Параллельные прямые не пересекаются аксиома. Признаки и свойства параллельных прямых. Защита персональной информации

Сначала рассмотрим разницу между понятиями признак, свойство и аксиома.

Определение 1

Признаком называют некий факт, по которому можно определить истинность суждения об интересующем объекте.

Пример 1

Прямые являются параллельными, если их секущая образует равные накрест лежащие углы.

Определение 2

Свойство формулируется в том случае, когда есть уверенность в справедливости суждения.

Пример 2

При параллельных прямых их секущая образует равные накрест лежащие углы.

Определение 3

Аксиомой называют такое утверждение, которое не требует доказательства и принимается как истина без него.

Каждая наука имеет аксиомы, на которых строятся последующие суждения и их доказательства.

Аксиома параллельных прямых

Иногда аксиому параллельных прямых принимают в качестве одного из свойств параллельных прямых, но вместе с тем на ее справедливости строят другие геометрические доказательства.

Теорема 1

Через точку, которая не лежит на заданной прямой, на плоскости можно провести лишь одну прямую, которая будет параллельной заданной.

Аксиома доказательства не требует.

Свойства параллельных прямых

Теорема 2

Свойство1. Свойство транзитивности параллельности прямых:

Когда одна из двух параллельных прямых является параллельной третьей, то и вторая прямая будет ей параллельна.

Свойства требуют доказательств.

Доказательство:

Пусть имеются две параллельные прямые $a$ и $b$. Прямая $с$ параллельна прямой $а$. Проверим, будет ли в таком случае прямая $с$ параллельна и прямой $b$.

Для доказательства будем пользоваться противоположным суждением:

Представим, что возможен такой вариант, при котором прямая $c$ параллельна одной из прямых, например, прямой $a$, а другую – прямую $b$ – пересекает в некоторой точке $K$.

Получаем противоречие согласно аксиоме параллельных прямых. Получается ситуация, при которой в одной точке пересекаются две прямые, к тому же параллельные одной и той же прямой $a$. Такая ситуация невозможна, следовательно, прямые $b$ и $c$ пересекаться не могут.

Таким образом, доказано, что если одна из двух параллельных прямых является параллельной третьей прямой, то и вторая прямая параллельна третьей прямой.

Теорема 3

Свойство 2.

Если одна из двух параллельных прямых пересекается третьей, то ею будет пересекаться и вторая прямая.

Доказательство:

Пусть имеются две параллельные прямые $а$ и $b$. Также пусть имеется некоторая прямая $с$, которая пересекает одну из параллельных прямых, например, прямую $а$. Необходимо показать, что прямая $с$ пересекает и вторую прямую – прямую $b$.

Построим доказательство методом от противного.

Представим, что прямая $с$ не пересекает прямую $b$. Тогда через точку $К$ проходят две прямые $а$ и $с$, которые не пересекают прямую $b$, т. е. являются параллельными ей. Но такая ситуация противоречит аксиоме параллельных прямых. Значит, предположение было неверным и прямая $с$ пересечет прямую $b$.

Теорема доказана.

Свойства углов , которые образуют две параллельные прямые и секущая: накрест лежащие углы равны, соответственные углы равны, * сумма односторонних углов равна $180^{\circ}$.

Пример 3

Даны две параллельные прямые и третья прямая, перпендикулярная одно из них. Доказать, что эта прямая перпендикулярна и другой из параллельных прямых.

Доказательство .

Пусть имеем прямые $а \parallel b$ и $с \perp а$.

Поскольку прямая $с$ пересекает прямую $а$, то согласно свойству параллельных прямых она будет пересекать и прямую $b$.

Секущая $с$, пересекая параллельные прямые $а$ и $b$, образует с ними равные внутренние накрест лежащие углы.

Т.к. $с \perp а$, то углы будут по $90^{\circ}$.

Следовательно, $с \perp b$.

Доказательство завершено.

Видеоурок «Аксиома параллельных прямых» предполагает детальное рассмотрение важной аксиомы геометрии - аксиомы параллельных прямых, ее особенностей, следствий из данной аксиомы, широко применяющихся в практике решения геометрических задач. Задача данного видеоурока - облегчить запоминание аксиомы и ее следствий, сформировать представление о ее особенностях, применении при решении задач.

Подача материала в форме видеоурока открывает новые возможности для учителя. Подача ученикам стандартного блока учебного материала автоматизируется. При этом улучшается качество подачи материала, так как он обогащен наглядным представлением, анимационными эффектами, приближающими построения к реальным, проводимым на доске. Исторические сведения подаются с рисунками и фото, вызывая интерес к изучаемой теме. Видео также освобождает учителя для углубления индивидуальной работы во время обучения.

Сначала на данном видео демонстрируется название темы. Рассмотрение аксиомы начинается с построения ее модели. На экране изображены прямая а, лежащая вне ее точка М. Далее описывается доказательство утверждения, что через заданную точку М можно построить прямую, параллельную данной. Проводится перпендикулярно прямой а прямая с, затем перпендикулярно прямой с в точке М проводится прямая b. Основываясь на утверждении, о параллельности двух прямых, перпендикулярных третьей, отмечаем, что прямая b параллельна исходной прямой а. Учитывая это, указываем, что в точке М проведена прямая, параллельная данной. Однако необходимо еще проверить, есть ли возможность провести через М иную параллельную прямую. На экране показано, что любой поворот прямой b в точке М приведет к построению прямой, которая пересечет прямую а. Однако возможно ли доказать невозможность проведения другой прямой?

Вопрос доказательства невозможности проведения иной прямой, параллельной данной, имеет давнюю историю. Ученикам предлагается небольшой экскурс в историю вопроса. Отмечается, что в труде Евклида «Начала» данное утверждение приведено в виде пятого постулата. Попытки ученых доказать утверждение не привели к успеху. На протяжении многих веков математиков интересовала эта задача. Однако только в прошлом веке окончательно было доказано, что данное утверждение недоказуемо в евклидовой геометрии. Оно является аксиомой. Ученикам представляется один из знаменитых математиков, вложивших значительный вклад в математическую науку - Николай Иванович Лобачевский. Именно он сыграл важную роль в окончательном решении вопроса. Поэтому утверждение, рассматриваемое на данном уроке, является аксиомой, лежащей в фундаменте науки наряду с другими аксиомами.

Далее предлагается рассмотреть следствия из данной аксиомы. Для этого необходимо уточнить понятие «следствия». На экране отображается определение следствий как утверждений, выводящихся непосредственно из теорем или аксиом. Данное определение может быть предложено ученикам для записи в тетрадь. Понятие следствий демонстрируется на примере, который уже рассматривался в видеоуроке 18 «Свойства равнобедренного треугольника». На экране выведена теорема о свойствах равнобедренного треугольника. Напоминается, что после доказательства данной теоремы рассматривались не менее важные следствия из нее. Так, если основная теорема утверждала, что биссектриса равнобедренного треугольника является медианой и высотой, то следствия имели близкое содержание, утверждая, что и высота равнобедренного треугольника является биссектрисой и медианой, а также медиана равнобедренного треугольника является одновременно биссектрисой и высотой.

Уточнив понятие следствий, рассматриваются непосредственно следствия, выходящие из данной аксиомы параллельности прямых. На экране отображается текст первого следствия аксиомы, утверждающий, что пересечение прямой одной из параллельных прямых означает пересечение ею и второй параллельной прямой. На рисунке под текстом следствия изображается прямая b и параллельная ей прямая а. Вторая прямая пересекает прямую с в точке М, принадлежащей прямой а. Приводится доказательство утверждения, что прямая с пересечет также прямую b. Доказательство производится от противного, используя аксиому о параллельных прямых. Если предположить, что прямая с не пересекает b, это означает, что через данную точку можно провести еще одну прямую, параллельную указанной. Но это невозможно, учитывая аксиому параллельных прямых. Следовательно, с пересекает также прямую b. Следствие доказано.

Далее рассматривается второе следствие из данной аксиомы. На экране отображается текст следствия, утверждающего, что если две прямые являются параллельными третьей, то можно утверждать о параллельности их между собой. На рисунке, демонстрирующем данное утверждение, построены прямые а, b, с. При этом прямая с как параллельная обеим прямым, выделена синим цветом. Предлагается доказать данное утверждение. В ходе доказательства допускается, что параллельные прямой с прямые а, b не являются параллельными между собой. Это означает, что они имеют точку пересечения. Это означает, что проходящие через точку М, обе прямые параллельны данной, что вступает в противоречие с аксиомой параллельных прямых. Данное следствие верно.

Видеоурок «Аксиома параллельных прямых» может облегчить учителю задачу объяснить ученикам особенности аксиомы, доказательства ее следствий, облегчить запоминание материала школьниками на обычном уроке. Также данный видеоматериал может быть использован при дистанционном обучении, быть рекомендованным для самостоятельного изучения.

Аксиома параллельности Евклида

Аксиома параллельности Евклида , или пятый постулат - одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида:

Евклид различает понятия постулат и аксиома , не объясняя их различия; в разных манускриптах «Начал» Евклида разбиение утверждений на аксиомы и постулаты различно, равно как не совпадает и их порядок. В классическом издании «Начал» Гейберга сформулированное утверждение является пятым постулатом.

На современном языке текст Евклида можно переформулировать так:

Если сумма внутренних углов с общей стороной, образованных двумя прямыми при пересечении их третьей, с одной из сторон от секущей меньше 180°, то эти прямые пересекаются, и притом по ту же сторону от секущей.

Пятый постулат чрезвычайно сильно отличается от других постулатов Евклида, простых и интуитивно очевидных (см. Начала Евклида). Поэтому в течение 2 тысячелетий не прекращались попытки исключить его из списка аксиом и вывести как теорему. Все эти попытки окончились неудачей. «Вероятно, невозможно в науке найти более захватывающую и драматичную историю, чем история пятого постулата Евклида». Несмотря на отрицательный результат, эти поиски не были напрасны, так как в конечном счёте привели к полному пересмотру научных представлений о геометрии Вселенной.

Эквивалентные формулировки постулата о параллельных

В современных источниках обычно приводится другая формулировка постулата о параллельных, эквивалентная (равносильная) V постулату и принадлежащая Проклу (за рубежом её часто называют аксиомой Плейфера):

В плоскости через точку, не лежащей на данной прямой, можно провести одну и только одну прямую, параллельную данной.

В этой формулировке слова «одну и только одну» часто заменяют на «только одну» или «не более одной», так как существование хотя бы одной такой параллельной сразу следует из теорем 27 и 28 «Начал» Евклида.

Вообще у V постулата имеется огромное количество эквивалентных формулировок, многие из которых кажутся довольно очевидными. Вот некоторые из них:

§ Существует прямоугольник (хотя бы один ), то есть четырёхугольник, у которого все углы прямые.

§ Существуют подобные, но не равные треугольники (аксиома Валлиса , 1693).

§ Любую фигуру можно пропорционально увеличить.

§ Существует треугольник сколь угодно большой площади.

§ Прямая, проходящая через точку внутри угла, пересекает по крайней мере одну его сторону (аксиома Лоренца , 1791).

§ Через каждую точку внутри острого угла всегда можно провести прямую, пересекающую обе его стороны.

§ Если две прямые в одну сторону расходятся, то в другую - сближаются.

§ Сближающиеся прямые рано или поздно пересекутся.

§ Вариант: перпендикуляр и наклонная к одной и той же прямой непременно пересекаются (аксиома Лежандра).

§ Точки, равноудалённые от данной прямой (по одну её сторону), образуют прямую,

§ Если две прямые начали сближаться, то невозможно, чтобы они затем начали (в ту же сторону, без пересечения) расходиться (аксиома Роберта Симсона , 1756).

§ Сумма углов одинакова у всех треугольников.

§ Существует треугольник, сумма углов которого равна двум прямым.

§ Две прямые, параллельные третьей, параллельны и друг другу (аксиома Остроградского , 1855).

§ Прямая, пересекающая одну из параллельных прямых, непременно пересечёт и другую.

§ Через любые три точки можно провести либо прямую, либо окружность.

§ Вариант: для всякого невырожденного треугольника существует описанная окружность (аксиома Фаркаша Бойяи ).

§ Справедлива теорема Пифагора.

Эквивалентность их означает, что все они могут быть доказаны, если принять V постулат, и наоборот, заменив V постулат на любое из этих утверждений, мы сможем доказать исходный V постулат как теорему.

Если вместо V постулата допустить, что для пары точка-прямая V постулат неверен, то полученная система аксиом будет описывать геометрию Лобачевского. Понятно, что в геометрии Лобачевского все вышеперечисленные эквивалентные утверждения неверны.

Система аксиом сферической геометрии требует изменения также и других аксиом Евклида..

Пятый постулат резко выделяется среди других, вполне очевидных, он больше похож на сложную, неочевидную теорему. Евклид, вероятно, сознавал это, и поэтому первые 28 предложений в «Началах» доказываются без его помощи.

«Евклиду безусловно должны были быть известны различные формы постулата о параллельных». Почему же он выбрал приведенную, сложную и громоздкую? Историки высказывали различные предположения о причинах такого выбора. В.П. Смилга полагал, что Евклид такой формулировкой указывал на то, что данная часть теории является незавершённой. М. Клайн обращает внимание на то, что пятый постулат Евклида имеет локальный характер, то есть описывает событие на ограниченном участке плоскости, в то время как, например, аксиома Прокла утверждает факт параллельности, который требует рассмотрения всей бесконечной прямой. Надо пояснить, что античные математики избегали использовать актуальную бесконечность; например, второй постулат Евклида утверждает не бесконечность прямой, а всего лишь то, что «прямую можно непрерывно продолжать». С точки зрения античных математиков, вышеприведенные эквиваленты постулата о параллельных могли казаться неприемлемыми: они либо ссылаются на актуальную бесконечность или (ещё не введенное) понятие измерения, либо тоже не слишком очевидны.

Рис.1-2

Например, дано задание провести две параллельные прямые, причем так, чтобы через данную точку М проходила хотя бы одна из прямых. Таким образом, через заданную точку М проведем взаимно перпендикулярные прямые МN и СD . А через точку N проведем вторую прямую АВ , она должна быть перпендикулярной к прямой МN .

Сделаем вывод: прямая АВ перпендикулярна к прямой МN и прямая СD тоже перпендикулярна в прямой МN , а так как данные прямые параллельны к одной прямой, то, как следствие прямая СD параллельна АВ . Значит, через точку М проходит прямая СD , которая параллельна прямой АВ . Узнаем: можно ли провести еще одну прямую через точку М , чтобы она была параллельна прямой АВ ?

Данное утверждение является ответом на наш вопрос: через точку на плоскости, которая не лежит на данной прямой, можно провести всего одну прямую, которая будет параллельна к данной прямой. Такое отвержение в другой формулировке без доказательств еще в давние времена принял ученый Евклид. Известно, что такие утверждения, принятые без доказательства, называют аксиомами.

Вышеописанное утверждение называется аксиомой о параллельных прямых. Данная аксиома Евклида имеет огромное значение для доказательства многих теорем.

Рассмотрим обратную теорему. Если прямая пересекает параллельные прямые, то и углы, лежащие при параллельных прямых накрест, соответственно равны.

Рис. 3

Доказательство: допустим, что АС и ВD являются параллельными прямыми, тогда прямая АВ является их секущей прямой. Нам нужно доказать, что ÐСАВ =Ð АВD .

Нам нужно провести так прямую АС1 , чтобы ÐС1АВ=ÐАВD . В соответствии с аксиомой параллельности прямых АС1||ВD , в условии же мы имеем АС||ВD . А это означает, что через данную точку А проходят две прямые, причем они параллельны прямой ВD . Получается противоречие аксиоме параллельности прямых, а это означает, что прямая АС1 проведена неверно.

Правильно будет, если ÐСАВ=ÐАВD . Сделаем вывод: в том случае, когда одной из параллельных прямых перпендикулярна данная прямая, то она будет перпендикулярна и ко второй прямой.

Получается, если (MN)^(CD) и (CD)||(AB) , то Ð1=Ð2=90о . А это значит: (MN)^(AB) (Рис. 1) .

Докажем теорему: если две прямые являются параллельными к третьей, то они будут параллельны одна ко второй.

Рис. 4

Пусть прямая a параллельна прямой с и прямая b тоже параллельна прямой с (рис. 4 а) . Нам нужно доказать, что a||b .

Предположим, что прямые a и b не являются параллельными, но они пересекаются в точке М (рис. 4 б) . А это значит, что две прямые a и b , которые параллельны к прямой с проходят через одну точку, а это полное противоречие аксиоме параллельности прямых. Значит наши прямые a и b параллельны.