Рассматривается линейная функция y ax b. Свойства линейной функции. Защита персональной информации

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ЛИНЕЙНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА I

§ 3 Линейные функции и их графики

Рассмотрим равенство

у = 2х + 1. (1)

Каждому значению буквы х это равенство ставит в соответствие вполне определенное значение буквы у . Если, например, x = 0, то у = 2 0 + 1 = 1; если х = 10, то у = 2 10 + 1 = 21; при х = - 1 / 2 имеем у = 2 (- 1 / 2) + 1= 0 и т. д. Обратимся к еще к одному равенству:

у = х 2 (2)

Каждому значению х это равенство, как и равенство (1), ставит в соответствие вполне определенное значение у . Если, например, х = 2, то у = 4; при х = - 3 получаем у = 9 и т. д. Равенства (1) и (2) связывают между собой две величины х и у так, что каждому значению одной из них (х ) ставится в соответствие вполне определенное значение другой величины (у ).

Если каждому значению величины х соответствует вполне определенное значение величины у , то эта величина у называется функцией от х . Величина х при этом называется аргументом функции у .

Таким образом, формулы (1) и (2) определяют две различные функции аргумента х .

Функция аргумента х , имеющая вид

у = ах + b , (3)

где а и b - некоторые заданные числа, называется линейной . Примером линейной функции может служить любая из функций:

у = х + 2 (а = 1, b = 2);
у = - 10 (а = 0, b = - 10);
у = - 3х (а = - 3, b = 0);
у = 0 (а = b = 0).

Как известно из курса VIII класса, графиком функции у = ах + b является прямая линия . Поэтому-то данная функция и называется линейной.

Напомним, как строится график линейной функции у = ах + b .

1. График функции у = b . При a = 0 линейная функция у = ах + b имеет вид у = b . Ее графиком служит прямая, параллельная оси х и пересекающая ось у в точке с ординатой b . На рисунке 1 вы видите график функции у = 2 (b > 0), а на рисунке 2- график функции у = - 1 (b < 0).

Если не только а , но и b равно нулю, то функция у= ах+ b имеет вид у = 0. В этом случае ее график совпадает с осью х (рис. 3.)

2. График функции у = ах . При b = 0 линейная функция у = ах + b имеет вид у = ах .

Если а =/= 0, то графиком ее является прямая, проходящая через начало координат и наклоненная к оси х под углом φ , тангенс которого равен а (рис. 4). Для построения прямой у = ах достаточно найти какую-нибудь одну ее точку, отличную от начала координат. Полагая, например, в равенстве у = ах х = 1, получим у = а . Следовательно, точка М с координатами (1; а ) лежит на нашей прямой (рис. 4). Проводя теперь прямую через начало координат и точку М, получаем искомую прямую у = аx .

На рисунке 5 для примера начерчена прямая у = 2х (а > 0), а на рисунке 6 - прямая у = - х (а < 0).

3. График функции у = ах + b .

Пусть b > 0. Тогда прямая у = ах + b у = ах на b единиц вверх. В качестве примера на рисунке 7 показано построение прямой у = x / 2 + 3.

Если b < 0, то прямая у = ах + b получается посредством параллельного сдвига прямой у = ах на - b единиц вниз. В качестве примера на рисунке 8 показано построение прямой у = x / 2 - 3

Прямую у = ах + b можно построить и другим способом.

Любая прямая полностью определяется двумя своими точками. Поэтому для построения графика функции у = ах + b достаточно найти какие-нибудь две его точки, а затем провести через них прямую линию. Поясним это на примере функции у = - 2х + 3.

При х = 0 у = 3, а при х = 1 у = 1. Поэтому две точки: М с координатами (0; 3) и N с координатами (1;1) - лежат на нашей прямой. Отметив эти точки на плоскости координат и соединив их прямой линией (рис. 9), получим график функции у = - 2х + 3.

Вместо точек М и N можно было бы взять, конечно, и другие две точки. Например, в качестве значений х мы могли бы выбрать не 0 и 1, как выше, а - 1 и 2,5. Тогда для у мы получили бы соответственно значения 5 и - 2. Вместо точек М и N мы имели бы точки Р с координатами (- 1; 5) и Q с координатами (2,5; - 2). Эти две точки, так же как и точки М и N, полностью определяют искомую прямую у = - 2х + 3.

Упражнения

15. На одном и том же рисунке построить графики функций:

а) у = - 4; б) у = -2; в) у = 0; г) у = 2; д) у = 4.

Пересекаются ли эти графики с осями координат? Если пересекаются, то укажите координаты точек пересечения.

16. На одном и томже рисунке построить графики функций:

а) у = x / 4 ; б) у = x / 2 ; в) у = х ; г) у = 2х ; д) у = 4х .

17. На одном и том же рисунке построить графики функций:

а) у = - x / 4 ; б) у = - x / 2 ; в) у = - х ; г) у = - 2х ; д) у = - 4х .

Построить графики данных функций (№ 18-21) и определить координаты точек пересечения этих графиков с осями координат.

18. у = 3+ х . 20. у = - 4 - х .

19. у = 2х - 2. 21. у = 0,5(1 - 3х ).

22. Построить график функции

у = 2x - 4;

используя этот график, выяснить: а) при каких значениях х y = 0;

б) при каких значениях х значения у отрицательны и при каких - положительны;

в) при каких значениях х величины х и у имеют одинаковые знаки;

г) при каких значениях х величины х и у имеют разные знаки.

23. Написать уравнения прямых, представленных на рисунках 10 и 11.

24. Какие из известных вам физических законов описываются с помощью линейных функций?

25. Как построить график функции у = - (ах + b ), если задан график функции у = ах + b ?

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.