Как иначе называют метод хорд. Численные методы. Правила ввода функции

Численные методы 1

Решение нелинейных уравнений 1

Постановка задачи 1

Локализация корней 2

Уточнение корней 4

Методы уточнения корней 4

Метод половинного деления 4

Метод хорд 5

Метод Ньютона (метод касательных) 6

Численное интегрирование 7

Постановка задачи 7

Метод прямоугольников 8

Метод трапеций 9

Метод парабол (формула Симпсона) 10

Численные методы

На практике в большинстве случаев найти точное решение возникшей математической задачи не удается. Это происходит потому, что искомое решение обычно не выражается в элементарных или других известных функциях. Поэтому большое значение приобрели численные методы.

Под численными методами подразумеваются методы решения задач, сводящиеся к арифметическим и некоторым логическим действиям над числами. В зависимости от сложности задачи, заданной точности, применяемого метода может потребоваться огромное количество действий, и здесь без быстродействующего компьютера не обойтись.

Решение, полученное численным методом, обычно является приближенным, т. е. содержит некоторую погрешность. Источниками погрешности приближенного решения задачи являются:

    погрешность метода решения;

    погрешности округлений в действиях над числами.

Погрешность метода вызвана тем, что численным методом обычно решается другая, более простая задача, аппроксимирующая (приближающая) исходную задачу. В ряде случаев численный метод представляет собойбесконечный процесс , которыйв пределе приводит к искомому решению. Процесс, прерванный на некотором шаге, дает приближенное решение.

Погрешность округления зависит от количества арифметических действий, выполняемых в процессе решения задачи. Для решения одной и той же задачи могут применяться различные численные методы. Чувствительность к погрешностям округления существенно зависит от выбранного метода.

Решение нелинейных уравнений Постановка задачи

Решение нелинейных уравнений с одним неизвестным является одной из важных математических задач, возникающих в различных разделах физики, химии, биологии и других областях науки и техники.

В общем случае нелинейное уравнение с одним неизвестным можно записать:

f (x ) = 0 ,

где f (x ) – некоторая непрерывная функция аргументаx .

Всякое число x 0 , при которомf (x 0 ) ≡ 0, называется корнем уравненияf (x ) = 0.

Методы решения нелинейных уравнений делятся на прямые (аналитические, точные) иитерационные . Прямые методы позволяют записать решение в виде некоторого соотношения (формулы). При этом значения корней могут быть вычислены по этой формуле за конечное число арифметических операций. Подобные методы развиты для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.

Однако подавляющее большинство нелинейных уравнений, встречающихся на практике, не удается решить прямыми методами. Даже для алгебраического уравнения выше четвертой степени не удается получить аналитического решения в виде формулы с конечным числом арифметических действий. Во всех таких случаях приходится обращаться к численным методам, позволяющим получить приближенные значения корней с любой заданной точностью.

При численном подходе задача о решении нелинейных уравнений разбивается на два этапа: локализация (отделение) корней, т.е. нахождение таких отрезков на осиx , в пределах которых содержится один единственный корень, иуточнение корней , т.е. вычисление приближенных значений корней с заданной точностью.

Локализация корней

Для отделения корней уравнения f (x ) = 0 необходимо иметь критерий, позволяющий убедится, что, во-первых, на рассматриваемом отрезке [a ,b ] имеется корень, а, во-вторых, что этот корень единственный на указанном отрезке.

Если функция f (x ) непрерывна на отрезке [a ,b ], а на концах отрезка её значения имеют разные знаки, т. е.

f (a ) f (b ) < 0 ,

то на этом отрезке расположен, по крайней мере, один корень.

Рис 1. Отделение корней. Функция f (x ) не монотонна на отрезке [a ,b ].

Это условие, как видно из рисунка (1), не обеспечивает единственности корня. Достаточным дополнительным условием, обеспечивающем единственность корня на отрезке [a ,b ] является требование монотонности функции на этом отрезке. В качестве признака монотонности функции можно воспользоваться условием постоянства знака первой производнойf ′(x ) .

Таким образом, если на отрезке [ a ,b ] функция непрерывна и монотонна, а ее значения на концах отрезка имеют разные знаки, то на рассматриваемом отрезке существует один и только один корень.

Воспользовавшись этим критерием, можно отделить корни аналитическим способом, находя интервалы монотонности функции.

Отделение корней можно выполнить графически , если удается построить график функцииy =f (x ) . Например, график функции на рисунке (1) показывает, что эта функция на интервале может быть разбита на три интервала монотонности и на этом интервале у нее существуют три корня.

Отделение корней можно также выполнить табличным способом. Допустим, что все интересующие нас корни уравнения (2.1) находятся на отрезке [A, B ]. Выбор этого отрезка (интервала поиска корней) может быть сделан, например, на основе анализа конкретной физической или иной задачи.

Рис. 2. Табличный способ локализации корней.

Будем вычислять значения f (x ) , начиная с точкиx =A , двигаясь вправо с некоторым шагомh (рис. 2). Как только обнаруживается пара соседних значенийf (x ) , имеющих разные знаки, так соответствующие значения аргументаx можно считать границами отрезка, содержащего корень.

Надежность табличного способа отделения корней уравнений зависит как от характера функции f (x ) , так и от выбранной величины шагаh . Действительно, если при достаточно малом значенииh (h <<|B A |) на границах текущего отрезка [x, x +h ] функцияf (x ) принимает значения одного знака, то естественно ожидать, что уравнениеf (x ) = 0 корней на этом отрезке не имеет. Однако, это не всегда так: при несоблюдении условия монотонности функцииf (x ) на отрезке [x, x +h ] могут оказаться корни уравнения (рис. 3а).

Рис 3а Рис 3б

Также несколько корней на отрезке [x, x +h ] могут оказаться и при выполнении условияf (x ) f (x + h ) < 0 (рис. 3б). Предвидя подобные ситуации, следует выбирать достаточно малые значенияh .

Отделяя таким образом корни, мы, по сути, получаем их приближенные значения с точностью до выбранного шага. Так, например, если в качестве приближенного значения корня взять середину отрезка локализации, то абсолютная погрешность этого значения не будет превосходить половины шага поиска (h /2). Уменьшая шаг в окрестности каждого корня, можно, в принципе, повысить точность отделения корней до любого наперед заданного значения. Однако такой способ требует большого объема вычислений. Поэтому при проведении численных экспериментов с варьированием параметров задачи, когда приходится многократно осуществлять поиск корней, подобный метод не годится для уточнения корней и используется только для отделения (локализации) корней, т.е. определения начальных приближений к ним. Уточнение корней проводится с помощью других, более экономичных методов.

Пусть на отрезке функция непрерывна, принимает на концах отрезка значение разных знаков, а производная f "(x) сохраняет знак. В зависимости от знака второй производной возможны следующие случаи расположения кривых (рис. 1).


Рис. 1.

Алгоритм приближенного вычисления корня методом хорд.

Исходные данные: f (x) - функция; е - требуемая точность; x 0 - начальное приближение.

Результат: xпр - приближенный корень уравнения f (x) = 0.

Метод решения:


Рис. 2. f "(x) f ""(x)>0 .

Рассмотрим случай, когда f "(x) и f ""(x) имеют одинаковые знаки (рис. 2).

График функции проходит через точки A 0 (a,f(a)) и B 0 (b,f(b)) . Искомый корень уравнения (точка x* ) нам неизвестен, вместо него возьмет точку х 1 пересечения хорды А 0 В 0 с осью абсцисс. Это и будет приближенное значение корня.

В аналитической геометрии выводится формула, задающая уравнение прямой, проходящей через две точки с координатами (х1; у1) и (х2; у2) : .

Тогда уравнение хорды А 0 В 0 запишется в виде: .

Найдем значение х = х 1 , для которого у = 0 : . Теперь корень находится на отрезке . Применим метод хорд к этому отрезку. Проведем хорду, соединяющую точки A 1 (x 1 ,f(x 1 )) и B 0 (b,f(b)) , и найдем х 2 - точку пересечения хорды А 1 В 0 с осью Ох : x 2 =x 1 .

Продолжая этот процесс, находим

x 3 =x 2 .

Получаем рекуррентную формулу вычисления приближений к корню

x n+1 =x n .

В этом случае конец b отрезка остается неподвижным, а конец a перемещается.

Таким образом, получаем расчетные формулы метода хорд:

x n+1 =x n ; x 0 =a . (4)

Вычисления очередных приближений к точному корню уравнения продолжается до тех пор, пока не достигнем заданной точности, т.е. должно выполняться условие: |x n+1 -x n |< , где - заданная точность.

Теперь рассмотрим случай, когда первая и вторая производные имеют разные знаки, т.е. f "(x) f ""(x)<0 . (рис. 3).

Рис. 3. Геометрическая интерпретация метода хорд для случая f "(x) f ""(x)<0 .

Соединим точки A 0 (a,f(a)) и B 0 (b,f(b)) хордой А 0 В 0 . Точку пересечения хорды с осью Ох будем считать первым приближение корня. В этом случае неподвижным концом отрезка будет являться конец а .


Уравнение хорды А 0 В 0 :. Отсюда найдем x 1 , полагая y = 0 : x 1 =b . Теперь корень уравнения x . Применяя метод хорд к этому отрезку, получим x 2 =x 1 . Продолжая и т.д., получим x n+1 =x n .

Расчетные формулы метода:

x n+1 =x n , x 0 =0 . (5)

Условие окончания вычислений: |x n+1 -x n |< . Тогда хпр = xn+1 с точностью Итак, если f "(x) f ""(x)>0 приближенное значение корня находят по формуле (4), если f "(x) f ""(x)<0 , то по формуле (5).

Практический выбор той или иной формулы осуществляется, пользуясь следующим правилом: неподвижным концом отрезка является тот, для которого знак функции совпадает со знаком второй производной.

Пример. Проиллюстрировать действие этого правила на уравнении

(x-1)ln(x)-1=0 , если отрезок изоляции корня .

Решение. Здесь f(x)=(x-1)ln(x)-1 .

f "(x)=ln(x)+;

f ""(x)= .

Вторая производная в этом примере положительна на отрезке изоляции корня : f ""(x)>0 , f(3) >0, т.е. f(b) f""(x)>0 . Таким образом, при решении данного уравнения методом хорд для уточнения корня выбираем формулы (4).

var e,c,a,b,y,ya,yb,yn,x,x1,x2,xn,f1,f2:real;

begin e:=0.0001;

writeln("vvedi nachalo otrezka");

writeln("vvedi konec otrezka");

y:=((x-1)*ln(x))-1;

y:=((x-1)*ln(x))-1;

yb:=y; c:=(a+b)/2; x:=c;

y:=((x-1)*ln(x))-1;

f1:=ln(x) + (x-1)/x ;

f2:= 1/x + 1/(x*x);

if (ya*yb < 0) and (f1*f2 > 0)

then begin x1:=a; while abs(x2 - x) > e do

x2:=x1 - (yn*(b-x1))/(yb - yn);

writeln("koren uravneniya xn = ", x2)

end elsebegin x1:=b;

while abs(x2 - x) > e do

begin x:=x1; y:=((x-1)*ln(x))-1; yn:=y;

x2:=x1 - (yn*(x1- a))/(yn - ya);

writeln("koren uravneniya xn = ", x2);

Метод простых итераций

Рассмотрим уравнение f(x)=0 (1) с отделенным корнем X . Для решения уравнения (1) методом простой итерации приведем его к равносильному виду: x=ц(x). (2)

Это всегда можно сделать, причем многими способами. Например:

x=g(x) · f(x) + x ? ц(x) , где g(x ) - произвольная непрерывная функция, не имеющая корней на отрезке .

Пусть x (0) - полученное каким-либо способом приближение к корню x (в простейшем случае x (0) =(a+b)/2). Метод простой итерации заключается в последовательном вычислении членов итерационной последовательности:

x (k+1) =ц(x (k) ), k=0, 1, 2, ... (3)

начиная с приближения x (0) .

УТВЕРЖДЕНИЕ: 1 Если последовательность {x (k) } метода простой итерации сходится и функция ц непрерывна, то предел последовательности является корнем уравнения x=ц(x)

ДОКАЗАТЕЛЬСТВО: Пусть. (4)

Перейдем к пределу в равенстве x (k+1) =ц(x (k) ) Получим с одной стороны по (4), что а с другой стороны в силу непрерывности функции ц и (4) .

В результате получаем x * =ц(x * ). Следовательно, x * - корень уравнения (2), т.е. X=x * .

Чтобы пользоваться этим утверждением нужна сходимость последовательности {x (k) }. Достаточное условие сходимости дает:

ТЕОРЕМА 1: (о сходимости) Пусть уравнение x=ц(x) имеет единственный корень на отрезке и выполнены условия:

  • 1) ц(x) C 1 ;
  • 2) ц(x) " x ;
  • 3) существует константа q > 0: | ц "(x) | ? q . Tогда итерационная последовательность {x (k) }, заданная формулой x (k+1) = ц(x (k) ), k=0, 1, ... сходится при любом начальном приближении x (0) .

ДОКАЗАТЕЛЬСТВО: Рассмотрим два соседних члена последовательности {x (k) }: x (k) = ц(x (k-1) ) и x (k+1) = ц(x (k) ) Tак как по условию 2) x (k) и x (k+1) лежат внутри отрезка , то используя теорему Лагранжа о средних значениях получаем:

x (k+1) - x (k) = ц(x (k) ) - ц(x (k-1) ) = ц "(c k )(x (k) - x (k-1) ), где c k (x (k-1) , x (k) ).

Отсюда получаем:

| x (k+1) - x (k) | = | ц "(c k ) | · | x (k) - x (k-1) | ? q | x (k) - x (k-1) | ?

? q (q | x (k-1) - x (k-2) |) = q 2 | x (k-1) - x (k-2) | ? ... ? q k | x (1) - x (0) |. (5)

Рассмотрим ряд

S ? = x (0) + (x (1) - x (0) ) + ... + (x (k+1) - x (k) ) + ... . (6)

Если мы докажем, что этот ряд сходится, то значит сходится и последовательность его частичных сумм

S k = x (0) + (x (1) - x (0) ) + ... + (x (k) - x (k-1) ).

Но нетрудно вычислить, что

S k = x (k)) . (7)

Следовательно, мы тем самым докажем и сходимость итерационной последовательности {x (k) }.

Для доказательства сходимости pяда (6) сравним его почленно (без первого слагаемого x (0) ) с рядом

q 0 | x (1) - x (0) | + q 1 |x (1) - x (0) | + ... + |x (1) - x (0) | + ..., (8)

который сходится как бесконечно убывающая геометрическая прогрессия (так как по условию q < 1 ). В силу неравенства (5) абсолютные величины ряда (6) не превосходят соответствующих членов сходящегося ряда (8) (то есть ряд (8) мажорирует ряд (6). Следовательно ряд (6) также сходится. Tем самым сходится последовательность {x (0) }.

Получим формулу, дающую способ оценки погрешности |X - x (k+1) |

метода простой итерации.

X - x (k+1) = X - S k+1 = S ? - S k+1 = (x (k+2) - (k+1) ) + (x (k+3) - x (k+2) ) + ... .

Следовательно

|X - x (k+1) | ? |x (k+2) - (k+1) | + |x (k+3) - x (k+2) | + ... ? q k+1 |x (1) - x (0) | + q k+2 |x (1) - x (0) | + ... = q k+1 |x (1) - x (0) | / (1-q).

В результате получаем формулу

|X - x (k+1) | ? q k+1 |x (1) - x (0) | / (1-q). (9)

Взяв за x (0) значение x (k) , за x (1) - значение x (k+1) (так как при выполнении условий теоремы такой выбор возможен) и учитывая, что при имеет место неравенство q k+1 ? q выводим:

|X - x (k+1) | ? q k+1 |x (k+1) - x (k) | / (1-q) ? q|x (k+1) - x (k) | / (1-q).

Итак, окончательно получаем:

|X - x (k+1) | ? q|x (k+1) - x (k) | / (1-q). (10)

Используем эту формулу для вывода критерия окончания итерационной последовательности. Пусть уравнение x=ц(x) решается методом простой итерации, причем ответ должен быть найден с точностью е, то есть

|X - x (k+1) | ? е.

С учетом (10) получаем, что точность е будет достигнута, если выполнено неравенство

|x (k+1) -x (k) | ? (1-q)/q. (11)

Таким образом, для нахождения корней уравнения x=ц(x) методом простой итерации с точностью нужно продолжать итерации до тех пор, пока модуль разности между последними соседними приближениями остается больше числа е(1-q)/q.

ЗАМЕЧАНИЕ 1: В качестве константы q обычно берут оценку сверху для величины

Геометрическая интерпретация

Рассмотрим график функции. Это означает, что решение уравнения и - это точка пересечения с прямой:


Рисунок 1.

И следующая итерация - это координата x пересечения горизонтальной прямой точки с прямой.


Рисунок 2.

Из рисунка наглядно видно требование сходимости. Чем ближе производная к 0, тем быстрее сходится алгоритм. В зависимости от знака производной вблизи решения приближения могут строится по разному. Если, то каждое следующее приближение строится с другой стороны от корня:


Рисунок 3.

Заключение

Проблема повышения качества вычислений, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов - сред и языков программирования.

Итогом работы можно считать созданную функциональную модель нахождения корней уравнения методами простой итерации, Ньютона, хорд и половинного деления. Данная модель применима к детерминированным задачам, т.е. погрешностью экспериментального вычисления которых можно пренебречь. Созданная функциональная модель и ее программная реализация могут служить органической частью решения более сложных задач.

Проведя исследования по теме курсовой работы "Численные методы. Решение нелинейных уравнений", я добилась поставленных во введении целей. Были подробно рассмотрены методы уточнения корней. К каждому определению и теореме были приведены несколько примеров. Все теоремы доказаны.

Использование различных источников дало возможность полностью раскрыть тему.

Наименование параметра Значение
Тема статьи: Метод хорд.
Рубрика (тематическая категория) Математика

Метод хорд - один из распространенных итерационных методов. Его еще называют методом линœейного интерполирования, методом пропорциональных частей.

Идея метода хорд в том, что на достаточно малом отрезке дуга кривой у =f (x) заменяется хордой и абсцисса точки пересечения хорды с осью Ox является приближенным значением корня.

Рисунок 2 – Геометрическая интерпретация метода Ньютона.

Пусть для определœенности f" (х)> 0, f"" (x) >0, f (а) <0, f (b)> 0 (рис. 3, а). Возьмем за начальное приближение искомого корня х* значения х 0 =а. Через точки а 0 и В проведем хорду и за первое приближение корня х* возьмем абсциссу x 1 точки пересечения хорды с осью ОХ. Теперь приближенное значение х 1 корня можно уточнить если применить метод хорд на отрезке [х 1 ; b ]. Абсцисса х 2 точки пересечения хордыА 1 В будет другим приближением корня. Продолжая данный процесс далее, получим последовательность х 0 , х 1 , х 2 ,..., х k , ... приближенных значений корня х* данного уравнения.

Таким образом метод хорд можно записать так:

, k=0, 1.2, …, (8)

В общем случае неподвижным будет тот конец отрезка изолированного корня, в которой знак функции f(х) совпадает со знаком второй производной, а за начальное приближение x 0 можно взять точку отрезка [а; b ], в которой f(x 0)×f"’(x 0) < 0.

К примеру, когда f (a) >0, f (b) <0, f"(х)< 0, f"(х)< 0 (рис. .3, б) конец b отрезка [а; b ] является неподвижным.

В случае если f (а)>0, f (b)< 0, f" (х)< 0, f"(x) >0 (рис.3, в), или f (а) <0, f (b) >0, f’ (х) >0, f"’ (x) <0 (рис. 3, г), точка а является неподвижным концом отрезка [а; b ].

Достаточные условия сходимости метода хорд дает такая теорема.

Рисунок 3. – Геометрическая интерпретация метода хорд

Теорема. Пусть на отрезке [а; b ] функция f (х) непрерывна вместе со своими производными второго порядка включительно, причем f(a)×f(b)<0, а производные f" (x) и f" (х) сохраняют свои знаки на [а; b ], тогда существует такая окружность корня х* уравнения f (x) =0, что для любого начального приближения х 0 этой окружности последовательность {х k }, вычисленная по формуле (8), сходится к корню х*.

Метод хорд. - понятие и виды. Классификация и особенности категории "Метод хорд." 2017, 2018.

  • - Метод хорд

    Пусть 1) функция y=F(x) определена и непрерывна на отрезке . 2) F(a)F(b)<0 Требуется найти корень на отрезке с точностью &... .


  • - МЕТОД ХОРД

    При дифференцировании этим методом отмечают ряд точек на вычерченной кривой графика функции, которые соединяют хордами, т.е. заменяют заданную кривую ломаной линией (Рис.2). Принимают следующее допущение: угол наклона касательных в точках, расположенных посередине... .


  • - Метод хорд

    В некоторых случаях несколько большей скоростью сходимости обладает метод хорд, у которого на втором этапе при выборе очередного приближения внутри отрезка, содержащего корень, учитывается величина невязки на концах отрезка: точка выбирается ближе к тому концу, где... .


  • - Метод хорд.

    Идея метода проиллюстрирована рисунком. Задается интервал , на котором f(x0)f(x1) &... .


  • - Метод хорд

    В данном методе в качестве приближения выбирается не середина отрезка, а точка пересечения хорды с осью абсцисс. Уравнение хорды АВ, соединяющей концы отрезка: (1) Точка пересечения с осью абсцисс имеет координаты, подставим в (1) и найдем (2). Сравниваем знаки и... .


  • - Комбинированный метод хорд и касательных

    Если и - приближенные значения корня по недостатку и избытку. 1. Если на, то, при этом. 2. Если на, то, при этом. Пример. Отделить корни аналитически и уточнить их комбинированным методом хорд и касательных с точностью до 0,001. , следовательно, для вычислений...

  • Метод итераций

    Метод простых итераций для уравнения f (x ) = 0 заключается в следующем:

    1) Исходное уравнение преобразуют к виду, удобному для итераций:

    x = φ (х ). (2.2)

    2) Выбирают начальное приближение х 0 и вычисляют последующие приближения по итерационной формуле
    x k = φ (х k -1), k =1,2, ... (2.3)

    Если существует предел итерационной последовательности, он является корнем уравнения f (x ) = 0, т. е. f (ξ ) =0.

    y = φ (х )

    a x 0 x 1 x 2 ξ b

    Рис. 2. Сходящийся процесс итераций

    На рис. 2 показан процесс получения очередного приближения по методу итераций. Последовательность приближений сходится к корню ξ .

    Теоретические основы для применения метода итера­ций дает следующая теорема.

    Теорема 2.3 . Пусть выполняются условия:

    1) корень уравнения х = φ(х) принадлежит отрезку [а , b ];

    2) все значения функции φ (х ) принадлежат отрезку [а , b ],т. е. а φ (х )≤ b ;

    3) существует такое положительное число q < 1, что производная φ "(x ) во всех точках отрезка [а , b ] удовлет­воряет неравенству |φ "(x ) | ≤ q .

    1) итерационная последовательность х п = φ (х п- 1)(п = 1, 2, 3, ...) сходится при любом x 0 Î [а , b ];

    2) предел итерационной последовательности является корнем уравнения

    х = φ (x ), т. е. если x k = ξ, то ξ= φ (ξ);

    3) справедливо неравенство, характеризующее ско­рость сходимости итерационной последовательности

    | ξ-x k | ≤ (b-a )×q k . (2.4)

    Очевидно что, эта теорема ставит, довольно, жесткие условия, которые необходимо проверить перед примене­нием метода итераций. Если производная функции φ (x ) по модулю больше единицы, то процесс итераций расхо­дится (рис. 3).

    y = φ (x ) y = x

    Рис. 3. Расходящийся процесс итераций

    В качестве условия сходимости итерационных методов чисто используется неравенство

    |x k - x k - 1 | ε . (2.5)

    Метод хорд заключается в замене кривой у = f (x ) отрезком прямой, проходящей через точки (а , f (a )) и (b , f (b )) рис. 4). Абсцисса точки пересечения прямой с осью ОХ принимается за очередное приближение.

    Чтобы получить расчетную формулу метода хорд, за­пишем уравнение прямой, проходящей через точки (a , f (a )) и (b , f (b )) и, приравнивая у к нулю, найдем х :

    Þ

    Алгоритм метода хорд :

    1) пусть k = 0;

    2) вычислим следующий номер итерации: k = k + 1.

    Найдем очередное k -e приближение по формуле:

    x k = a - f (a )(b - a )/(f (b ) - f (a )).

    Вычислим f (x k );

    3) если f (x k )= 0 (корень найден), то переходим к п. 5.

    Если f (x k ) ×f (b )>0, то b = x k , иначе a = x k ;

    4) если |x k – x k -1 | > ε , то переходим к п. 2;

    5) выводим значение корня x k ;

    Замечание . Действия третьего пункта аналогичны действи­ям метода половинного деления. Однако в методе хорд на каж­дом шаге может сдвигаться один и тот же конец отрезка (пра­вый или левый), если график функции в окрестности корня выпуклый вверх (рис. 4, а ) или вогнутый вниз (рис. 4, б ).Поэтому в критерии сходимости используется разность сосед­них приближений.

    Рис. 4. Метод хорд

    4. Метод Ньютона (касательных )

    Пусть найдено приближенное значение корня уравнения f (x )= 0, и обозначим его х п .Расчетная формула метода Ньютона для определения очередного приближения x n +1 может быть получена двумя способами.

    Первый способ выражает геометрический смысл метода Ньютона и состоит в том, что вместо точки пересечения графика функции у = f (x )с осью Оx ищем точку пересечения с осью Оx касательной, проведенной к графику функции в точке (x n , f (x n )),как показано на рис. 5. уравнение касательной имеет вид у - f (x n )= f " (x n )(x - x n ).

    Рис. 5. Метод Ньютона (касательных)

    В точке пересечения касательной с осью Оx переменная у = 0. Приравнивая у к нулю, выразим х и получим формулу метода касательных :

    (2.6)

    Второй способ: разложим функцию f (x )в ряд Тейлора в окрестности точки х = х n :

    Ограничимся линейными слагаемыми относительно (х - х п ),приравняем к нулю f (x ) и, выразив из получен­ного уравнения неизвестное х ,обозначив его через х n +1 получим формулу (2.6).

    Приведем достаточные условия сходимости метода Ньютона.

    Теорема 2.4 . Пусть на отрезке [а , b ]выполняются ус­ловия:

    1) функция f (x )и ее производные f " (х f "" (x )непре­рывны;

    2) производные f " (x)и f ""(x )отличны от нуля и сохра­няют определенные постоянные знаки;

    3) f (a )× f (b ) < 0 (функция f (x )меняет знак на отрезке).
    Тогда существует отрезок [α , β ], содержащий искомый корень уравнения f (x ) = 0, на котором итерационная пос­ледовательность (2.6) сходится. Если в качестве нулевого приближения х 0 выбрать ту граничную точку [α , β ], в ко­торой знак функции совпадает со знаком второй произ­водной,

    т.е. f (x 0)× f" (x 0)>0, то итерационная последо­вательность сходится монотонно

    Замечание . Отметим, что метод хорд как раз идет с противо­положной стороны, и оба этих метода могут друг друга допол­нять. Возможен и комбинированный метод хорд-касательных.

    5. Метод секущих

    Метод секущих может быть получен из метода Ньютона при замене производной приближенным выражени­ем – разностной формулой:

    , ,

    . (2.7)

    В формуле (2.7) используются два предыдущих при­ближения х п и x n - 1 .Поэтому при заданном начальном приближении х 0 необходимо вычислить следующее приближение x 1 , например, методом Ньютона с приближенной заменой производной по формуле

    ,

    Алгоритм метода секущих :

    1) заданы начальное значение х 0 и погрешность ε . Вычислим

    ;

    2) для п = 1, 2, ... пока выполняется условие |x n x n -1 | > ε , вычисляем х п+ 1 по формуле (2.7).