Шар касательная плоскость к шару. Поверхность в дифференциальной геометрии. Сечение шара плоскостью

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Мы продолжаем знакомство со сферой и её элементами.

На прошлом занятии вы изучили случаи взаимного расположения плоскости и сферы.

Следует помнить, что если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы данной плоскостью является окружностью.

Если расстояние от центра сферы до плоскости больше радиуса сферы, то плоскость и сфера не имеют общих точек.

Если расстояние от центра сферы до плоскости равно радиусу сферы, то плоскость и сфера имеют единственную общую точку.

Рассмотрим подробно случай, когда плоскость и сфера имеют единственную общую точку.

Касательной плоскостью называется плоскость, имеющая со сферой только одну общую точку, данную общую точку называют точкой касания.

Рассмотрим касательную плоскость α к сфере с центром в точке О.

Докажем, что радиус сферы перпендикулярен касательной плоскости α.

1.Проведём доказательство методом от противного, то есть предположим, что радиус ОА не перпендикулярен касательной плоскости α.

2. Следовательно, ОА — наклонная к плоскости α, значит расстояние от центра сферы до плоскости α меньше радиуса ОА.

3. Таким образом, получили — сфера и плоскость α пересекаются по окружности, что является противоречием условию о том, что плоскость α и сфера имеют одну общую точку.

Следовательно, радиус ОА перпендикулярен к плоскости α.

Итак, мы доказали теорему о свойстве касательной плоскости к сфере: радиус сферы, перпендикулярен к касательной плоскости, если он проведён в точку касания плоскости и сферы.

Данное свойство аналогично свойству касательной к окружности.

Докажем обратную теорему.

1.Проведём радиус сферы перпендикулярно к плоскости, проходящей через его конец.

2.Поэтому расстояние от центра сферы до плоскости равно радиусу сферы, значит, плоскость и сфера имеют только одну общую точку, следовательно, данная плоскость является касательной к сфере.

Таким образом, мы доказали, что если радиус сферы перпендикулярен к плоскости, проходящей через его конец, то эта плоскость является касательной к сфере.

Применим полученные знания при решении задач.

Радиус сферы равен 112 см. Точка, лежащая на плоскости касательной к сфере, удалена от точки касания на 15 см. Найти расстояние от этой точки до ближайшей к ней точки сферы.

1)Докажем, что точка А принадлежащая отрезку ОР, будет ближайшей к точке Р.

Выберем произвольную точку N на сфере.

Проведём отрезки NO и NP.

Из неравенства треугольника ONP следует:

ОА+АР=ОР, тогда

ON+NP OA+AP, где ON и OA это радиусы.

Следовательно, R+ NP R+АР или NP АР.

Итак, АР NP, а так как точка N выбрана произвольно, то точка А, принадлежащая отрезку ОР, будет ближайшей к точке Р.

2.Найдём длину искомого отрезка АР как разность отрезков ОР и ОА, где ОА радиус сферы R.

По известной теореме радиус сферы, перпендикулярен к касательной плоскости, если он проведён в точку касания плоскости и сферы, имеем, что треугольник ОКР — прямоугольный.

Отрезок ОР является гипотенузой данного треугольника, найдём его по теореме Пифагора:

ОР=√ОК2+КР2=√1122+152=√12544+225=√12769=113 см

Итак, АР=ОР-ОА=113-112=1 см.

Таким образом, расстояние от точки, лежащей на плоскости касательной, к сфере до ближайшей к ней точки сферы равно 1 см.

ОПРЕДЕЛЕНИЕ . Касательной плоскостью к поверхности в точке
называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.Нормалью называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Покажем, что
направлен по нормали к поверхности
в точке
­.

Рассмотрим кривую , лежащую на поверхности и проходящую через точку
(рис. 15). Пусть она задана параметрическими уравнениями

.

Если
– радиус-вектор точки
, движущейся при изменениивдоль, то, а
– радиус-вектор точки
.

Так как лежит на поверхности, то. Продифференцируем это тождество по:

. (6.6)

По определению
, а. Поэтому (6.6) означает, что скалярное произведение
во всех точках кривой.

Равенство нулю скалярного произведения векторов – необходимое и достаточное условие их перпендикулярности. Значит, в точке

. Но вектор
– вектор скорости – направлен по касательной к траектории точки

, то есть по касательной к кривой(рис. 15). Так каквыбрана произвольно, то
перпендикулярен всевозможным касательным, проведенным к линиям, лежащим на
и проходящим через точку
. А это по определению означает, что
перпендикулярен касательной плоскости, то есть является ее нормалью.

Отсюда уравнение касательной плоскости к данной поверхности имеет вид (см. гл. 3):

Уравнение нормали (см. гл. 3):

. (6.8)

В частности, если поверхность задана явным уравнением
, получим:– уравнение касательной

плоскости, и
– уравнение нормали.

ПРИМЕР . Написать уравнения касательной плоскости и нормали к сфере
в точке
.

Очевидно

Уравнение касательной плоскости (6.7):

Уравнения нормали (6.8):

.

Заметим, что эта прямая проходит через начало координат, то есть центр сферы.

ПРИМЕР . Написать уравнение касательной плоскости к эллиптическому параболоиду
в точке
.

Эта поверхность задана явным уравнением и
.

Поэтому уравнение касательной плоскости в данной точке имеет вид: или.

Экстремумы функции двух переменных

Пусть функция
определена во всех точках некоторой области
.

ОПРЕДЕЛЕНИЕ . Точка
называется точкой максимума (минимума) функции
, если существует её окрестность
, всюду в пределах которой.

Из определения следует, что если
– точка максимума, то

; если
– точка минимума, то

ТЕОРЕМА (необходимое условие экстремума дифференцируемой функции двух переменных). Пусть функция
имеет в точке
экстремум. Если в этой точке существуют производные первого порядка, то

ДОКАЗАТЕЛЬСТВО . Зафиксируем значение
. Тогда
– функция одной переменной. Она имеет экстремум при
и по необходимому условию экстремума дифференцируемой функции одной переменной (см. гл. 5)
.

Аналогично, зафиксировав значение
, получим, что
.

Что и требовалось доказать.

ОПРЕДЕЛЕНИЕ . Стационарной точкой функции
называется точка
, в которой обе частные производные первого порядка равны нулю:

.

ЗАМЕЧАНИЕ 1 . Сформулированное необходимое условие не является достаточным условием экстремума.

Пусть
. Значит,
стационарная точка этой функции. Рассмотрим произвольную- окрестность начала координат.

В пределах этой окрестности имеет, очевидно, разные знаки (рис. 16). А это означает, что точка
точкой экстремума по определению не является.

Таким образом, не всякая стационарная точка – точка экстремума .

ЗАМЕЧАНИЕ 2 . Непрерывная функция может иметь экстремум, но не иметь стационарной точки.

Рассмотрим функцию
. Её графиком является верхняя
половина конуса, и, очевидно,
– точка минимума (рис. 17).

ОПРЕДЕЛЕНИЕ . Точки, в которых частные производные первого порядка функции
равны нулю или не существуют, называются еекритическими точками.

ТЕОРЕМА (достаточное условие экстремума функции
). Пусть функция
имеет частные производные второго порядка в некоторой окрестностистационарной точки
. Пусть, кроме того,

.

Тогда, если

1)
, то
– точка экстремума, именно: точка максимума, если
, или точка минимума, если
;

2)
, то экстремума в точке
нет;

3)
, то требуются дополнительные исследования для выяснения характера точки
.

(Без доказательства).

ПРИМЕР . Исследовать на экстремум функцию
.

Найдем стационарные точки:
. Стационарных точек нет, значит, функция не имеет экстремума.

ПРИМЕР . Исследовать на экстремум функцию .

Чтобы найти стационарные точки, надо решить систему уравнений:

То есть данная функция имеет четыре стационарные точки.

Проверим достаточное условие экстремума для каждой из них:

.

Так как
, то в точках
экстремума нет.

и
, значит,
– точка минимума и
;
и
, значит,
– точка максимума и
.

Соглашение

Правила регистрации пользователей на сайте "ЗНАК КАЧЕСТВА":

Запрещается регистрация пользователей с никами подобными: 111111, 123456, йцукенб, lox и.т.п;

Запрещается повторно регистрироваться на сайте (создавать дубль-аккаунты);

Запрещается использовать чужие данные;

Запрещается использовать чужие e-mail адреса;

Правила поведения на сайте, форуме и в комментариях:

1.2. Публикация в анкете личных данных других пользователей.

1.3. Любые деструктивные действия по отношению к данному ресурсу (деструктивные скрипты, подбор паролей, нарушение системы безопасности и т.д.).

1.4. Использование в качестве никнейма нецензурных слов и выражений; выражений, нарушающие законы Российской Федерации, нормы этики и морали; слов и фраз, похожих на никнеймы администрации и модераторов.

4. Нарушения 2-й категории: Наказываются полным запретом на отправления любых видов сообщений сроком до 7 суток. 4.1.Размещение информации, подпадающей под действие Уголовного Кодекса РФ, Административного Кодекса РФ и противоречащей Конституции РФ.

4.2. Пропаганда в любой форме экстремизма, насилия, жестокости, фашизма, нацизма, терроризма, расизма; разжигание межнациональной, межрелигиозной и социальной розни.

4.3. Некорректное обсуждение работы и оскорбления в адрес авторов текстов и заметок, опубликованных на страницах "ЗНАК КАЧЕСТВА".

4.4. Угрозы в адрес участников форума.

4.5. Размещение заведомо ложной информации, клеветы и прочих сведений, порочащих честь и достоинство как пользователей, так и других людей.

4.6. Порнография в аватарах, сообщениях и цитатах, а также ссылки на порнографические изображения и ресурсы.

4.7. Открытое обсуждение действий администрации и модераторов.

4.8. Публичное обсуждение и оценка действующих правил в любой форме.

5.1. Мат и ненормативная лексика.

5.2. Провокации (личные выпады, личная дискредитация, формирование негативной эмоциональной реакции) и травля участников обсуждений (систематическое использование провокаций по отношению к одному или нескольким участникам).

5.3. Провоцирование пользователей на конфликт друг с другом.

5.4. Грубость и хамство по отношению к собеседникам.

5.5. Переход на личности и выяснение личных отношений на ветках форума.

5.6. Флуд (идентичные или бессодержательные сообщения).

5.7. Преднамеренное неправильное написание псевдонимов и имен других пользователей в оскорбительной форме.

5.8. Редактирование цитируемых сообщений, искажающее их смысл.

5.9. Публикация личной переписки без явно выраженного согласия собеседника.

5.11. Деструктивный троллинг - целенаправленное превращение обсуждения в перепалку.

6.1. Оверквотинг (избыточное цитирование) сообщений.

6.2. Использование шрифта красного цвета, предназначенного для корректировок и замечаний модераторов.

6.3. Продолжение обсуждения тем, закрытых модератором или администратором.

6.4. Создание тем, не несущих смыслового наполнения или являющихся провокационными по содержанию.

6.5. Создание заголовка темы или сообщения целиком или частично заглавными буквами или на иностранном языке. Исключение делается для заголовков постоянных тем и тем, открытых модераторами.

6.6. Создание подписи шрифтом большим, чем шрифт поста, и использование в подписи больше одного цвета палитры.

7. Санкции, применяемые к нарушителям Правил Форума

7.1. Временный или постоянный запрет на доступ к Форуму.

7.4. Удаление учетной записи.

7.5. Блокировка IP.

8. Примечания

8.1.Применение санкций модераторами и администрацией может производиться без объяснения причин.

8.2. В данные правила могут быть внесены изменения, о чем будет сообщено всем участникам сайта.

8.3. Пользователям запрещается использовать клонов в период времени, когда заблокирован основной ник. В данном случае клон блокируется бессрочно, а основной ник получит дополнительные сутки.

8.4 Сообщение, содержащее нецензурную лексику, может быть отредактировано модератором или администратором.

9. Администрация Администрация сайта "ЗНАК КАЧЕСТВА" оставляет за собой право удаления любых сообщений и тем без объяснения причин. Администрация сайта оставляет за собой право редактировать сообщения и профиль пользователя, если информация в них лишь частично нарушает правила форумов. Данные полномочия распространяются на модераторов и администраторов. Администрация сохраняет за собой право изменять или дополнять данные Правила по мере необходимости. Незнание правил не освобождает пользователя от ответственности за их нарушение. Администрация сайта не в состоянии проверять всю информацию, публикуемую пользователями. Все сообщения отображают лишь мнение автора и не могут быть использованы для оценки мнения всех участников форума в целом. Сообщения сотрудников сайта и модераторов являются выражением их личного мнения и могут не совпадать с мнением редакции и руководства сайта.

Поверхность определяется как множество точек , координаты которых удовлетворяют определённому виду уравнений:

F (x , y , z) = 0 (1) {\displaystyle F(x,\,y,\,z)=0\qquad (1)}

Если функция F (x , y , z) {\displaystyle F(x,\,y,\,z)} непрерывна в некоторой точке и имеет в ней непрерывные частные производные, по крайней мере одна из которых не обращается в нуль, то в окрестности этой точки поверхность, заданная уравнением (1), будет правильной поверхностью .

Помимо указанного выше неявного способа задания , поверхность может быть определена явно , если одну из переменных, например, z, можно выразить через остальные:

z = f (x , y) (1 ′) {\displaystyle z=f(x,y)\qquad (1")}

Более строго, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.

Пусть на плоскости с прямоугольной системой координат u и v задан квадрат , координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) (параметрическое задание поверхности). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u", v") были различными соответствующие точки (x, у, z) и (x", у", z").

Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью . Это вызывает необходимость дальнейшего обобщения понятия поверхности.

Подмножество пространства, у каждой точки которого есть окрестность, являющаяся простой поверхностью , называется правильной поверхностью .

Поверхность в дифференциальной геометрии

Геликоид

Катеноид

Метрика не определяет однозначно форму поверхности. Например, метрики геликоида и катеноида , параметризованных соответствующим образом, совпадают, то есть между их областями существует соответствие, сохраняющее все длины (изометрия). Свойства, сохраняющиеся при изометрических преобразованиях, называются внутренней геометрией поверхности. Внутренняя геометрия не зависит от положения поверхности в пространстве и не меняется при её изгибании без растяжения и сжатия (например, при изгибании цилиндра в конус) .

Метрические коэффициенты E , F , G {\displaystyle E,\ F,\ G} определяют не только длины всех кривых, но и вообще результаты всех измерений внутри поверхности (углы, площади, кривизна и др.). Поэтому всё, что зависит только от метрики, относится к внутренней геометрии.

Нормаль и нормальное сечение

Векторы нормали в точках поверхности

Одной из основных характеристик поверхности является её нормаль - единичный вектор, перпендикулярный касательной плоскости в заданной точке:

m = [ r u ′ , r v ′ ] | [ r u ′ , r v ′ ] | {\displaystyle \mathbf {m} ={\frac {[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]}{|[\mathbf {r"_{u}} ,\mathbf {r"_{v}} ]|}}} .

Знак нормали зависит от выбора координат.

Сечение поверхности плоскостью, содержащей нормаль поверхности в заданной точке, образует некоторую кривую, которая называется нормальным сечением поверхности. Главная нормаль для нормального сечения совпадает с нормалью к поверхности (с точностью до знака).

Если же кривая на поверхности не является нормальным сечением, то её главная нормаль образует с нормалью поверхности некоторый угол θ {\displaystyle \theta } . Тогда кривизна k {\displaystyle k} кривой связана с кривизной k n {\displaystyle k_{n}} нормального сечения (с той же касательной) формулой Мёнье :

k n = ± k cos θ {\displaystyle k_{n}=\pm k\,\cos \,\theta }

Координаты орта нормали для разных способов задания поверхности приведены в таблице:

Координаты нормали в точке поверхности
неявное задание (∂ F ∂ x ; ∂ F ∂ y ; ∂ F ∂ z) (∂ F ∂ x) 2 + (∂ F ∂ y) 2 + (∂ F ∂ z) 2 {\displaystyle {\frac {\left({\frac {\partial F}{\partial x}};\,{\frac {\partial F}{\partial y}};\,{\frac {\partial F}{\partial z}}\right)}{\sqrt {\left({\frac {\partial F}{\partial x}}\right)^{2}+\left({\frac {\partial F}{\partial y}}\right)^{2}+\left({\frac {\partial F}{\partial z}}\right)^{2}}}}}
явное задание (− ∂ f ∂ x ; − ∂ f ∂ y ; 1) (∂ f ∂ x) 2 + (∂ f ∂ y) 2 + 1 {\displaystyle {\frac {\left(-{\frac {\partial f}{\partial x}};\,-{\frac {\partial f}{\partial y}};\,1\right)}{\sqrt {\left({\frac {\partial f}{\partial x}}\right)^{2}+\left({\frac {\partial f}{\partial y}}\right)^{2}+1}}}}
параметрическое задание (D (y , z) D (u , v) ; D (z , x) D (u , v) ; D (x , y) D (u , v)) (D (y , z) D (u , v)) 2 + (D (z , x) D (u , v)) 2 + (D (x , y) D (u , v)) 2 {\displaystyle {\frac {\left({\frac {D(y,z)}{D(u,v)}};\,{\frac {D(z,x)}{D(u,v)}};\,{\frac {D(x,y)}{D(u,v)}}\right)}{\sqrt {\left({\frac {D(y,z)}{D(u,v)}}\right)^{2}+\left({\frac {D(z,x)}{D(u,v)}}\right)^{2}+\left({\frac {D(x,y)}{D(u,v)}}\right)^{2}}}}}

Здесь D (y , z) D (u , v) = | y u ′ y v ′ z u ′ z v ′ | , D (z , x) D (u , v) = | z u ′ z v ′ x u ′ x v ′ | , D (x , y) D (u , v) = | x u ′ x v ′ y u ′ y v ′ | {\displaystyle {\frac {D(y,z)}{D(u,v)}}={\begin{vmatrix}y"_{u}&y"_{v}\\z"_{u}&z"_{v}\end{vmatrix}},\quad {\frac {D(z,x)}{D(u,v)}}={\begin{vmatrix}z"_{u}&z"_{v}\\x"_{u}&x"_{v}\end{vmatrix}},\quad {\frac {D(x,y)}{D(u,v)}}={\begin{vmatrix}x"_{u}&x"_{v}\\y"_{u}&y"_{v}\end{vmatrix}}} .

Все производные берутся в точке (x 0 , y 0 , z 0) {\displaystyle (x_{0},y_{0},z_{0})} .

Кривизна

Для разных направлений в заданной точке поверхности получается разная кривизна нормального сечения, которая называется нормальной кривизной ; ей приписывается знак плюс, если главная нормаль кривой идёт в том же направлении, что и нормаль к поверхности, или минус, если направления нормалей противоположны.

Вообще говоря, в каждой точке поверхности существуют два перпендикулярных направления e 1 {\displaystyle e_{1}} и e 2 {\displaystyle e_{2}} , в которых нормальная кривизна принимает минимальное и максимальное значения; эти направления называются главными . Исключение составляет случай, когда нормальная кривизна по всем направлениям одинакова (например, у сферы или на торце эллипсоида вращения), тогда все направления в точке - главные.

Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.

Нормальные кривизны в главных направлениях называются главными кривизнами ; обозначим их κ 1 {\displaystyle \kappa _{1}} и κ 2 {\displaystyle \kappa _{2}} . Величина:

K = κ 1 κ 2 {\displaystyle K=\kappa _{1}\kappa _{2}}

называется гауссовой кривизной , полной кривизной или просто кривизной поверхности. Встречается также термин скаляр кривизны , который подразумевает результат свёртки тензора кривизны ; при этом скаляр кривизны вдвое больше, чем гауссова кривизна.

Гауссова кривизна может быть вычислена через метрику, и поэтому она является объектом внутренней геометрии поверхностей (отметим, что главные кривизны к внутренней геометрии не относятся). По знаку кривизны можно классифицировать точки поверхности (см. рисунок). Кривизна плоскости равна нулю. Кривизна сферы радиуса R всюду равна 1 R 2 {\displaystyle {\frac {1}{R^{2}}}} . Существует и поверхность постоянной отрицательной кривизны -