Решетки Браве. Методические материалы. ?76. Дефекты в кристаллах. Точечные дефекты. Дислокации. Колебания кристаллической решётки

Или трансляционная группа , которыми может быть получена вся бесконечная кристаллическая решётка. Все кристаллические структуры описываются 14 решётками Браве, число которых ограничивается симметрией .

Типы решёток Браве

Разделяют двухмерные и трёхмерные решётки Браве.

  • Пять двухмерных решёток Браве

Обозначение mm указывает на наличие двух плоскостей зеркального отражения.

  • Четырнадцать трёхмерных решёток Браве обычно подразделяются на семь систем, в соответствии с семью различными типами элементарных ячеек: триклинной, моноклинной, ромбической, тетрагональной, кубической, тригональной и гексагональной. Каждая из систем характеризуется своим соотношением осей a ,b ,c и углов \alpha, \beta, \gamma.
Кристаллографическая система Число ячеек в системе Символ ячейки Характеристики элементарной ячейки
Триклинная 1 P a \not= b \not= c; \alpha \not= \beta \not= \gamma
Моноклинная 2 P , C a \not= b \not= c; \alpha = \gamma = 90^\circ \not= \beta
Ромбическая 4 P , C , I , F a \not= b \not= c; \alpha = \beta = \gamma = 90^\circ
Тетрагональная 2 P , I a = b \not= c; \alpha = \beta = \gamma = 90^\circ
Кубическая 3 P , I , F a = b = c; \alpha = \beta = \gamma = 90^\circ
Тригональная 1 R a = b = c; \alpha = \beta = \gamma < 120^\circ, \not=90^\circ
Гексагональная 1 P a = b \not= c; \alpha = \beta = 90^\circ; \gamma = 120^\circ

Решётка Браве и структура кристалла

Решётка Браве является математической моделью, отражающей трансляционную симметрию кристалла. В общем случае, решётка Браве не совпадает с реальным кристаллом, а узлы не соответствуют атомам. Поэтому следует отличать кристаллическую решётку и решётку Браве.

Построение типов решётки Браве

Понятие решётки Браве связано с основными трансляционными векторами . Основным трансляционным вектором называется минимальный в данном направлении вектор перехода из данной точки в ближайшую эквивалентную. В трёхмерном случае таких некомпланарных векторов будет три (обозначим \vec a_1, \vec a_2, \vec a_3).

Задав нулевую точку, строим совокупность точек по правилу: \vec a = n_1\vec a_1 + n_2\vec a_2 + n_3\vec a_3 , где n_1,\ n_2,\ n_3 − произвольные целые числа. Получившаяся решётка - решётка Браве.

Элементарная ячейка

Элементарная ячейка решётки Браве - параллелепипед , построенный на основных векторах трансляции. Выбор этих векторов неоднозначен (см. рис.), но объём элементарной ячейки \Omega= \left(\vec a_1 \cdot \left[ \vec a_2 \times \vec a_3 \right] \right) не зависит от выбора трансляционных векторов. Это связано с инвариантностью получающегося детерминанта относительно сложения и вычитания строк.

На элементарную ячейку решётки Браве приходится один узел.

Элементарную ячейку можно задать и другими способами. Например, в форме ячейки Вигнера-Зейтца наглядно видно, что на ячейки приходится один узел.

По симметрии элементарной ячейки выделяют сингонии в кристаллографии и физике твёрдого тела.

Напишите отзыв о статье "Решётка Браве"

Отрывок, характеризующий Решётка Браве

Но когда событие принимало свои настоящие, исторические размеры, когда оказалось недостаточным только словами выражать свою ненависть к французам, когда нельзя было даже сражением выразить эту ненависть, когда уверенность в себе оказалась бесполезною по отношению к одному вопросу Москвы, когда все население, как один человек, бросая свои имущества, потекло вон из Москвы, показывая этим отрицательным действием всю силу своего народного чувства, – тогда роль, выбранная Растопчиным, оказалась вдруг бессмысленной. Он почувствовал себя вдруг одиноким, слабым и смешным, без почвы под ногами.
Получив, пробужденный от сна, холодную и повелительную записку от Кутузова, Растопчин почувствовал себя тем более раздраженным, чем более он чувствовал себя виновным. В Москве оставалось все то, что именно было поручено ему, все то казенное, что ему должно было вывезти. Вывезти все не было возможности.
«Кто же виноват в этом, кто допустил до этого? – думал он. – Разумеется, не я. У меня все было готово, я держал Москву вот как! И вот до чего они довели дело! Мерзавцы, изменники!» – думал он, не определяя хорошенько того, кто были эти мерзавцы и изменники, но чувствуя необходимость ненавидеть этих кого то изменников, которые были виноваты в том фальшивом и смешном положении, в котором он находился.
Всю эту ночь граф Растопчин отдавал приказания, за которыми со всех сторон Москвы приезжали к нему. Приближенные никогда не видали графа столь мрачным и раздраженным.
«Ваше сиятельство, из вотчинного департамента пришли, от директора за приказаниями… Из консистории, из сената, из университета, из воспитательного дома, викарный прислал… спрашивает… О пожарной команде как прикажете? Из острога смотритель… из желтого дома смотритель…» – всю ночь, не переставая, докладывали графу.
На все эта вопросы граф давал короткие и сердитые ответы, показывавшие, что приказания его теперь не нужны, что все старательно подготовленное им дело теперь испорчено кем то и что этот кто то будет нести всю ответственность за все то, что произойдет теперь.
– Ну, скажи ты этому болвану, – отвечал он на запрос от вотчинного департамента, – чтоб он оставался караулить свои бумаги. Ну что ты спрашиваешь вздор о пожарной команде? Есть лошади – пускай едут во Владимир. Не французам оставлять.
– Ваше сиятельство, приехал надзиратель из сумасшедшего дома, как прикажете?
– Как прикажу? Пускай едут все, вот и всё… А сумасшедших выпустить в городе. Когда у нас сумасшедшие армиями командуют, так этим и бог велел.
На вопрос о колодниках, которые сидели в яме, граф сердито крикнул на смотрителя:
– Что ж, тебе два батальона конвоя дать, которого нет? Пустить их, и всё!
– Ваше сиятельство, есть политические: Мешков, Верещагин.
– Верещагин! Он еще не повешен? – крикнул Растопчин. – Привести его ко мне.

К девяти часам утра, когда войска уже двинулись через Москву, никто больше не приходил спрашивать распоряжений графа. Все, кто мог ехать, ехали сами собой; те, кто оставались, решали сами с собой, что им надо было делать.
Граф велел подавать лошадей, чтобы ехать в Сокольники, и, нахмуренный, желтый и молчаливый, сложив руки, сидел в своем кабинете.
Каждому администратору в спокойное, не бурное время кажется, что только его усилиями движется всо ему подведомственное народонаселение, и в этом сознании своей необходимости каждый администратор чувствует главную награду за свои труды и усилия. Понятно, что до тех пор, пока историческое море спокойно, правителю администратору, с своей утлой лодочкой упирающемуся шестом в корабль народа и самому двигающемуся, должно казаться, что его усилиями двигается корабль, в который он упирается. Но стоит подняться буре, взволноваться морю и двинуться самому кораблю, и тогда уж заблуждение невозможно. Корабль идет своим громадным, независимым ходом, шест не достает до двинувшегося корабля, и правитель вдруг из положения властителя, источника силы, переходит в ничтожного, бесполезного и слабого человека.
Растопчин чувствовал это, и это то раздражало его. Полицеймейстер, которого остановила толпа, вместе с адъютантом, который пришел доложить, что лошади готовы, вошли к графу. Оба были бледны, и полицеймейстер, передав об исполнении своего поручения, сообщил, что на дворе графа стояла огромная толпа народа, желавшая его видеть.

Вид пространственных решёток (См. Пространственная решётка ) кристаллов, установленный впервые французским учёным О. Браве в 1848.Браве высказал гипотезу о том, что пространственные решётки кристаллов построены из закономерно расположенных в пространстве точек - узлов (где расположены атомы), которые могут быть получены в результате повторения данной точки путём параллельных переносов (трансляций (См. Трансляция )) (рис. 1 ).Проведением прямых линий и плоскостей через эти точки пространственная решётка разбивается на равные параллелепипеды (ячейки). Всего существует 14 видов таких решёток, которыми в первом приближении может быть описана структура любого кристалла. Б. р. делятся на 4 типа (см. рис. 2): 1) примитивный - узлы расположены только в вершинах параллелепипеда, 2) базоцентрированный - имеется ещё по одному узлу в центрах двух противолежащих граней, 3) объёмноцентрированный - к примитивному типу добавлен узел в центре ячейки, 4) гранецентрированный - имеется по одному узлу в центре каждой грани. Б. р. распределяются по сингониям (системам) следующим образом: триклинная - 1, моноклинных - 2, тетрагональных - 2, ромбических - 4, тригональная (ромбоэдрическая) - 1, гексагональная - 1, кубических - 3.

Рис. 1. Схема построения пространственной решётки кристалла путём параллельных переносов.

Рис. 2. Решётки Браве. Сингонии: кубическая - куб со сторонами a = b = c и углами между ними α = β = γ = 90°; тетрагональная - параллелепипед a = b ≠ c, α = β = γ = 90°; ромбическая - параллелепипед a ≠ b ≠ c, α = β = γ = 90°; тригональная (ромбоэдр - куб, вытянутый вдоль пространственной диагонали) a = b = c, α = β = γ ≠ 90°; гексагональная - состоит из трех призм с основанием в форме ромба a = b ≠ c, α = β = 90°, γ = 120°; моноклинная - параллелепипед a ≠ b ≠ c, α = γ = 90°, β ≠ 90°; триклинная - косоугольный параллелепипед a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90°.

20. Кристалл, его основные свойства.

Кристалл – это твёрдое тело, вырастающее в природных условиях с более или менее плоскими гранями и прямолинейными рёбрами.

Основные свойства кристаллов – анизотропность, однородность, способность к самоогоранению и наличие постоянной температуры плавления определяются их внутренним строением.

Анизотропность

Это свойство называется еще неравносвойственностью.Выражается она в том, что физические свойства кристаллов (твердость, прочность, теплопроводность, электропроводность, скорость распространения света) неодинаковы по разным направлениям.Частицы, образующие кристаллическую структуру по непараллельным направлениям, отстоят друг от друга на разных расстояниях, вследствие чего и свойства кристаллического вещества по таким направлениям должны быть различными.Характерным примером вещества с ярко выраженной анизотропностью является слюда.Кристаллические пластинки этого минерала легко расщепляются лишь по плоскостям, параллельным его пластинчастости.В поперечных же направлениях расщепить пластинки слюды значительно труднее.

Анизотропность проявляется и в том, что при воздействии на кристалл какого-либо растворителя скорость химических реакций различна по различным направлениям.В результате каждый кристалл при растворении приобретает свои характерные формы, носящие название фигур вытравливания.

Аморфные вещества характеризуются изотропностью (равносвойственностью) – физические свойства по всем направлениям проявляются одинаково.

Однородность

Ввыражается в том, что любые элементарные объемы кристаллического вещества, одинаково ориентированные в пространстве, абсолютно одинаковы по всем своим свойствам: имеют один и тот же цвет, массу, твердость и т.д. таким образом, всякий кристалл есть однородное, но в то же время и анизотропное тело.

Однородность присуща не только кристаллическим телам.Твердые аморфные образования также могут быть однородными.Но аморфные тела не могут сами по себе принимать многогранную форму.

Способность к самоогранению

Способность к самоогранению выражается в том, что любой обломок или выточенный из кристалла шарик в соответствующей для его роста среде с течением времени покрывается характерными для данного кристалла гранями.Эта особенность связана с кристаллической структурой.Стеклянный же шарик, например, такой особенностью не обладает.

Кристаллы одного и того же вещества могут отличаться друг от друга своей величиной, числом граней, ребер и формой граней.Это зависит от условий образования кристалла.При неравномерном росте кристаллы получаются сплющенными, вытянутыми и т.д.Неизменными остаются углы между соответственными гранями растущего кристалла. Эта особенность кристаллов известна как закон постоянства гранных углов .При этом величина и форма граней у различных кристаллов одного и того же вещества, расстояние между ними и даже их число могут меняться, но углы между соответствующими гранями во всех кристаллах одного и того же вещества остаются постоянными при одинаковых условиях давления и температуры.

Постоянная температура плавления

Выражается в том, что при нагревании кристаллического тела температура повышается до определенного предела; при дальнейшем же нагревании вещество начинает плавиться, а температура некоторое время остается постоянной, так как все тепло идет на разрушение кристаллической решетки.Температура, при которой начинается плавление, называется температурой плавления.

Аморфные вещества в отличие от кристаллических не имеют четко выраженной температуры плавления.На кривых охлаждения (или нагревания) кристаллических и аморфных веществ, можно видеть, что в первом случае имеются два резких перегиба, соответствующие началу и концу кристаллизации; в случае же охлаждения аморфного вещества мы имеем плавную кривую.По этому признаку легко отличить кристаллические вещества от аморфных.

Решетки Браве

В кристаллическом веществе частицы, его слагающие (атомы, ионы, молекулы) расположены в пространстве закономерно, периодически повторяясь. Частицы располагаются по узлам кристаллической решетки. Элементы решетки – ряды, плоские сетки и узлы.

В 1848г. кристаллограф Огюст Браве доказал, что из любой кристаллической решетки можно выделить так называемую элементарную ячейку (параллелепипед повторяемости; решетка Браве).

Всю кристаллическую решетку можно получить путем трансляции (переноса) параллелепипеда повторяемости в пространстве.

Принципы выбора элементарной ячейки :

1) Симметрия ячейки должна отвечать максимально возможному числу элементов симметрии ячейки этого вещества.

2) Элементарная ячейка должна содержать максимальное число прямых углов, или равных углов и равных ребер.

3) Объем ячейки должен быть минимальным.

Форма ячейки изменяется в зависимости от соотношения параметров. Кроме того, вид ячейки изменяется в зависимости от расположения атомов в этих элементарных ячейках.

Различают следующие виды решеток Браве:


Таблица 7.1 – Зависимость формы ячеек от сингоний

Сингония и примеры Принцип изменения Тип решетки Браве
Р С F J
Триклинная K 2 Gr 2 O 7 Форма ячейки - косоугольный параллелепипед (или комбинация трех пинакоидов). a≠b≠c Ðα≠Ðβ≠Ðg
Моноклинная S b Сочетание трех пинакоидов a≠b≠c Ðα=Ðβ=90 о ≠ Ðg
Ромбическая S a Сочетание трех пинакоидов в виде «кирпичика» a≠b≠c Ðα=Ðβ=Ðg=90 o
Тригональная (ромбоэдри-ческая) As, Bi Форма элементарной ячейки – ромбоэдр. Координатные ребра ромбоэдра образуют одинаковые косые углы с главной осью симметрии L 3 a=b=c Ðα=Ðβ=Ðg≠90 о
Тетрагональная Sn b , TiO 2 Форма ячейки – сочетание тетрагональной призмы и пинакоида a=b≠c Ðα=Ðβ=Ðg=90 o
Гексагональная Zn, Cd В качестве примитивной ячейки принимается ромбическая призма, длинное ребро которой параллельно оси L 6 , а угол в основании составляет 120 о** a=b≠c Ðα=Ðβ=90 о, Ðg=120 o
Кубическая Cu, Fe, NaCl Форма ячейки – куб a=b=c Ðα=Ðβ=Ðg=90 o

** В связи с тем, что такая элементарная ячейка не соответствует симметрии кристалла, гексагональную решетку можно описать в виде трех ромбических призмочек, соединенных в гексагональную призму. И такая ячейка превращается в базоцентрированную.


Итак, все возможные варианты простых решеток, состоящих из атомов одного типа, можно описать одной из 14-ти решеток Браве. В случае сложных структур описывают решетки по разным типам атомов, а сложную решетку представляют в виде 2-х или 3-х взаимопроникающих простых решеток.

Например, решетку галита (NaCl) описывают как две гранецентрированные кубические решетки, одна из которых по ионам Na + , другая – по ионам Cl - , встроенные друг в друга и сдвинутые на ½ пространственной диагонали куба.

Более детальная классификация структур производится по 230 группам симметрии Федорова. В этих группах кроме уже известных элементов симметрии (осей, плоскостей, центров) добавляются элементы симметрии самой решетки (это – плоскости скользящего отражения, винтовые оси симметрии, трансляция).

Решётка Браве

Решётка Браве́ - понятие для характеристики кристаллической решётки относительно сдвигов. Названа в честь французского физика Огюста Браве . Решеткой или системой трансляций Браве называется набор элементарных трансляций или трансляционная группа , которыми может быть получена вся бесконечная кристаллическая решётка. Все кристаллические структуры описываются 14 решётками Браве, число которых ограничивается симметрией .

Типы решёток Браве

Разделяют двухмерные и трехмерные решётки Браве.

  • Пять двухмерных решёток Браве
Решетка Элементарная ячейка Точечная группа симметрии
Косоугольная Параллелограмм; 2
Квадратная Квадрат;
Гексагональная -ный ромб;
Примитивная прямоугольная Прямоугольник;
Центрированная прямоугольная Прямоугольник;

Обозначение указывает на наличие двух плоскостей зеркального отражения

Кристаллографическая система Число ячеек в системе Символ ячейки Характеристики элементарной ячейки
Триклинная 1 P
Моноклинная 2 P , C
Ромбическая 4 P , C , I , F
Тетрагональная 2 P , I
Кубическая 3 P , I , F
Тригональная 1 R
Гексагональная 1 P

Решетка Браве и структура кристалла

Решетка Браве является математической моделью, отражающей трансляционную симметрию кристалла. В общем случае, решётка Браве не совпадает с реальным кристаллом, а узлы не соответствуют атомам. Поэтому следует отличать кристаллическую решётку и решётку Браве.

Неоднозначность выбора трансляционных векторов. Площадь элементарных ячеек одинакова

Построение решётки Браве

Понятие решётки Браве связано с основными трансляционными векторами . Основным трансляционным вектором называется минимальный в данном направлении вектор перехода из данной точки в ближайшую эквивалентную. В трехмерном случае таких некомпланарных векторов будет три (обозначим , , ).

Задав нулевую точку, строим совокупность точек по правилу: , где − произвольные целые числа. Получившаяся решётка - решётка Браве.

Элементарная ячейка

Элементарная ячейка решётки Браве - параллелепипед , построенный на основных векторах трансляции. Выбор этих векторов неоднозначен (см. рис.), но объём элементарной ячейки не зависит от выбора трансляционных векторов. Это связано с инвариантностью получающегося детерминанта относительно сложения и вычитания строк.

На элементарную ячейку решётки Браве приходится один узел.

Элементарную ячейку можно задать и другими способами. Например, в форме ячейки Вигнера-Зейтца наглядно видно, что на ячейки приходится один узел.

По симметрии элементарной ячейки выделяют сингонии в кристаллографии и физике твердого тела.


Wikimedia Foundation . 2010 .

Смотреть что такое "Решётка Браве" в других словарях:

    Решётка Браве понятие для характеристики кристаллической решётки относительно сдвигов. Названа в честь французского физика Браве. Решеткой Браве называется бесконечная система точек, которая образуется трансляционным повторением одной точки.… … Википедия

    По В. И. Далю всякая несплошная вещь, со сквозниной, с промежками, пролётами; ряд установленных жердочек, шестиков, или переложенных, переплетённых вдоль и поперек, либо иным образом; строительство и охранные технологии:… … Википедия

    Решётка по В. И. Далю всякая несплошная вещь, со сквозниной, с промежками, пролётами; ряд установленных жердочек, шестиков, или переложенных, переплетённых вдоль и поперек, либо иным образом; В математике Решётка в теории множеств частично… … Википедия

    Вид пространственных решёток (См. Пространственная решётка) кристаллов, установленный впервые французским учёным О. Браве в 1848. Браве высказал гипотезу о том, что пространственные решётки кристаллов построены из закономерно… …

    У этого термина существуют и другие значения, см. Решётка. Кристаллическая решётка вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки… … Википедия

    Присущее веществу в кристаллическом состоянии правильное расположение атомов (ионов, молекул), характеризующееся периодической повторяемостью в трёх измерениях. Ввиду такой периодичности для описания К. р. достаточно знать размещение… … Большая советская энциклопедия

    Трёхмерная периодическая система точек (узлов), расположенных на вершинах одинаковых параллелепипедов, которые вплотную примыкают друг к другу целыми гранями и заполняют пространство без промежутков. Узлы и параллелепипеды периодически… … Большая советская энциклопедия

    Присущее крист. состоянию в ва регулярное расположение ч ц (атомов, ионов, молекул), характеризующееся периодич. повторяемостью в трёх измерениях. Плоские грани кристалла, образовавшегося в равновесных условиях, соответствуют ат. плоскостям,… … Физическая энциклопедия

    Бесконечная совокупность точек (узлов), расположенных по вершинам равных параллелепипедов, сложенных равными гранями и заполняющих пространство без промежутков; простейшая схема строения кристалла. Параллелепипеды П. р. преобразуются друг в друга … Физическая энциклопедия

    Огюст Браве (1850) Огюст Браве (фр. Auguste Bravais; 23 августа 1811(18110823), Анноне … Википедия

БРАВЕ РЕШЁТКИ - классификация решёток параллельных переносов, учитывающая как их точечную, так и параллельно-переносную . Всего существует 14 типов Б. р., названных по имени О. Браве (A. Bravais), строго обосновавшего эту классификацию. Решёткой наз. совокупность точек пространства (узлов) с целочисленными координатами относительно фиксированной системы координат, построенной на трёх базисных векторах а, b, с - осн. репере решётки. Решётка однозначно определяется осн. репером, однако осн. репер в данной решётке может быть выбран бесконечным числом способов и его связь с точечной группой симметрии решётки - её голоэдрией - не всегда явно видна. Поэтому для представления решёток используют репер Браве - систему координат, построенную на векторах решётки, совпадающих с наиб. симметричными в данной голоэдрии направлениями. Выбор таких векторов может быть неоднозначным и существуют дополнит. правила: сначала выбираются векторы, совпадающие с осями симметрии, затем - самые короткие векторы, не образующие острых углов между собой. Параметры реперов Браве (длины а, 6, с, его векторов и углы между векторами b и с, а и с, а и b соответственно) в каждой из 7 сингоний (совокупностей решёток с одинаковой голоэдрией) имеют ограничения, указанные в табл., в к-рой также приведены обозначения всех Б. р., распределённые по соответств. сингониям.

Сингония

Параметры репера Браве

Обозначения Браве решёток

международные

физические

Триклинная




Моноклинная



Ромбическая



Ромбоэдрическая




Тетрагональная




Гексагональная




Кубическая




Параллелепипед, построенный на репере Браве, наз. параллелепипедом Браве. Если узлы решётки находятся только в вершинах параллелепипеда Браве, то он и соответствующая ему решётка наз. примитивными (Р -решётки). В нек-рых решётках в параллелепипед Браве попадают дополнит. узлы. Такие параллелепипеды (и решётки) возможны 4 сортов: 1) базоцентрированные С или бокоцентрированные В (А) - дополнит. узлы в центрах граней, построенных на векторах а и b , а и с, b и с соответственно и на параллельных им гранях; 2) дважды центрированные гексагональные (ромбоэдрические) R - дополнит. узлы на главной диагонали параллелепипеда Браве в точках с координатами 2 / 3 , 1 / 3 , 1 / 3 и 1 / 3 , 2 / 3 , 2 / 3 ; 3) гранецентрированные F - дополнит. узлы в центрах всех граней параллелепипеда Браве; 4) объёмноцентрированные I - дополнит. узел в центре параллелепипеда Браве.

Две решётки относятся к одному и тому же типу Браве, если их параллелепипеды Браве одинаковы и имеют одинаковую центрировку. На рис. представлены все типы Б. р., причём в одной строке расположены решётки с одинаковыми параллелепипедами Браве, а в одном столбце - решётки с одинаковым типом центри-ровок. Около каждого параллелепипеда Браве указан символ соответствующей группы Браве - полной совокупности преобразований симметрии соответствующей решётки. Имеется 14 абстрактно-неизоморфных таких групп (14 из 73 симморфных фёдоровских групп). Группы Браве - основа теоретико-группового определения типов Б. р.: две решётки относятся к одному и тому же типу Браве, если их полные группы преобразований симметрии изоморфны. В скобках на рис. приведены стандартные символы соответствующих типов Б. р. В двумерном случае (в случае плоскости) имеется 5 типов Б. р.: р2, р2тт, с2тт, p4mm, р6тm .

Название Б. р. данного типа складывается из названия голоэдрии и способа центрировки (напр., кубическая объёмноцентрированная решётка). Во всех решётках, исключая триклинные и моноклинные, выше приведённые правила ограничения параметров репера Браве обеспечивают его однозначность. Реперы Браве для ромбоэдрической и гексагональной голоэдрий совпадают, но для ромбоэдрической голоэдрии возможно собственно ромбоэдрич. описание: a=b=с, Во всякой моноклинной центрированной решётке параллелепипед Браве может быть выбран как объёмно-центрированным, так и базо- или бокоцентрированным. Если все преобразования симметрии голоэдрии записать в виде матриц в осн. репере решётки, то получим конечную группу целочисленных унимодулярных матриц - арифметич. голоэдрию. Две решётки относятся к одному и тому же типу Браве, если их арифметич. голоэдрии целочисленно эквивалентны.