Координаты проекции точки на плоскость. Как найти проекцию точки на плоскость: методика определения и пример решения задачи. Проецирование точки на две плоскости проекций


В этой статье сначала дано определение проекции точки на прямую (на ось) и приведен поясняющий рисунок. Далее разобран способ нахождения координат проекции точки на прямую во введенной прямоугольной системе координат на плоскости и в трехмерном пространстве, показаны решения примеров с подробными пояснениями.

Навигация по странице.

Проекция точки на прямую – определение.

Так как все геометрические фигуры состоят из точек, а проекция фигуры представляет собой множество проекций всех точек этой фигуры, то для проецирования фигуры на прямую необходимо уметь проецировать точки этой фигуры на данную прямую.

Так что же называют проекцией точки на прямую?

Определение.

Проекция точки на прямую – это либо сама точка, если она лежит на данной прямой, либо основание перпендикуляра, опущенного из этой точки на заданную прямую.

На приведенном ниже рисунке точка H 1 является проекцией точки M 1 на прямую a , а точка M 2 есть проекция самой точки М 2 на прямую a , так как М 2 лежит на прямой a .

Это определение проекции точки на прямую справедливо как для случая на плоскости, так и для случая в трехмерном пространстве.

На плоскости, чтобы построить проекцию точки М 1 на прямую a нужно провести прямую b , которая проходит через точку М 1 и перпендикулярна прямой a . Тогда точка пересечения прямых a и b является проекцией точки М 1 на прямую a .

В трехмерном пространстве проекцией точки М 1 на прямую a является точка пересечения прямой a и плоскости , проходящей через точку М 1 перпендикулярно к прямой a .

Нахождение координат проекции точки на прямую – теория и примеры.

Начнем с нахождения координат проекции точки на прямую, когда проецируемая точка и прямая заданы в прямоугольной системе координат Oxy на плоскости. После этого покажем, как находятся координаты проекции точки на прямую в прямоугольной системе координат Oxyz в трехмерном пространстве.

Координаты проекции точки на прямую на плоскости.

Пусть на плоскости зафиксирована Oxy , задана точка , прямая a и требуется определить координаты проекции точки М 1 на прямую a .

Решим эту задачу.

Проведем через точку М 1 прямую b , перпендикулярную прямой a , и обозначим точку пересечения прямых a и b как H 1 . Тогда H 1 – проекция точки М 1 на прямую a .

Из проведенного построения логически следует алгоритм, позволяющий найти координаты проекции точки на прямую a :

Разберемся с нахождением координат проекции точки на прямую при решении примера.

Пример.

На плоскости относительно прямоугольной системы координат Oxy заданы точка и прямая a , которой соответствует общее уравнение прямой вида

Решение.

Уравнение прямой a нам известно из условия, так что можно переходить ко второму шагу алгоритма.

Получим уравнение прямой b , которая проходит через точку М 1 и перпендикулярна прямой a . Для этого нам потребуются координаты направляющего вектора прямой b .Так как прямая b перпендикулярна прямой a , то нормальный вектор прямой a является направляющим вектором прямой b . Очевидно, нормальным вектором прямой является вектор с координатами , следовательно, направляющим вектором прямой b является вектор . Теперь мы можем написать каноническое уравнение прямой b , так как знаем координаты точки , через которую она проходит, и координаты ее направляющего вектора: .

Осталось найти координаты точки пересечения прямых a и b , которые дадут искомые координаты проекции точки М 1 на прямую a . Для этого сначала перейдем от канонических уравнений прямой b к ее общему уравнению: . Теперь составим систему уравнений из общих уравнений прямых a и b , после чего найдем ее решение (при необходимости обращайтесь к статье ):

Таким образом, проекция точки на прямую имеет координаты .

Ответ:

Пример.

На плоскости в прямоугольной системе координат Oxy заданы три точки . Найдите координаты проекции точки М 1 на прямую АВ .

Решение.

Для нахождения координат проекции точки М 1 на прямую АВ будем действовать по полученному алгоритму.

Напишем уравнение прямой, проходящей через две заданные точки и :
.

Теперь можно от полученного канонического уравнения прямой АВ перейти к общему уравнению прямой АВ и продолжить решение по аналогии с предыдущим примером. Но давайте рассмотрим другой способ нахождения уравнения прямой b , проходящей через точку М 1 перпендикулярно прямой АВ .

Из канонического уравнения прямой АВ получим уравнение прямой с угловым коэффициентом : . Угловой коэффициент прямой АВ равен , а угловой коэффициент прямой b , которая перпендикулярна прямой АВ , равен (смотрите условие перпендикулярности прямых). Тогда уравнение прямой b , проходящей через точку и имеющей угловой коэффициент , имеет вид .

Чтобы определить координаты проекции точки на прямую АВ осталось решить систему уравнений :

Ответ:

Давайте еще отдельно остановимся на нахождении координат проекции точки на координатные прямые Ox и Oy , а также на прямые, им параллельные.

Очевидно, что проекцией точки на координатную прямую Ox , которой соответствует неполное общее уравнение прямой вида , является точка с координатами . Аналогично, проекция точки на координатную прямую Oy имеет координаты .

Любая прямая, параллельная оси абсцисс, может быть задана неполным общим уравнением вида , а прямая, параллельная оси ординат, - уравнением вида . Проекциями точки на прямые и являются точки с координатами и соответственно.

Пример.

Какие координаты имеют проекции точки на координатную прямую Oy и на прямую .

Решение.

Проекцией точки на прямую Oy является точка с координатами .

Перепишем уравнение прямой как . Теперь хорошо видно, что проекция точки на прямую имеет координаты .

Ответ:

И .

Координаты проекции точки на прямую в трехмерном пространстве.

Теперь переходим к нахождению координат проекции точки на прямую относительно прямоугольной системы координат Oxyz , введенной в трехмерном пространстве.

Пусть в пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , прямая a и требуется найти координаты проекции точки М 1 на прямую a .

Решим эту задачу.

Построим плоскость , которая проходит через точку М 1 перпендикулярно к прямой a . Проекцией точки М 1 на прямую a является точка пересечения прямой a и плоскости . Таким образом, получаем алгоритм, позволяющий найти координаты проекции точки на прямую a :

Рассмотрим решение примера.

Пример.

В прямоугольной системе координат Oxyz задана точка и прямая a , причем прямую a определяют канонические уравнения прямой в пространстве вида . Найдите координаты проекции точки М 1 на прямую a .

Решение.

Для определения координат проекции точки М 1 на прямую a воспользуемся полученным алгоритмом.

Уравнения прямой a нам сразу известны из условия, так что переходим ко второму шагу.

Получим уравнение плоскости , которая перпендикулярна к прямой a и проходит через точку . Для этого нам нужно знать координаты нормального вектора плоскости . Найдем их. Из канонических уравнений прямой a видны координаты направляющего вектора этой прямой: . Направляющий вектор прямой a является нормальным вектором плоскости, которая перпендикулярна к прямой a . То есть, - нормальный вектор плоскости . Тогда уравнение плоскости , проходящей через точку и имеющей нормальный вектор , имеет вид .

Осталось найти координаты точки пересечения прямой a и плоскости - они являются искомыми координатами проекции точки на прямую a . Покажем два способа их нахождения.

Первый способ.

Из канонических уравнений прямой a получим уравнения двух пересекающихся плоскостей , которые определяют прямую a:

Координаты точки пересечения прямой и плоскости мы получим, решив систему линейных уравнений вида . Применим (если Вам больше нравиться или какой-нибудь другой метод решения систем линейных уравнений, то применяйте его):

Таким образом, точка с координатами является проекцией точки М 1 на прямую a .

Второй способ.

Зная канонические уравнения прямой a , легко записать ее параметрические уравнения прямой в пространстве : . Подставим в уравнение плоскости вида вместо x , y и z их выражения через параметр:

Теперь мы можем вычислить искомые координаты точки пересечения прямой a и плоскости по параметрическим уравнениям прямой a при :

Аппарат проецирования

Аппарат проецирования (рис. 1) включает в себя три плоскости проекций:

π 1 – горизонтальная плоскость проекций;

π 2 – фронтальная плоскость проекций;

π 3 профильная плоскость проекций.

Плоскости проекций располагаются взаимно перпендикулярно (π 1 ^ π 2 ^ π 3 ), а их линии пересечения образуют оси:

Пересечение плоскостей π 1 и π 2 образуют ось (π 1 π 2 = );

Пересечение плоскостей π 1 и π 3 образуют ось 0Y (π 1 π 3 = 0Y );

Пересечение плоскостей π 2 и π 3 образуют ось 0Z (π 2 π 3 = 0Z ).

Точка пересечения осей (ОХ∩OY∩OZ=0), считается точкой начала отсчета (точка 0).

Так как плоскости и оси взаимно перпендикулярны, то такой аппарат аналогичен декартовой системе координат.

Плоскости проекций все пространство делят на восемь октантов (на рис. 1 они обозначены римскими цифрами). Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом октанте.

Проецирование ортогональное с центрами проецирования S 1 , S 2 и S 3 соответственно для горизонтальной, фронтальной и профильной плоскостей проекций.

А .

Из центров проецирования S 1 , S 2 и S 3 выходят проецирующие лучи l 1 , l 2 и l 3 А

- А 1 А ;

- А 2 – фронтальная проекция точки А ;

- А 3 – профильная проекция точки А .

Точка в пространстве характеризуется своими координатами A (x,y,z ). Точки A x , A y и A z соответственно на осях 0X , 0Y и 0Z показывают координаты x, y и z точки А . На рис. 1 даны все необходимые обозначения и показаны связи между точкой А пространства, её проекциями и координатами.

Эпюр точки

Чтобы получить эпюр точки А (рис. 2), в аппарате проецирования (рис. 1) плоскость π 1 А 1 π 2 . Затем плоскость π 3 с проекцией точки А 3 , вращают против часовой стрелки вокруг оси 0Z , до совмещения её с плоскостью π 2 . Направление поворотов плоскостей π 2 и π 3 показано на рис. 1 стрелками. При этом прямые А 1 А х и А 2 А х перпендикуляре А 1 А 2 , а прямые А 2 А х и А 3 А х станут располагаться на общем к оси 0Z перпендикуляре А 2 А 3 . Эти прямые в дальнейшем будем называть соответственно вертикальной и горизонтальной линиями связей.

Следует отметить, что при переходе от аппарата проецирования к эпюру проектируемый объект исчезает, но вся информация о его форме, геометрических размерах и месте его положения в пространстве сохраняются.



А (x A , y A , z A x A , y A и z A в следующей последовательности (рис. 2). Эта последовательность называется методикой построения эпюра точки.

1. Ортогонально вычерчиваются оси OX, OY и OZ.

2. На оси OX x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX

А х по направлению оси OY откладывается численное значение координаты y A точки А А 1 на эпюре.

А х по направлению оси OZ откладывается численное значение координаты z A точки А А 2 на эпюре.

6. Через точку А 2 параллельно оси OX проводится горизонтальная линия связи. Пересечение этой линии и оси OZ даст положение точки А z .

7. На горизонтальной линии связи от точки А z по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение профильной проекции точки А 3 на эпюре.

Характеристика точек

Все точки пространства подразделяются на точки частного и общего положений.

Точки частного положения. Точки, принадлежащие аппарату проецирования, называются точками частного положения. К ним относятся точки, принадлежащие плоскостям проекций, осям, началу координат и центрам проецирования. Характерными признаками точек частного положения являются:

Метаматематический – одна, две или все численные значения координат равны нулю и (или) бесконечности;

На эпюре – две или все проекции точки располагаются на осях и (или) располагаются в бесконечности.



Точки общего положения. К точкам общего положения относятся точки, не принадлежащие аппарату проецирования. Например, точка А на рис. 1 и 2.

В общем случае численные значения координат точки характеризует ее удаление от плоскости проекций: координата х от плоскости π 3 ; координата y от плоскости π 2 ; координата z от плоскости π 1 . Следует отметить, что знаки при численных значениях координат указывают на направление удаления точки от плоскостей проекций. В зависимости от сочетания знаков при численных значениях координат точки зависит в каком из октанов она находится.

Метод двух изображений

На практике, кроме метода полного проецирования используют метод двух изображений. Он отличается тем, что в этом методе исключается третья проекция объекта. Для получения аппарата проецирования метода двух изображений из аппарата полного проецирования исключается профильная плоскость проекций с ее центром проецирования (рис. 3). Кроме того, на оси назначается начало отсчета (точка 0 ) и из него перпендикулярно оси в плоскостях проекций π 1 и π 2 проводят оси 0Y и 0Z соответственно.

В этом аппарате все пространство делится на четыре квадранта. На рис. 3 они обозначены римскими цыфрами.

Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом квадранте.

Рассмотрим работу аппарата на примере проецирования точки А .

Из центров проецирования S 1 и S 2 выходят проецирующие лучи l 1 и l 2 . Эти лучи проходят через точку А и пересекаясь с плоскостями проекций образуют ее проекции:

- А 1 – горизонтальная проекция точки А ;

- А 2 – фронтальная проекция точки А .

Чтобы получить эпюр точки А (рис. 4), в аппарате проецирования (рис. 3) плоскость π 1 с полученной проекцией точки А 1 вращают по часовой стрелке вокруг оси , до совмещения её с плоскостью π 2 . Направление поворота плоскости π 1 показана на рис. 3 стрелками. При этом на эпюре точки полученной методом двух изображений остается только одна вертикальная линия связи А 1 А 2 .

На практике построение эпюра точки А (x A , y A , z A ) осуществляется по численным значениям ее координат x A , y A и z A в следующей последовательности (рис. 4).

1. Вычерчивается ось OX и назначается начало отсчета (точка 0 ).

2. На оси OX откладывается численное значение координаты x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX проводится вертикальная линия связи.

4. На вертикальной линии связи от точки А х по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение горизонтальной проекции точки А 1 OY не вычерчивается, а предполагается, что ее положительные значения располагаются ниже оси OX , а отрицательные выше.

5. На вертикальной линии связи от точки А х по направлению оси OZ откладывается численное значение координаты z A точки А и определяется положение фронтальной проекции точки А 2 на эпюре. Следует отметить, что на эпюре ось OZ не вычерчивается, а предполагается, что ее положительные значения располагаются выше оси OX , а отрицательные ниже.

Конкурирующие точки

Точки на одном проецирующем луче называются конкурирующими. Они в направлении проецирующего луча имеют общую для них проекцию, т.е. их проекции тождественно совпадают. Характерным признаком конкурирующих точек на эпюре является тождественное совпадение их одноименных проекций. Конкуренция заключается в видимости этих проекций относительно наблюдателя. Говоря другими словами, в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, а проекция другой точки – невидима.

На пространственной модели проецирования (рис. 5) из двух конкурирующих точек А и В видима точка А по двум взаимно дополняющим признакам. Судя по цепочке S 1 →А→В точка А ближе к наблюдателю, чем точка В . И, соответственно, – дальше от плоскости проекций π 1 (т.е. z A > z A ).

Рис. 5 Рис.6

Если видима сама точка A , то видима и её проекция A 1 . По отношению к совпадающей с ней проекцией B 1 . Для наглядности и при необходимости на эпюре невидимые проекции точек принято заключать в скобки.

Уберем на модели точки А и В . Останутся их совпадающие проекции на плоскости π 1 и раздельные проекции – на π 2 . Условно оставим и фронтальную проекцию наблюдателя (⇩), находящегося в центре проецирования S 1 . Тогда по цепочке изображений ⇩ → A 2 B 2 можно будет судить о том, что z A > z B и что видима и сама точка А и её проекция А 1 .

Аналогично рассмотрим конкурирующие точки С и D по видимости относительно плоскости π 2 . Поскольку общий проецирующий луч этих точек l 2 параллелен оси 0Y , то признак видимости конкурирующих точек С и D определяется неравенством y C > y D . Следовательно, что точка D закрыта точкой С и соответственно проекция точки D 2 будет закрыта проекцией точки С 2 на плоскости π 2 .

Рассмотрим, как определяется видимость конкурирующих точек на комплексном чертеже (рис. 6).

Судя по совпадающим проекциям А 1 В 1 сами точки А и В находятся на одном проецирующем луче, параллельном оси 0Z . Значит сравнению подлежат координаты z A и z B этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае z A > z B . Из этого следует, что видима проекция А 1 .

Точки C и D на рассматриваемом комплексном чертеже (рис. 6) так же находятся на одном проецирующем луче, но только параллельном оси 0Y . Поэтому из сравнения y C > y D делаем вывод, что видима проекция С 2 .

Общее правило . Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

Проекция точки на плоскость является частным случаем общей задачи нахождения проекции точки на поверхность. В силу простоты вычисления проекции точки на касательную к поверхности плоскость используется в качестве нулевого приближения при решении общей задачи.

Рассмотрим задачу проецирования точки на плоскость, заданную радиус-вектором

Будем считать, что векторы не коллинеарные. Допустим, что в общем случае векторы не ортогональны и имеют не единичную длину. Плоскость проходит через точку в которой параметры равны нулю, а векторы определяют параметрические направления. Заданная точка имеет единственную проекцию на плоскость (4.6.1). Построим единичную нормаль к плоскости

Рис. 4.6.1. Проекция точки на плоскость s(u, v)

Вычислим радиус-вектор проекции точки на плоскость как разность радиус-вектора проецируемой точки и составляющей вектора параллельной нормали к плоскости,

(4.6.4)

На рис. 4.6.1 показаны векторы плоскости ее начальная точка и проекция заданной точки.

Параметры и длины проекций связаны уравнениями

где косинус угла между векторами определяется по формуле (1.7.13).

Из системы этих уравнений найдем параметры проекции точки на плоскость

(4.6.6)

где - коэффициенты первой основной квадратичной формы плоскости (1.7.8), они же ковариантные компоненты метрического тензора поверхности, - контравариантные компоненты метрического тензора поверхности. Если векторы ортогональные, то формулы (4.6.6) и (4.6.7) примут вид

Расстояние от точки до ее проекции на плоскость в общем случае вычисляется как длина вектора . Расстояние от точки до ее проекции на плоскость можно определить, не вычисляя проекцию точки, а вычислив проекцию вектора на нормаль к плоскости

(4.6.8)

Частные случаи.

Проекции точки на некоторые аналитические поверхности могут быть найдены без привлечения численных методов. Например, чтобы найти проекции точки на поверхность кругового цилиндра, конуса, сферы или тора, нужно перевести проецируемую точку в местную систему координат поверхности, где легко найти параметры проекций. Аналогично могут быть найдены проекции на поверхности выдавливания и вращения. В некоторых частных случаях положения проецируемой точки ее проекции могут быть легко найдены и на другие поверхности.

Общий случай.

Рассмотрим задачу проецирования точки на поверхность в общем случае. Пусть требуется найти все проекции точки на поверхность . Каждая искомая точка поверхности удовлетворяет системе двух уравнений

Система уравнений (4.6.9) содержит две неизвестные величины - параметры u и v. Эта задача решается так же, как и задача нахождения проекций заданной точки на кривую.

На первом этапе определим нулевые приближения параметров поверхности для проекций точки, а на втором этапе найдем точные значения параметров, определяющие проекции заданной точки на поверхность

Пройдем по поверхности с шагами вычисляемыми по формулам (4.2.4) и (4.2.5), описанным выше способом движения по параметрической области. Обозначим параметры точек, через которые мы пройдем, через . В каждой точке будем вычислять скалярные произведения векторов

(4.6.10)

Если искомое решение лежит вблизи точки с параметрами , то будут иметь разные знаки, а также и будут иметь разные знаки. Смена знаков скалярных произведений говорит о том, что рядом находится искомое решение. За нулевое приближение параметров примем значения Начиная с нулевого приближения параметров, одним из методов решения нелинейных уравнений найдем решение задачи с заданной точностью. Например, в методе Ньютона на итерации приращения параметров проекции найдутся из системы линейных уравнений

где частные производные радиус-вектора по параметрам. Следующее приближение параметров проекции точки равны . Процесс уточнения параметров закончим, когда на очередной итерации выполнятся неравенства , где - заданная погрешность. Таким же образом найдем все остальные корни системы уравнений (4.6.9).

Если требуется найти только ближайшую проекцию заданной точки на поверхность, то можно пройти по тем же точкам геометрического объекта и выбрать из них ближайшую к заданной точке. Параметры ближайшей точки и следует выбрать в качестве нулевого приближения решения задачи.

Проекция точки на поверхность в заданном направлении.

В определенных случаях возникает задача определения проекции точки на поверхность не по нормали к ней, а вдоль заданного направления. Пусть направление проецирования задано вектором единичной длины q. Построим прямую линию

(4.6.12)

проходящую через заданную точку и имеющую направление заданного вектора. Проекции точки на поверхность в заданном направлении определим как точки пересечения поверхности с прямой (4.6.12), проходящей через заданную точку в заданном направлении.


Эта статья является ответом на два вопроса: «Что такое » и «Как найти координаты проекции точки на плоскость »? Сначала дана необходимая информация о проецировании и его видах. Далее приведено определение проекции точки на плоскость и дана графическая иллюстрация. После этого получен метод нахождения координат проекции точки на плоскость. В заключении разобраны решения примеров, в которых вычисляются координаты проекции заданной точки на заданную плоскость.

Навигация по странице.

Проецирование, виды проецирования – необходимая информация.

При изучении пространственных фигур удобно пользоваться их изображениями на чертеже. Чертеж пространственной фигуры представляет собой так называемую проекцию этой фигуры на плоскость. Процесс построения изображения пространственной фигуры на плоскости происходит по определенным правилам. Так вот процесс построения изображения пространственной фигуры на плоскости вместе с набором правил, по которым осуществляется этот процесс, называется проецированием фигуры на данную плоскость. Плоскость, в которой строится изображение, называют плоскостью проекции .

В зависимости от правил, по которым осуществляется проецирование, различают центральное и параллельное проецирование . Вдаваться в подробности не станем, так как это выходит за рамки этой статьи.

В геометрии в основном используется частный случай параллельного проецирования - перпендикулярное проецирование , которое также называют ортогональным . В названии этого вида проецирования прилагательное «перпендикулярное» часто опускается. То есть, когда в геометрии говорят о проекции фигуры на плоскость, то обычно подразумевают, что эта проекция была получена с помощью перпендикулярного проецирования (если, конечно, не оговорено другое).

Следует отметить, что проекция фигуры на плоскость представляет собой совокупность проекций всех точек этой фигуры на плоскость проекции. Иными словами, чтобы получить проекцию некоторой фигуры необходимо уметь находить проекции точек этой фигуры на плоскость. В следующем пункте статьи как раз показано, как найти проекцию точки на плоскость.

Проекция точки на плоскость – определение и иллюстрация.

Еще раз подчеркнем, что мы будем говорить о перпендикулярной проекции точки на плоскость.

Выполним построения, которые помогут нам дать определение проекции точки на плоскость.

Пусть в трехмерном пространстве нам задана точка М 1 и плоскость . Проведем через точку М 1 прямую a , перпендикулярную к плоскости . Если точка М 1 не лежит в плоскости , то обозначим точку пересечения прямой a и плоскости как H 1 . Таким образом, точка H 1 по построению является основанием перпендикуляра, опущенного из точки M 1 на плоскость .

Определение.

Проекция точки М 1 на плоскость - это сама точка М 1 , если , или точка H 1 , если .

Данному определению проекции точки на плоскость эквивалентно следующее определение.

Определение.

Проекция точки на плоскость – это либо сама точка, если она лежит в заданной плоскости, либо основание перпендикуляра, опущенного из этой точки на заданную плоскость.

На приведенном ниже чертеже точка H 1 есть проекция точки М 1 на плоскость ; точка М 2 лежит в плоскости , поэтому М 2 – проекция самой точки М 2 на плоскость .

Нахождение координат проекции точки на плоскость – решения примеров.

Пусть в трехмерном пространстве введена Oxyz , задана точка и плоскость . Поставим перед собой задачу: определить координаты проекции точки М 1 на плоскость .

Решение задачи логически следует из определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость как H 1 . По определению проекции точки на плоскость, H 1 – это точка пересечения заданной плоскости и прямой a , проходящей через точку М 1 перпендикулярно к плоскости . Таким образом, искомые координаты проекции точки М 1 на плоскость - это координаты точки пересечения прямой a и плоскости .

Следовательно, чтобы найти координаты проекции точки на плоскость нужно:

Рассмотрим решения примеров.

Пример.

Найдите координаты проекции точки на плоскость .

Решение.

В условии задачи нам дано общее уравнение плоскости вида , так что его составлять не нужно.

Напишем канонические уравнения прямой a , которая проходит через точку М 1 перпендикулярно к заданной плоскости. Для этого получим координаты направляющего вектора прямой a . Так как прямая a перпендикулярна к заданной плоскости, то направляющим вектором прямой a является нормальный вектор плоскости . То есть, - направляющий вектор прямой a . Теперь мы можем написать канонические уравнения прямой в пространстве , которая проходит через точку и имеет направляющий вектор :
.

Чтобы получить требуемые координаты проекции точки на плоскость, осталось определить координаты точки пересечения прямой и плоскости . Для этого от канонических уравнений прямой переходим к уравнениям двух пересекающихся плоскостей , составляем систему уравнений и находим ее решение. Используем :

Таким образом, проекция точки на плоскость имеет координаты .

Ответ:

Пример.

В прямоугольной системе координат Oxyz в трехмерном пространстве заданы точки и . Определите координаты проекции точки М 1 на плоскость АВС .

Решение.

Напишем сначала уравнение плоскости, проходящей через три заданные точки :

Но давайте рассмотрим альтернативный подход.

Получим параметрические уравнения прямой a , которая проходит через точку и перпендикулярна к плоскости АВС . Нормальный вектор плоскости имеет координаты , следовательно, вектор является направляющим вектором прямой a . Теперь мы можем написать параметрические уравнения прямой в пространстве , так как знаем координаты точки прямой () и координаты ее направляющего вектора ():

Осталось определить координаты точки пересечения прямой и плоскости . Для этого в уравнение плоскости подставим :
.

Теперь по параметрическим уравнениям вычислим значения переменных x , y и z при :
.

Таким образом, проекция точки М 1 на плоскость АВС имеет координаты .

Ответ:

В заключении давайте обсудим нахождение координат проекции некоторой точки на координатные плоскости и плоскости, параллельные координатным плоскостям.

Проекциями точки на координатные плоскости Oxy , Oxz и Oyz являются точки с координатами и соответственно. А проекциями точки на плоскости и , которые параллельны координатным плоскостям Oxy , Oxz и Oyz соответственно, являются точки с координатами и .

Покажем, как были получены эти результаты.

Для примера найдем проекцию точки на плоскость (остальные случаи аналогичны этому).

Эта плоскость параллельна координатной плоскости Oyz и - ее нормальный вектор. Вектор является направляющим вектором прямой, перпендикулярной к плоскости Oyz . Тогда параметрические уравнения прямой, проходящей через точку М 1 перпендикулярно к заданной плоскости, имеют вид .

Найдем координаты точки пересечения прямой и плоскости . Для этого сначала подставляем в уравнение равенства : , и проекция точки

  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.
  • Метод проекций является основой теории построения чертежных изображений в инженерной графике. Чаще всего он используется, когда необходимо найти изображение тела в виде его проекции на плоскости либо получить данные о его положении в пространстве.

    Инструкция

    • В многомерном пространстве любое изображение объекта на плоскости можно получить с помощью проецирования. Однако не стоит судить о геометрической форме тела либо о форме простейших образов в геометрии на основе одной проекции точки. Наиболее полную информацию об изображении геометрического тела дает несколько проекций точек. Для чего используют проекции точек тела минимум в двух плоскостях.
    • Например, необходимо построить проекцию точки А. Для этого расположите две плоскости перпендикулярно друг другу. Одну -горизонтально, называя ее горизонтальной плоскостью и обозначая все проекции элементов с индексом 1. Вторую - вертикально. Назовите ее, соответственно, фронтальной плоскостью , а проекциям элементов присвойте индекс 2. Обе эти плоскости считайте бесконечными и непрозрачными. Линией их пересечений становится ось координат ОХ.
    • Затем примите как факт, что пространство между плоскостями проекции условно делится на четверти. Вы находитесь в первой четверти и видите только те линии и точки, которые находятся в этой области двугранного угла.
    • Суть процесса проецирования состоит в проведении луча через заданную точку, пока луч не встретится с плоскостью проекций. Данный метод получил название метода ортогонального проецирования. Согласно нему, опустите из точки А перпендикуляр на горизонтальную и фронтальную плоскость. Основанием этого перпендикуляра как раз и будет горизонтальная проекция точки А1 либо фронтальная проекция точки А2. Таким образом, вы получите положение этой точки в пространстве заданных плоскостей проекций.