновая кислота.

Как получают (или синтезируют) акриловую кислоту?

1. В настоящее время акриловую кислоту получают посредством парофазного окисления пропилена кислородом (О2) на молибденовых, кобальтовых или висмутовых катализаторах. Примером может служить следующая реакция:

СН2=СН-СН3 (пропилен) + O2 (кислород) = СН2=СН-СООН (кислота акриловая)

2. В прошлом использовалась реакция, при которой взаимодействовали оксид углерода II (СО), ацетилен (СН≡СН) и вода (H2O). будет при этом такая:

СН≡СН (ацетилен) + СО II) + Н2О (вода) → СН2=СН-СООН (акриловая кислота).

Еще использовали реакцию формальдегида с кетеном:

СН2=С=О (кетен) + H2C=O (формальдегид) → СН2=СН-СООН (пропеновая кислота).

3. Сейчас фирмой Rohm and Haas создается особая технология синтеза кислоты этенкарбоновой из пропана.

Химические свойства акриловой кислоты

Рассматриваемая нами кислота может образовывать соли, ангидриды, амиды, хлорангидриды и другие соединения. Также она может вступать в реакции присоединения, которые характерны для этиленовых углеродов. Присоединение воды, протонных кислот и NH3 происходит не по При этом образуются замещенные производные. Акриловая кислота участвует в синтезе диенов. Также конденсируется с различными солями арилдиазония. При ультрафиолетовом облучении она образует полиакриловую кислоту.

Применение акриловой килоты

Используется в качестве сырья в производстве широкого ассортимента полимерных продуктов с различными химическими и физическими свойствами (например, пластика и покрытий);

Применяется в производстве дисперсий для акриловых водных лакокрасочных материалов; при этом таких красок будет зависеть от химических свойств сополимера - от окончательной окраски транспортных средств и до покраски потолков;

Акриловая кислота и ее производные используются для создания пропитки для кожи и тканей, эмульсий к лакокрасочным материалам, в качестве сырья для акрилатных каучуков и волокон полиакрилонитрильных, строительных клеев и смесей; сложные эфиры метаакриловой и акриловой кислот (в большинстве случаев используются эфиры метиловые метилметакрилат и метилакрилат) применяются в производстве полимеров;

Часто акриловая кислота используется в создании суперабсорбентов.

Правильное хранение акриловой кислоты

При хранении данного вещества в целях избегания полимеризации добавляют ингибитор - гидрохинон. Перед использованием кислоту необходимо перегонять с осторожностью, так как возможно развитие взрывоподобной полимеризации.

Безопасность при использовании

При работе с акриловой кислотой следует учесть, что данное вещество оказывает раздражающее действие на кожные покровы и слизистые оболочки. Порог раздражающего действия кислоты составляет 0,04 мг/литр. При попадании на слизистую оболочку глазных яблок, как правило, вызывает сильнейшие ожоги роговицы, может привести к необратимым изменениям (повреждениям, не поддающимся лечению). Вдыхание паров акриловой кислоты может вызвать головную боль, раздражение дыхательных путей, а в чрезмерных дозах - развитие отека легких. В помещениях, где проводится работа с акриловой кислотой, необходим постоянный контроль воздуха. ПДК данной кислоты составляет 5 мг/метр³. Меры безопасности надо соблюдать и при работе с другими производными. Как пример можно привести нитрил акриловой кислоты.

Ниже представлены свойства акриловой кислоты:

TOC \o "1-3" \h \z Температура плавления, °С........................................................... 13

Температура кипения, °С.............................................................. 141

Плотность

Р1!........................................................................................... 1,062

Р22.............................................................. . ........................ 1,060

Показатель преломления, ng.......................................................... 1,4224

Теплота плавления при 13° С, ккал/моль....................................... 2,66

Теплота испарения при 13,6° С, ккал/моль.................................... 8,9

Теплота образования, ккал/моль.................................................... 89,8

Теплота сгорания, ккал/моль......................................................... 329

Диэлектрическая проницаемость................................................. 5,6 10"!

Давление пара, мм. рт. ст.

При О °С............................ 2,35 100 °С......................... 249

20 °С....................... 7,76 120 °С........................... 475

40 °С....................... 22 141 рС........................... 760

60 °С............................ 54

Акриловая кислота является в основном промежуточным про­дуктом для производства эфиров акриловой кислоты, из которых важнейшими являются метилакрилат, этилакрилат, бутилакрилат и 2-этилгексшгакршгат. Ниже приводятся данные о потреблении перечисленных продуктов в США в 1965 г. (в тыс. т) :

Этилакрилат..................................................................... 45,4

2-Этилгексилакрилат....................................................... 13,6

Метилакрилат................................................................... 6,8

Бутилакрилат............................................................................. 4,5

Прочие акрилаты (среди них прежде всего нзо-

Бутил - и изодецилакрилат)................................................ 2,3

Выпуск акриловой кислоты составляет 4500 т и распределяется следующим образом: 1360 т - для производства эфиров и солей акриловой кислоты (полиакрилаты аммония и натрия), 1.780 т - используется в текстильной промышленности, при бурении нефтя­ных скважин, в производстве коагулянтов. В первую очередь акри­ловая кислота и ее соли идут на изготовление водораство­римых полимеров и сополимеров, которые применяются в качестве замасливателей, аппретур, связующи^, загустителей, диспергаторов. Для этой дели служат также и сополимеры с акрилатами.

45% акрилатов в виде полимерных дисперсий или растворимых полимеров расходуется на производство красок для внутренних и наружных покрытий. Покрытия отличаются стойкостью к истира­нию, быстро сохнут.. и не желтеют (сополимер акриловой кислоты с этил - и метилакрилатами, сополимер стирола с бутилакрилатом, сополимеры винилацетата с бутил - и 2-этилгексилакрилатами). Дисперсии составляют 80% всех покрытий, содержащих акрилаты.

Лаки на основе растворимых акрилатов получили признание для окраски бытовых приборов и кузовов автомобилей методом распыления. Лаки горячей сушки содержат менее 50% акрилатов, а лаки холодной сушки в основном состоят из акрилатов. Для лаков горячей сушки используют также стирол, меламиновые и эпоксидные смолы. Значение этих лаков в будущем сильно воз - растет.-

19% акрилатов используется в текстильной промышленности, где. они часто заменяют крахмал или резину. Акрилатные дисперсии придают материалу прочность к стирке и не желтеют в отличие от более дешевых винильных эмульсий. Они пригодны для текстильных клеев и каширования пенопластов. 65% всего производимого коли­чества метилакрилата находит применение при производстве поли - акрилонитр ильных волокон. 6% метил- и этил акрилатов в сочета­нии с метилметакрилатом и стиролом расходуется на получение блескообразователей в средствах для натирки полов и высококаче­ственных сапожных кремах; акрилаты частично вытеснили воск, ранее применявшийся для этих целей.

Еще 6% акрилатов (преимущественно в форме дисперсий) ис­пользуются для отделки кожи. Акрилатные дисперсии повышают эластичность и прочность склеивания покровного слоя с основой. При этом метиловый эфир, дающий мягкие пленки, употребляется прежде всего для облицовки кожи, а бутиловый эфир - для обра­ботки тяжелой кожи. Распространение искусственной кожи (напри­мер, марки корфам фирмы Du Pont) неминуемо вызовет увеличение потребления акрилатов.

В бумажной промышленности США находят сбыт остальные 6% производимых акрилатов, а в Европе эта промышленность является основным потребителем акрилатов. Главным образом они употребля­ются для мелования бумаги и картона, а также для получения

Покрытий и кэширования бумаги. Наконец, 3,5% акрилатов исполь­зуется в клеев. Этил-, бутил - и 2-этилгексйлакрилат часто в комбинации со стиролом, винилацетатом или виниловыми эфирами, являются составными частями клеев, идущих, например, на изготовление клейких лент. Особое значение придается сополи­меру этилакрилата и этилена, обладающему свойствами эласто­меров.

В табл. 16 приведены свойства некоторых полиакрилатов. Наиболее широкое распространение получили следующие сопо­лимеры акрилатов:

Сополимеры с винилхлоридом - акрилаты здесь действуют как «внутренние пластификаторы»;

Сополимеры с небольшим количеством акрилонитрила - улучше­ние стойкости акрилатов к большинству растворителей;

Сополимеры с акриловой кислотой - незначительное содержание акриловой кислоты повышает полярность акрилатов и тем самым адгезию и способность водных дисперсий к загустев анию;

Сополимеры с амидами, например iV-метилоламидом, меламином, аминами, эпоксисоединениями, хлоргидрином, хлорированными угле­водородами и другими мономерами, содержащими реактивные группы, являются основой клеев и лаков холодной и горячей сушки.

акриловая кислота, акриловая кислота формула
(пропеновая кислота, этенкарбоновая кислота) СН2=СН−СООН - простейший представитель одноосновных непредельных карбоновых кислот.

  • 1 Физические свойства
  • 2 Синтез
  • 3 Химические свойства
  • 4 Применение
  • 5 Безопасность
  • 6 Примечания
  • 7 См. также
  • 8 Литература

Физические свойства

Акриловая кислота представляет собой бесцветную жидкость с резким запахом, растворимую в воде и органических растворителях

Синтез

Для синтеза акриловой кислоты применяют парофазное окисление пропилена кислородом воздуха на висмутовых, кобальтовых или молибденовых катализаторах:

CH2=CH−CH3 + O2 → CH2=CH−COOH

Раньше использовалась реакция взаимодействия ацетилена, оксида углерода (II) и воды:

HC≡CH + CO + H2O → CH2=CH−COOH

или кетена с формальдегидом:

CH2=C=O + HCHO → CH2=CH−COOH

Компанией Rohm and Haas разрабатывается технология синтеза акриловой кислоты из пропана.

Химические свойства

Обладает химическими свойствами карбоновых кислот: взаимодействует с активными металлами, основаниями, с солями более слабых кислот с образованием солей, со спиртами с образованием сложных эфиров.

Акриловая кислота образует соли, хлорангидрид, ангидриды, сложные эфиры, амиды и пр. Она вступает в реакции присоединения, характерные для этиленовых углеводородов. При действии амальгамы натрия в водном растворе и гидрировании в жидкой фазе в присутствии Ni, Pt, Pd в пропионовую кислоту. Присоединение протонных кислот, воды и NH3 происходит против правила Марковникова с образованием замещённых производных. Как диенофил акриловая кислота участвует в диеновом синтезе. Конденсируется с солями арилдиазония (реакция Меервейна):

N-ClC6H4N2Cl + CH2=CH−COOH → n-ClC6H5−CH=CH−COOH + N2

При УФ-облучении или в кислых водных растворах (рН = 1), а также в присутствии инициаторов полимеризации образует полиакриловую кислоту (n).

Применение

Для предотвращения полимеризации при хранении добавляют ингибитор - гидрохинон. Перед использованием перегоняют с особой осторожностью - возможна взрывоподобная полимеризация.

Акриловая кислота и её производные используются при производстве акриловых эмульсий для лакокрасочных материалов, пропитки тканей и кожи, в качестве сырья для полиакрилонитрильных волокон и акрилатных каучуков, строительных смесей и клеев. Значительная часть акриловой кислоты используется также при производстве суперабсорбентов. производстве полимеров широко применяют сложные эфиры акриловой и метакриловой кислот, главным образом метиловые эфиры: метилакрилат и метилметакрилат.

Безопасность

Акриловая кислота сильно раздражает кожные покровы. Раздражает слизистую оболочку глаз (порог раздражающего действия 0,04 мг/л). При попадании в глаза вызывает сильные ожоги роговицы глаза и может вызвать необратимые повреждения. Вдыхание паров может вызвать раздражение дыхательных путей, головную боль, при больших концентрациях или экспозиции - отёк лёгких. Хотя наличие запаха ещё не означает какой-либо угрозы здоровью, необходим мониторинг воздуха. Предельно допустимая концентрация составляет 5 мг/м³.

Примечания

  • Kirk-Othmer encyclopedia, 3 ed., v. I, N.Y.-, 1978, p. 330-54. А. В. Девекки.
  • Рабинович В. А., Хавин З. Я. «Краткий химический справочник» Л.: Химия, 1977 стр. 121

См. также

  • Акрилаты
  • Акролеин
  • Акрилонитрил
  • Метакриловая кислота

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. - М.: Советская энциклопедия, 1988. - Т. 1 (Абл-Дар). - 623 с.

акриловая кислота, акриловая кислота формула

Акриловая кислота Информацию О

Строение, номенклатура. Одноосновные непредельный (ненасыщенные) кислоты наиболее часто носят исторически сложившиеся названия.

Простейщая кислота этиленового ряда называется акриловой кислотой:

Следующий представитель этого, ряда, содержащий 4 углеродных атома, может существовать уже в трек изомерных

Положение двойной связи в непредельных кислотах по отношению к карбоксильной группе обозначается буквами греческого алфавита, указывающими места атомов углерода, между которыми находится двойная связь, с добавлением слов непредельная кислота. Так, например, винилуксусная кислота является - непредельной кислотой, а акриловая, кротоновая и метакриловая - непредельными кислотами.

Из структурных формул этих кислот видно, что изомерия непредельных кислот зависит от разветвленности уцепи углеродных атомов и положения двойной связи.

На примере непредельных органических кислот мы познакомимся еще с одним бидом изомерии, которой обладают различные непредельные органические соединения - геометрической изомерией (или, как ее часто называют, цис-транс-изомерией).

Рис. 16. Модель молекулы этана.

Если изобразить пространственное строение молекулы предельного углеводорода этана, то можно видеть, что валентности углеродных атомов этана расположены не в одной плоскости, а под некоторым углом друг к другу (рис. 16).

В молекуле этана возможно свободное вращение атомов углерода вокруг направления ординарной связи без ее разрыва. Ясно, что как бы ни перемещались при этом атомы водорода вокруг связи мы всегда будем иметь одно и то же строение.

Рассмотрим теперь пространственное строение молекулы кротонойой кислоты

В молекуле кротоновой кислоты свободное вращение атомов углерода, как в молекуле этана, уже невозможно, так как при этом произошел бы разрыв двойной связи между углеродными атомами.

Если в пространственной модели кротоновой кислоты (рис. 17, а) мы Переменим местами правый водород и карбоксильную группу так, чтобы водород находился под плоскостью двойной связи, а карбоксильная группа над плоскостью, то получим иную пространственную мрдель (рис. 17, б).

Эти две пространственные модели отличаются друг от друга тем, что в первой из них оба атома водорода находятся по одну сторону от плоскости, проходящей черёз углеродные атомы и двойную связь, а во второй - по разные стороны от нее. Может показаться, что будет еще третий изомер кротоновой кислоты, если в первой пространственной модели поменять местами атом водорода и метильную группу (рис. 17,в). Однако нетрудно убедиться, что эта модель совершенно аналогична второй, если всю молекулу, изображенную последней пространственной моделью, повернуть вокруг плоскости двойной связи на 180°.

Рис. 17. Пространственные модели молекулы кротоновой кислоты.

Для удобства условились при изображении пространственных моделей пользоваться так называемыми проекционными формулами, которые получаются при проектировании пространственных моделей на плоскость. Тогда формулы кротоновой кислоты будут иметь вид:

Такие формулы часто изображают несколько иначе, располагая атомы углерода по вертикали:

Изомеры, у которых одинаковые атомы или атомные группы (в данном случае атомы водорода) направлены в одну сторону от плоскости двойной связи, называются цис-изомерами, если эти заместители направлены в разный стороны, - транс-изомерами.

Таким образом, геометрическая йзомерия является одним из видов пространственной изомерии и зависит от расположения атомов или групп атомов по отношению к плоскости двойной связи.

Пространственные изомеры отличаются между собой и по свойствам. Так, например, кротоновая кислота (транс-изомер) представляет собой твердое вещество с темп. изокротоновая кислбта (цис-изомер) - при обычных условиях жидкость с темп.

Обычно один из пространственных изомеров бывает устойчивым (стабильным), а другой - неустойчивым (лабильным), причем неустойчивый изрмер под влиянием нагревания, света или химических воздействий легко переходит в устойчивый изомер. Так, изокротоновая кислота весьма неустойчива и легко переходит при повышенной температуре и при действии солнечного света в устойчивую кротоновую кислоту.

Свойства. Низшие представители непредельных кислот - жидкости с резким запахом, хорошо растворимые в воде. Высшие непредельные кислоты - твердые вещества, без запаха, нерастворимые в воде.

Для непредельных кислот характерно большинство реакций кислот предельного ряда (образование солей, сложных эфиров, ангидридов, галоидпроизводных и т. д.) и, кроме того, ряд реакций, свойственных непредельным углеводородам.

При присоединении водорода в присутствии катализаторов из ненасыщенной кислоты образуется кислота предельного ряда:

При энергичном окислении углеродная цепь непредельной кислоты разрывается по месту двойной связи, и получаются обычцо две кислоты - одноосновная и двухосновная:

При нагревании -непредельных кислот с разбавленными минеральными кислотами образуются так называемые лактоны - внутренние циклические эфиры оксикислот (см. стр. 169).

Например, из винилуксусной кислоты в этих условиях образуется у-бутиролактон:

Существуют и другие способы получения лактонов.

Способы получения непредельных кислот аналогичны способам получения предельных кислот. Так, например, непредельные кислоты получаются при осторожном окислении соответствующих непредельных спиртов и альдегидов:

Акриловая кислота . Жидкость с резким запахом, тяжелее воды; темп. Из производных акриловой кислоты большое значение имеют ее нитрил (стр. 148) и различные эфиры. Ее можно получать из аллилового спирта.

В настоящее время в промышленности акриловая кислота получается нагреванием этиленциангидрина с разбавленной серной кислотой:

Метакриловая кислота получается аналогичным способом из ацетонциангидрина (стр. 153). Большое значение для изготовления органического стекла (стр. 326) имеет ее метиловый эфир (метилметакрилат).

Олеиновая кислота. Ее строение выражается формулой Это маслянистая жидкость (плотность без запаха; темп. Вместе с пальмитиновой и стеариновой кислотами входит в состав жиров. Олеиновая кислота в особенно больших количествах входит в состав оливкового, миндального и подсолнечного масел.

При восстановлении водородом в присутствии катализаторов превращается в кислоту предельного ряда - стеариновую. Этот процесс играет важную роль при производстве маргарина (стр. 139).

При действии небольших количеств азотистой кислоты олеиновая кислота превращается в твердый изомер - элаидиновую кислоту.

Олеиновая и элаидиновая кислоты являются цис-транс-изомерами:

Из непредельных кислот с двумя двойными связями наибольшее практическое значение имеет сорбиновая кислота. Благодаря эффективным бактерицидным свойствам и отсутствию какого-либо нежелательного побочного действия на организм человека и животных сорбиновая кислота и ее соли нашли применение в качестве консервирующих средств в пищевой и других отраслях промышленности.

Сорбиновая кислота получается взаимодействием кетена (стр. 134) с кротоновым альдегидом в присутствии бутирата цинка. При этой реакции образуется полиэфир 3-оксигексановой кислоты:

При обработке образующегося полиэфира соляной кислотой при 70 °С получается сорбиновая кислота: