Прямая называется перпендикулярной к плоскости если рисунок. Перпендикулярность прямых в пространстве. Визуальный гид (2019). Соблюдение вашей конфиденциальности на уровне компании

Определение. Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна данной плоскости.
Доказательство. Пусть а – прямая перпендикулярная прямым b и с , принадлежащим плоскости a . А – точка пересечения прямых. В плоскости a через точку А проведем прямую d , не совпадающую с прямыми b и с . Теперь в плоскости a проведем прямую k , пересекающую прямые d и с и не проходящую через точку А. Точки пересечения соответственно D, В и С. Отложим на прямой а в разные стороны от точки А равные отрезки АА 1 и АА 2 . Треугольник А 1 СА 2 равнобедренный, т.к. высота АС является так же и медианой (признак 1), т.е. А 1 С=СА 2 . Подобно в треугольнике А 1 ВА 2 равны стороны А 1 В и ВА 2 . Следолвательно, треугольники А 1 ВС и А 2 ВС равны по третьему признаку Поэтому равны углы А 1 ВD и А 2 ВD. Значит, равны и треугольники А 1 ВD и А 2 ВD по первому признаку . Поэтому А 1 D и А 2 D. Отсюда треугольник А 1 DА 2 равнобедренный по определению. В равнобедренном треугольнике А 1 D А 2 D А – медиана (по построению), а значит и высота, то есть угол А 1 АD прямой, а значит прямая а перпендикулярна прямой d . Таким образом можно доказать, что прямая а перпендикулярна любой прямой проходящей через точку А и принадлежащей плоскости a . Из определения следует, что прямая а перпендикулярна плоскости a .

Построение прямой перпендикулярной данной плоскости из точки, взятой вне этой плоскости.
Пусть a - плоскость, А – точка, из которой надо опустить перпендикуляр. В плоскости проведем некоторую прямую а . Через точку А и прямую а проведем плоскость b (прямая и точка определяют плоскость, причем только одну). В плоскости b из точки А опустим на прямую а перпендикуляр АВ. Из точки В в плоскости a восстановим перпендикуляр и обозначим прямую, на которой лежит этот перпендикуляр за с . Через отрезок АВ и прямую с проведем плоскость g (две пересекающиеся прямые определяют плоскость, причем только одну). В плоскости g из точки А опустим на прямую с перпендикуляр АС. Докажем, что отрезок АС – перпендикуляр к плоскости b . Доказательство. Прямая а перпендикулярна прямым с и АВ (по построению), а значит она перпендикулярна и самой плоскости g , в которой лежат эти две пересекающиеся прямые (по признаку перпендикулярности прямой и плоскости). А раз она перпендикулярна этой плоскости, то она перпендикулярна и любой прямой в этой плоскости, значит прямая а перпендикулярна АС. Прямая АС перпендикулярна двум прямым, лежащим в плоскости α : с (по построению) и а (по доказанному), значит она перпендикулярна плоскости α (по признаку перпендикулярности прямой и плоскости)

Теорема 1 . Если две пересекающиеся прямые параллельны соответственно двум перпендикулярным прямым, то они тоже перпендикулярны.
Доказательство. Пусть а и b - перпендикулярные прямые, а 1 и b 1 - параллельные им пересекающиеся прямые. Докажем, что прямые а 1 и b 1 перпендикулярны.
Если прямые а , b , а 1 и b 1 лежат в одной плоскости, то они обладают указанным в теореме свойством, как это известно из планиметрии.
Допустим теперь, что наши прямые не лежат в одной плоскости. Тогда прямые а и b лежат в некоторой плоскости α , а прямые а 1 и b 1 - в некоторой плоскости β . По признаку параллельности плоскостей плоскости α и β параллельны. Пусть С - точка пересечения прямых а и b , а С 1 - пересечения прямых а 1 и b 1 . Проведем в плоскости параллельных прямых а и а а и а 1 в точках А и А 1 . В плоскости параллельных прямых b и b 1 прямую, параллельную прямой СС 1 . Она пересечет прямые b и b 1 в точках B и B 1 .
Четырехугольники САА 1 С 1 и СВВ 1 С 1 - параллелограммы, так как у них противолежащие стороны параллельны. Четырехугольник АВВ 1 А 1 также параллелограмм. У него стороны АА 1 и ВВ 1 параллельны, потому что каждая из них параллельна прямой СС 1 .Таким образом четырехугольник лежит в плоскости, проходящей через параллельные прямые АА 1 и ВВ 1 . А она пересекает параллельные плоскости α и β по параллельным прямые АВ и А 1 В 1 .
Так как у параллелограмма противолежащие стороны равны, то АВ=А 1 В 1 , АС=А 1 С 1 , ВС=В 1 С 1 . По третьему признаку равенства треугольники АВС и А 1 В 1 С 1 равны. Итак, угол А 1 С 1 В 1 , равный углу АСВ, прямой, т.е. прямые а 1 и b 1 перпендикулярны. Ч.т.д.

Свойства перпендикулярных прямой и плоскости.
Теорема 2 . Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Доказательство. Пусть а 1 и а 2 - две параллельные прямые и α - плоскость, перпендикулярна прямой а 1 . Докажем, что эта плоскость перпендикулярна и прямой а 2 .
Проведем через точку А 2 пересечения прямой а 2 с плоскостью α произвольную прямую с 2 в плоскости α . Проведем в плоскости α через точку А 1 пересечения прямой а 1 с плоскостью α прямую с 1 , параллельную прямой с 2 . Так как прямая а 1 перпендикулярна плоскости α , то прямые а 1 и с 1 перпендикулярны. А по теореме 1 параллельные им пересекающиеся прямые а 2 и с 2 тоже перпендикулярны. Таким образом, прямая а 2 перпендикулярна любой прямой с 2 в плоскости α . А это значит, что прямая а 2 перпендикулярна плоскости α . Теорема доказана.

Теорема 3 . Две прямые, перпендикулярные одной и той же плоскости, параллельны между собой.
Имеем плоскость α и две перпендикулярные ей прямые а и b . Докажем, что а || b .
Через точки пересечения прямыми плоскости проведем прямую с . По признаку получаем а ^ c и b ^ c . Через прямые а и b проведем плоскость (две параллельные прямые определяют плоскость и притом только одну). В этой плоскости мы имеем два параллельные прямые а и b и секущую с . Если сумма внутренних односторонних углов равна 180 о, то прямые параллельны. У нас как раз такой случай - два прямых угла. Поэтому а || b .

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

В планиметрии построение перпендикуляра основано на том, что он соединяет данную точку и точку, симметричную с ней относительно рассматриваемой прямой. Если мы хотим составить понятие о перпендикуляре к плоскости, то можно взять любую точку, лежащую вне этой плоскости, отразить эту точку в данной плоскости, как в зеркале, и соединить данную точку с ее отражением; тогда получим перпендикуляр к плоскости. Следует, однако, заметить, что в случае отражения относительно прямой все дело сводилось к сгибу плоскости вдоль данной прямой, т. е. к движению, хотя и производимому в пространстве. Отражение же в плоскости уже не сводится к движению. Поэтому изложение вопроса о перпендикуляре к плоскости сложнее соответствующего изложения вопроса о перпендикуляре к прямой в планиметрии, оно опирается на следующее известное читателю

Определение. Прямая называется перпендикуляром к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Так как угол между двумя скрещивающимися прямыми равен по определению углу между пересекающимися прямыми, параллельными данным, то прямая а (рис. 337), перпендикулярная ко всем прямым плоскости К, проходящим через точку пересечения прямой а с плоскостью К, будет перпендикулярна и к плоскости К. Действительно, она образует прямой угол с любой прямой в плоскости так как она перпендикулярна к прямой b, проведенной в этой плоскости через точку параллельно b.

В действительности имеет место гораздо более простой Признак перпендикулярности прямой и плоскости. Прямая, перпендикулярная к двум пересекающимся прямым плоскости, перпендикулярна к этой плоскости.

Доказательство. Пусть на рис. 338 прямая а перпендикулярна к двум пересекающимся прямым , лежащим в плоскости Х. В силу сделанного выше замечания мы можем, не нарушая общности, предположить, что прямая а проходит через точку пересечения прямых тип. Требуется доказать, что прямая а перпендикулярна и к любой прямой плоскости в силу того же замечания можно предположить, что прямая проходит через точку . Сделаем следующие вспомогательные построения: на прямой а возьмем произвольную точку М и точку М на продолжении по другую сторону плоскости Я на расстоянии от точки Три прямые в плоскости X пересечем какой-либо прямой с, не проходящей через точки пересечения обозначим соответственно Р, Q, R. Соединим точки М и М с точками Р, Q, R. Треугольники равны, так как они прямоугольные, катеты равны по построению, а катет общий; значит, равны и их гипотенузы: (можно еще проще заметить, что МР - МР, как наклонные с равными проекциями). Отрезки MQ, MQ также равны. Значит, равны треугольники MPQ и MPQ (по трем сторонам). Отсюда заключаем, что равны треугольники MQR и у них между равными сторонами MQ и MQ и общей стороной QR заключены равные углы: (соответственные углы в равных треугольниках). Теперь уже видно, что равны и треугольники трем сторонам). Таким образом, углы MMUR и равны, и так как они смежные, то каждый из них прямой. Утверждение доказано.

К любой прямой можно провести перпендикулярную плоскость.

В самом деле, возьмем произвольную прямую и в любой ее точке проведем к ней два каких-либо перпендикуляра (лежащие в каких-либо двух плоскостях, проведенных через эту прямую). Через них, как через две пересекающиеся прямые, проходит плоскость. По предыдущему, данная прямая служит перпендикуляром к этой плоскости.

Из проведенных рассуждений также следует вывод: все прямые, перпендикулярные к данной прямой в одной из ее точек, лежат в одной плоскости, перпендикулярной к этой прямой.

В любой точке плоскости также можно восставить перпендикуляр к ней.

Для этого достаточно провести через данную в плоскости точку две прямые, лежащие в этой плоскости, а затем построить в той же точке две плоскости, перпендикулярные к проведенным прямым. Имея общую точку, эти две плоскости пересекутся по прямой, которая будет одновременно перпендикулярна к двум пересекающимся прямым в плоскости и, следовательно, перпендикулярна к самой плоскости.

Перпендикулярность прямой и плоскости.

1. Перпендикулярные прямые в пространстве.

Определение. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между прямыми равен 90°.
Обозначение перпендикулярности прямых а и b: a⊥b

Перпендикулярные прямые могут пересекаться, а могут быть скрещивающимися.

Лемма перпендикулярности двух параллельных прямых к третьей прямой.

Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Обратите внимание, что следующее утверждение планиметрии в стереометрии не действует:
Если две прямые перпендикулярны к третьей, то они параллельны.

На рисунке видно, что две прямые a и b перпендикулярны прямой с , но не параллельны .

2.Параллельные прямые, перпендикулярные к плоскости.

Определение. Прямая называется перпендикулярной к плоскости , если она перпендикулярна ко всем прямым, лежащим в этой плоскости.
Обозначение перпендикулярности прямой и плоскости: a⊥ γ.

На рисунке прямая а перпендикулярна плоскости γ. Из определения следует, что прямая a перпендикулярна каждой прямой, лежащей в этой плоскости.

Теорема.
Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.


Теорема. Если две прямые перпендикулярны к плоскости, то они параллельны.

3. Признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Для того, чтобы прямая в пространстве была плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой былагоризонтальной проекции горизонтали, а фронтальная проекция - к фронтальной проекции фронтали этой плоскости.

Определение расстояния от точки до плоскости (рис. 19)

1.Из точки опустить перпендикуляр на плоскость (для этого в плоскости

провести h,f);

2.Найти точку пересечения прямой с плоскостью (см. рис.18);

3.Найти н.в. отрезка перпендикуляра (см. рис 7).

Второй раздел Метод замены плоскостей проекций

(к задачам 5, 6,7)

Данную геометрическую фигуру оставляют в системе плоскостей проекций неподвижной. Новые плоскости проекции устанавливают так, чтобы получаемые на них проекции обеспечивали рациональное решение рассматриваемой задачи. При этом каждая новая система плоскостей проекций должна быть системой ортогональной. После проецирования объектов на плоскости, они совмещаются в одну посредством вращения их вокруг общих прямых (осей проекций) каждой пары взаимно перпендикулярных плоскостей.

Так например, пусть в системе двух плоскостей П 1 и П 2 задана точка А. Дополним систему еще одной плоскостью П 4 (рис. 20), П 1 П 4 . Она имеет общую линию Х 14 с плоскостью П 1 . Строим проекцию А 4 на П 4 .

АА 1 =А 2 А 12 =А 4 А 14.

На рис. 21, где плоскости П 1 , П 2 и П 4 приведены в совмещение, этот факт определен результатом А 1 А 4 Х 14 , а А 14 А 4 А 2 А 12.

Расстояние новой проекции точки до новой оси проекции (А 4 А 14) равно расстоянию от заменяемой проекции точки до заменяемой оси (А 2 А 12).

Большое количество метрических задач начертательной геометрии решаются на основе следующих четырех задач:

1. Преобразование прямой общего положения в прямую уровня (рис.22):

а) П 4 || АВ (ось Х 14 || А 1 В 1);

б) А 1 А 4 Х 14 ; В 1 В 4 Х 14 ;

в) А 4 А 14 =А 12 А 2 ;

В 4 В 14 =В 12 В 2 ;

А 4 В 4 - н.в.

2. Преобразование прямой общего положения в проецирующую (рис.23):

а) П 4 || АВ (Х 14 || А 1 В 1);

А 1 А 4 Х 14 ;

В 1 В 4 Х 14 ;

А 14 А 4 =А 12 А 2 ;

В 14 В 4 =В 12 В 2 ;

А 4 В 4 - н.в.;

б) П 5 АВ (Х 45 А 4 В 4);

А 4 А 5 Х 45 ;

В 4 В 5 Х 45 ;

А 45 А 5 =В 45 В 5 =А 14 А 1 =В 14 В 1 ;

3. Преобразование плоскости общего положения в проецирующее положение (рис.24):

Плоскость можно привести в проецирующее положение, если одну прямую плоскости сделать проецирующей. В плоскости АВС проведем горизонталь (h 2 ,h 1), которую за одно преобразование можно сделать проецирующей. Проведем плоскость П 4 перпендикулярно горизонтали; на эту плоскость она спроецируется точкой, а плоскость треугольника - прямой линией.

4. Преобразование плоскости общего положения в плоскость уровня (рис.25).

Плоскость сделать плоскостью уровня с помощью двух преобразований. Вначале плоскость надо сделать проецирующей (см. рис. 25), а затем провести П 5 || А 4 В 4 С 4 , получим А 5 В 5 С 5 - н.в.

Задача №5

Определить расстояние от точки С до прямой общего положения (рис.26).

Решение сводится ко 2-й основной задаче. Тогда расстояние по эпюре определяется как расстояние между двумя точками

А 5 В 5 D 5 и С 5.

Проекция С­ 4 D 4 || Х 45.

Задача №6

Определить расстояние от ()Dдо плоскости, заданной точками А,В,С, (рис. 27).

Задачу решают, используя 2-ю основную задачу. Расстояние (Е 4 D 4), от ()D 4 до прямой A 4 C 4 В 4 ,в которую спроецировалась плоскость АВС, является натуральной величиной отрезкаED.

Проекция D­ 1 E 1 || Х 14 ;

Е 2 Е Х12 =Е 4 Е Х14.

Построить самостоятельно D­ 1 E 1.

Построить самостоятельно D­ 2 E 2.

Задача №7

Определить натуральную величину треугольника АВС (см. решение 4-й основной задачи) (рис.25)