Методы линеаризации. Классификация и Требования, предъявляемые к САР. Линейные и нелинейные САР. Общий метод линеаризации

Общий метод линеаризации

В большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения ᴇᴦο обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X1 и X2, а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х1, которое обозначим Х10. В процессе регулирования (рис. 2.3) переменная Х1 будет иметь зна­чения где обозначает отклонение переменной X 1 от установившегося значения Х10.

Аналогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем˸ а также .

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х10, Х20 и F0. Тогда уравнение (2.1) должна быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где D – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных .

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в данном уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях˸

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют из себянекоторые постоянные коэффициенты в том случае, в случае если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Общий метод линеаризации - понятие и виды. Классификация и особенности категории "Общий метод линеаризации" 2015, 2017-2018.

Метод гармонической линеаризации (гармонического баланса ) позволяет определить условия существования и параметры возможных автоколебаний в нелинейных САУ. Автоколебания определяются предельными циклами в фазовом пространстве систем. Предельные циклы разделяют пространство (в общем случае - многомерное ) на области затухающих и расходящихся процессов. В результате расчета параметров автоколебаний можно сделать заключение о их допустимости для данной системы или о необходимости изменения параметров системы.

Метод позволяет:

Определить условия устойчивости нелинейной системы;

Найти частоту и амплитуду свободных колебаний системы;

Синтезировать корректирующие цепи, для обеспечения требуемых параметров автоколебаний;

Исследовать вынужденные колебания и оценивать качество переходных процессов в нелинейных САУ.

Условия применимости метода гармонической линеаризации.

1) При использовании метода предполагается, что линейная часть системы устойчива или нейтральна.

2) Сигнал на входе нелинейного звена близок по форме к гармоническому сигналу. Это положение требует пояснений.

На рис.1 представлены структурные схемы нелинейной САУ. Схема состоит из последовательно соединенных звеньев: нелинейного звена y=F(x) и линейно-

го, которое описывается дифференциальным уравнением

При y = F(g - x) = g - x получим уравнение движения линейной системы.

Рассмотрим свободное движение, т.е. при g(t) º 0. Тогда,

В случае, когда в системе существуют автоколебания, свободное движение системы является периодическим. Непериодическое движение с течением времени оканчивается остановкой системы к некотором конечном положении (обычно, на специально предусмотренном ограничителе).

При любой форме периодического сигнала на входе нелинейного элемента сигнал на его выходе будет содержать кроме основной частоты высшие гармоники. Предположение о том, что сигнал на входе нелинейной части системы можно считать гармоническим, т.е., что

x(t)@ a×sin(wt),

где w=1/T, T - период свободных колебаний системы, равносильно предположению о том, что линейная часть системы эффективно фильтрует высшие гармоники сигнала y(t) = F(x (t)).

В общем случае при действии на входе нелинейного элемента гармонического сигнала x(t) сигнал на выходе может быть преобразован по Фурье:

Коэффициенты ряда Фурье

.

Для упрощения выкладок положим C 0 =0, т.е., что функция F(x) симметрична относительно начала координат. Такое ограничение не обязательно и сделано анализа. Появление коэффициентов C k ¹ 0 означает, что, в общем случае нелинейное преобразование сигнала сопровождается и фазовыми сдвигами преобразуемого сигнала. В частности, это имеет место в нелинейностях с неоднозначными характеристиками (с различного рода гистерезисными петлями), причем как запаздывание так и, в некоторых случаях, опережение по фазе .



Предположение об эффективной фильтрации означает, что амплитуды высших гармоник на выходе линейной части системы малы, то есть

Выполнению этого условия способствует то, что во многих случаях амплитуды гармоник уже непосредственно на выходе нелинейности оказываются существенно меньше амплитуды первой гармоники. Например, на выходе идеального реле при гармоническом сигнале на входе

y(t)=F(с×sin(wt))=a×sign(sin(wt))

четные гармоники отсутствуют, а амплитуда третьей гармоники в три раза меньше амплитуды первой гармоники

Сделаем оценку степени подавления высших гармоник сигнала в линейной части САУ. Для этого сделаем ряд предположений.

1) Частота свободных колебаний САУ приблизительно равна частоте среза ее линейной части. Отметим, что частота свободных колебаний нелинейной САУ может существенно отличаться от частоты свободных колебаний линейной системы так, что это допущение не всегда корректно .

2) Показатель колебательности САУ примем равным M=1.1.

3) ЛАХ в окрестностях частоты среза (w с) имеет наклон -20 дБ/дек. Границы этого участка ЛАХ связаны с показателем колебательности соотношениями

4) Частота w max является сопрягающей с участком ЛФХ, так что при w > w max наклон ЛАХ не менее минус 40 дБ/дек.

5) Нелинейность - идеальное реле с характеристикой y = sign(x) так, что на ее выходе нелинейности будут присутствовать только нечетные гармоники.

Частоты третьей гармоники w 3 = 3w c , пятой w 5 = 5w с,

lgw 3 = 0.48+lgw c ,

lgw 5 = 0.7+lgw c .

Частота w max = 1.91w с, lgw max = 0.28+lgw c . Сопрягающая частота отстоит от частоты среза на 0.28 декады.

Уменьшение амплитуд высших гармоник сигнала при их прохождении через линейную часть системы составит для третьей гармоники

L 3 = -0.28×20-(0.48-0.28)×40 = -13.6 дБ, то есть в 4.8 раза,

для пятой - L 5 = -0.28×20-(0.7-0.28)×40 = -22.4 дБ, то есть в 13 раз.

Следовательно, сигнал на выходе линейной части окажется близким к гармоническому

Это эквивалентно предположению, что система является низкочастотным фильтром.

В большинстве случаев можно линеаризовать нелинейные зависимости, используя метод малых отклонений или вариаций. Для рассмотрения его обратимся к некоторому звену системы автоматического регулирования (рис. 2.2). Входная и выходная величины обозначены через X1 и X2, а внешнее возмущение – через F(t).

Допустим, что звено описывается некоторым нелинейным дифференциальным уравнением вида

Для составления такого уравнения нужно использовать соответствующую отрасль технических наук (например электротехнику, механику, гидравлику и т. п.), изучающую этот конкретный вид устройства.

Основанием для линеаризации служит предположение о достаточной малости отклонений всех переменных, входящих в уравнение динамики звена, так как именно на достаточно малом участке криволинейную характеристику можно заменить отрезком прямой. Отклонения переменных отсчитываются при этом от их значений в установившемся процессе или в определенном равновесном состоянии системы. Пусть, например, установившийся процесс характеризуется постоянным значением переменной Х1, которое обозначим Х10. В процессе регулирования (рис. 2.3) переменная Х1 будет иметь зна­чения где обозначает отклонение переменной X 1 от установившегося значения Х10.

Аналогичные соотношения вводятся для других переменных. Для рассматриваемого случая имеем: а также .

Все отклонения предполагаются достаточно малыми. Это математическое предположение не противоречит физическому смыслу задачи, так как сама идея автоматического регулирования требует, чтобы все отклонения регулируемой величины в процессе регулирования были достаточно малыми.

Установившееся состояние звена определяется значениями Х10, Х20 и F0. Тогда уравнение (2.1) может быть записано для установившего состояния в виде

Разложим левую часть уравнения (2.1) в ряд Тейлора

где D – члены высшего порядка. Индекс 0 при частных производных означает, что после взятия производной в её выражение надо подставить установившееся значение всех переменных .

В состав членов высшего порядка в формуле (2.3) входят высшие частные производные, умноженные на квадраты, кубы и более высокие степени отклонений, а также произведения отклонений. Они будут малыми высшего порядка по сравнению с самими отклонениями, которые являются малыми первого порядка.

Уравнение (2.3) является уравнением динамики звена, так же как (2.1), но записано в другой форме. Отбросим в этом уравнении малые высшего порядка, после чего из уравнения (2.3) вычтем уравнения установившегося состояния (2.2). В результате получим следующее приближённое уравнение динамики звена в малых отклонениях:

В это уравнение все переменные и их производные входят линейно, то есть в первой степени. Все частные производные представляют собой некоторые постоянные коэффициенты в том случае, если исследуется система с постоянными параметрами. Если же система имеет переменные параметры, то уравнение (2.4) будет иметь переменные коэффициенты. Рассмотрим только случай постоянных коэффициентов.

Получение уравнения (2.4) является целью проделанной линеаризации. В теории автоматического регулирования принято записывать уравнения всех звеньев так, чтобы в левой части уравнения была выходная величина, а все остальные члены переносятся в правую часть. При этом все члены уравнения делятся на коэффициент при выходной величине. В результате уравнение (2.4) принимает вид

где введены следующие обозначения

Кроме того, для удобства принято все дифференциальные уравнения записывать в операторной форме с обозначениями

И т.д. (2.7)

Тогда дифференциальное уравнение (2.5) запишется в виде

Эту запись будем называть стандартной формой записи уравнения динамики звена.

Коэффициенты Т1 и Т2 имеют размерность времени – секунды. Это вытекает из того, что все слагаемые в уравнении (2.8) должны иметь одинаковую размерность, а например, размерность (или px2) отличается от размерности х2 на секунду в минус первой степени (). Поэтому коэффициенты Т1 и Т2 называют постоянными времени .

Коэффициент k1 имеет размерность выходной величины, деленную на размерность входной. Он называется коэффициентом передачи звена. Для звеньев, у которых выходная и входная величины имеют одинаковую размерность, используются также следующие термины: коэффициент усиления – для звена, представляющего собой усилитель или имеющего в своем составе усилитель; передаточное число – для редукторов, делителей напряжения, масштабирующих устройств и т. п.

Коэффициент передачи характеризует статические свойства звена, так как в установившемся состоянии . Следовательно, он определяет крутизну статической характеристики при малых отклонениях. Если изобразить всю реальную статическую характеристику звена , то линеаризация дает или . Коэффициент передачи k1 будет представлять собой тангенс угла наклона касательной в той точке C (см. рис. 2.3), от которой отсчитываются малые отклонения х1 и х2.

Из рисунка видно, что проделанная выше линеаризация уравнения справедлива для процессов регулирования, захватывающих такой участок характеристики АВ, на котором касательная мало отличается от самой кривой.

Кроме того, отсюда вытекает другой, графический способ линеаризации. Если известна статическая характеристика и точка C, определяющая установившееся состояние, около которого происходит процесс регулирования, то коэффициент передачи в уравнении звена определяется графически из чертежа по зависимости k1 = tg c учетом масштабов чертежа и размерности x2. Во многих случаях графический метод линеаризации оказывается более удобным и быстрее приводит к цели.

Размерность коэффициента k2 равна размерности коэффициента передачи k1, умноженной на время. Поэтому часто уравнение (2.8) записывают в виде

где – постоянная времени.

Постоянные времени Т1, Т2 и Т3 определяют динамические свойства звена. Этот вопрос будет рассмотрен подробно ниже.

Коэффициент k3 представляет собой коэффициент передачи по внешнему возмущению.

В качестве примера линеаризации рассмотрим электрический двигатель, управляемый со стороны цепи возбуждения (рис. 2.4).

Для нахождения дифференциального уравнения, связывающего приращение скорости с приращением напряжения на обмотке возбуждения, запишем закон равновесия электродвижущих сил (эдс) в цепи возбуждения, закон равновесия эдс в цепи якоря и закон равновесия моментов на валу двигателя:

Во втором уравнении для упрощения опущен член, соответствующий эдс самоиндукции в цепи якоря.

В этих формулах RВ и RЯ – сопротивления цепи возбуждения и цепи якоря; ІВ и ІЯ – токи в этих цепях; UВ и UЯ – напряжения, приложенные к этим цепям; wВ – число витков обмотки возбуждения; Ф – магнитный поток; Ω – угловая скорость вращения вала двигателя; М – момент сопротивления от внешних сил; J – приведенный момент инерции двигателя; СЕ и
СМ – коэффициенты пропорциональности.

Допустим, что до появления приращения напряжения, приложенного к обмотке возбуждения, существовал установившийся режим, для которого уравнения (2.10) запишутся следующим образом:

Если теперь напряжение возбуждения получит приращение UВ = UВ0 + ΔUВ, то все переменные, определяющие состояние системы, также получат приращения. В результате будем иметь: ІВ = ІВ0 + ΔІВ; Ф = Ф0 + ΔФ; IЯ = IЯ0 + ΔІЯ; Ω = Ω0 + ΔΩ.

Подставляем эти значения в (2.10), отбрасываем малые высшего порядка и получаем:

Вычитая из уравнений (2.12) уравнения (2.11), получим систему уравнений для отклонений:

В этих уравнениях введен коэффициент пропорциональности между приращением потока и приращением тока возбуждения определяемый из кривой намагничивания электродвигателя (рис. 2.5).

Совместное решение системы (2.13) даёт

где коэффициент передачи, ,

электромагнитная постоянная времени цепи возбуждения, с,

где LB = a wB – динамический коэффициент самоиндукции цепи возбуждения; электромагнитная постоянная времени двигателя, с,

Из выражений (2.15) – (2.17) видно, что рассматриваемая система является по существу нелинейной, так как коэффициент передачи и «постоянные» времени, на самом деле – не постоянны. Их можно считать постоянными только приближенно для какого-то определенного режима при условии малости отклонений всех переменных от установившихся значений.

Интересным является частный случай, когда в установившемся режиме UB0 = 0; ІB0 = 0; Ф0 = 0 и Ω0 = 0. Тогда формула (2.14) приобретает вид

В этом случае статическая характеристика будет связывать приращение ускорения двигателя и приращение напряжения в цепи возбуждения.

Контрольные вопросы

1. Опишите линейные и нелинейные САР.

2. Дайте понятие линеаризации и объясните ее необходимость.

3. Изложите общий метод линеаризации.

4. Какова стандартная форма записи дифференциальных уравнений?

Большинство реальных систем нелинейны, т.е. поведение системы описывается уравнениями:

Часто на практике нелинейные системы можно аппроксимировать линейной в некоторой ограниченной области.

Предположим, что
для уравнения (1) известно. Заменим систему (1,2) подставив начальные условия

Предполагаем, что начальные состояния и входная переменная изменены так, что новое состояние и входная переменная имеет следующий вид.

Выход
найдем в результате решения возмущенных уравнений.

Разложим правую часть в ряд Тейлора.

-остаточный член погрешности второго порядка малости.

Вычитая исходное решение из разложений, получаем следующие линеаризованные уравнения:

.

Частные производные обозначим как коэффициенты зависящие от времени

Эти выражения можно переписать в виде

Получим линеаризованные уравнения в точках равновесия
.

. В точке

Решение этого уравнения

Продифференцируем правую часть исходного уравнения по x , получим

.

Выполним линеаризацию уравнения для произвольного начального значения
.

Получаем линеаризованную систему в виде нестационарного уравнения

Решение линеаризованной системы имеет вид:

.

1.7. Типовые возмущающие воздействия

Внешние возмущающие воздействия могут иметь различный характер:

мгновенного действия виде импульса и постоянного действия.

Если продифференцировать во времени
, то
, следовательно(t)- функция представляет собой производную во времени единичного ступенчатого воздействия.

(t)- функция при интегрировании обладает следующими фильтрующими свойствами:

Интегрируемое произведение произвольной функции
и(t)- функции отфильтровывает из всех значений
только то, которое соответствует моменту приложение мгновенного единичного импульса.

Линейное возмущение

Гармоническое возмущение

2 U. Системы второго порядка

2.1.Приведение уравнений второго порядка к системам уравнений первого порядка

Пример линейной стационарной системы.

Другое описание этой же системы второго порядка дается парой связанных дифференциальных уравнений первого порядка

(2)

где связь между коэффициентами этих уравнений определяется следующими соотношениями

2.2. Решение уравнений второго порядка

Применяя дифференциальный оператор
уравнение можно представить в более компактном виде

Решается уравнение (1) в 3 этапа:

1) находим общее решение однородного уравнения;

2) находим частное решение ;

3) полное решение есть сумма этих двух решений
.

Рассматриваем однородное уравнение

будем искать решение в форме

(5)

где
действительная или комплексная величина. При подстановке (5) в (4) получаем

(6)

Это выражение является решением однородного уравнения, если s удовлетворяет характеристическому уравнению

При s 1  s 2 решение однородного уравнения имеет вид

Тогда ищем решение в виде
и подставляя его в исходное уравнение

Откуда следует, что
.

Если выбрать

. (8)

Частное решение исходного уравнения (1) ищем методом вариации
в форме

исходя из (11), (13) получаем систему

Полное решение уравнения.

Заменой переменных получим уравнение второго порядка:

      ФАЗОВАЯ ПЛОСКОСТЬ

Двумерным пространственным состоянием или фазовой плоскостью называется плоскость, в которой две переменные состояния рассматриваются в прямоугольной системе координат

- эти переменные состояния образуют вектор
.

График изменения
образует траекторию движения. Необходимо указать направление движения траектории.

Состояние равновесия называется такое состояние , в котором система остается при условии, что
Состояние равновесия можно определить (если оно существует) из соотношений

при любом t .

Состояния равновесия иногда называются критическими, основными или нулевыми точками.

Траектории системы не могут пересекаться друг с другом в пространстве, что вытекает и единственности решения дифференциального уравнения.

Ни одна траектория не проходит через состояние равновесия хотя и могут сколь угодно близко приближаться к особым точкам (при
) .

Типы точек

1 Регулярная точка есть любая точка, через которую может проходить траектория, точка равновесия не является регулярной.

2.Точка равновесия изолирована, если в ее малой окрестности содержатся только регулярные точки.

Рассмотрим систему

Для определения состояния равновесия решим следующую систему уравнений

.

Получаем зависимость между переменными состояния
.

любая точка которой есть состояние равновесия. Эти точки не является изолированными.

Заметим, что для линейной стационарной системы

начальное состояние оказывается состоянием равновесия и изолированным, если детерминант матрицы коэффициентов
, тогда
есть состояние равновесия.

Для нелинейной системы второго порядка состояние равновесия называется простым , если соответствующая матрица Якоби не равна 0.

В противном случае состояние не будет простым. Если точка равновесия является простой, то она изолирована. Обратное утверждение не обязательно верно (за исключением случая линейных стационарных систем) .

Рассмотрим решение уравнения состояния для линейной системи второго порядка:
.

Эту систему можно представить двумя уравнениями первого порядка,

обозначим
,

Характеристическое уравнение
и решение будет следующим:

Решение уравнения записывается в виде

Линеаризация является наиболее распространенным способом понижения уровня сложности ММ и служит основой применения линейной теории.

Суть любой линеаризации состоит в приближенной замене исходной нелинейной зависимости (нелинейности) некоторой линейной зависимостью в соответствии с определенным условием (критерием) эквивалентности. Среди возможных методов чаще всего применяют метод касательных (линеаризация в малой окрестности заданной точки). Этот метод не зависит от вида преобразуемых сигналов и может одинаково успешно использоваться для разных типов нелинейностей, которые могут быть одномерными и многомерными; безынерционными (статическими) и динамическими.

Безынерционные нелинейности устанавливают функциональную зависимость между значениями входа u (t ) и выхода y (t ) в один и тот же текущий момент времени t и могут задаваться либо явно (формулами, графиками, таблицами), либо неявно (алгебраическими уравнениями). На структурных схемах им соответствуют безынерционные (без памяти) нелинейные звенья .

Динамические нелинейности описываются математически нелинейными дифференциальными уравнениями и на структурных схемах им соответствуют нелинейные динамические звенья . При этом значения выхода y (t ) в текущий момент времени t зависят не только от значений входа в этот же момент времени, но и от производных, интегралов или каких либо других значений.

Математической основой метода касательных является разложение нелинейной функции в ряд Тейлора в малой окрестности некоторой «точки линеаризации» с последующим отбрасыванием нелинейных слагаемых, содержащих степени отклонений переменных (приращений) выше первой.

Суть метода рассмотрим на частных случаях с последующими обобщениями.

1) Пусть y = F (u ) - явно заданная одномерная безынерционная нелинейность, гладкая и непрерывная в окрестности некоторой точки u =u *. Полагая, u =u *+Du ; y =y *+Dy , где y *=F (u *), запишем ряд Тейлора для этой функции в виде:

Отбрасывая слагаемые более высокого порядка малости, и оставляя только слагаемые, содержащие Du в первой степени, получим приближенное равенство

. (2)

Это выражение приближенно описывает взаимосвязь малых приращений Dy и Du в виде линейной зависимости и является результатом линеаризации в рассматриваемом случае. Здесь К имеет геометрический смысл углового коэффициента наклона касательной к графику функции в точке с координатой u =u *.

В случае многомерной нелинейности y =F (u ), когда y ={y i }, F ={F i } иu ={u j }– векторы, аналогично получим, что Dy =K Du . ЗдесьK ={K ij }- матричный коэффициент, элементы которого K ij определяются как значения частных производных функций F i по переменным u j , вычисленных в «точке» u =u* .



2. Пусть безынерционная нелинейность задана неявно с помощью алгебраического уравнения F (y ,u )=0 . Необходимо линеаризовать эту нелинейность в малой окрестности некоторого известного частного решения (u *, y *) в предположении того, что все нелинейные функции F i в составе F непрерывны и дифференцируемы в этой окрестности. Выполнив разложение этой вектор-функции в ряд Тейлора и, отбросив слагаемые второго и выше порядков малости, получим линейное уравнение первого приближения:

, (3)

где Dy =y y *; Du =u u *; - матрицы частных производных, вычисленные в точке линеаризации.

3. Пусть одномерная динамическая нелинейность задана дифференциальным уравнением «вход-выход» n -го порядка:

F (y , y (1) , …, y ( n ) , u , u (1) , …u ( m ))=0. (4)

Линеаризуем эту нелинейность методом касательных в малой окрестности известного частного решения этого уравнения y *(t ), соответствующего заданному входу u *(t ). Производные по времени соответствующих порядков от y *(t ) и u *(t ) также предполагаются известными.

Предполагая функцию F непрерывно-дифференцируемой по всем своим аргументам и следуя рассмотренной выше общей методике (разложение в ряд и учет только линейных относительно приращений аргументов слагаемых), запишем линейное уравнение первого приближения для нелинейного уравнения:

(5)

Здесь символ (*) означает, что частные производные определены при значениях переменных и их производных, соответствующих частному решению (y *(t ), u *(t )). В общем случае их значения (коэффициенты уравнения) будут зависеть от времени и линеаризованная модель будет нестационарной . Но если частное решение соответствует статическому режиму , то эти коэффициенты будут постоянными .

Для удобства и краткости записи, введем следующие обозначения:

= a i ; = -b i ; Dy (i ) =D i Dy ; Du (i ) =D i Du ; D =d /dt .

Тогда линеаризованное уравнение (5) запишется в краткой операторной форме:

A (D )Dy (t )=B (D )Du (t ),

где A (D ) – полином степени n относительно оператора дифференцирования D ;

B (D ) – аналогичный операторный полином m -ой степени.

4. Пусть многомерная динамическая нелинейность задана нелинейными уравнениями состояния вида

(6)

Аналогично предыдущим случаям, линеаризуем эту нелинейность методом касательных в малой окрестности известного частного решения (x* , y* ), соответствующего заданному входу u* (t ). При этом уравнения первого приближения будут иметь следующий вид:

(7)

где - матрицы соответствующих размеров. Их элементы в общем случае будут функциями времени, но если частное решение соответствует статическому режиму, то они будут постоянны.

Сделаем заключительные замечания о применении метода касательных при линеаризации ММ всей САР, представляющей собой совокупность описаний взаимодействующих между собой конструктивных блоков.

1) «опорный режим» (*), относительно которого выполняется линеаризация, рассчитывается для всей системы по ее полной (нелинейной) ММ. Для расчета могут использоваться как графические, так и численные (компьютерные) методы. При этом коэффициенты всех линеаризованных уравнений и функциональных зависимостей будут зависеть от выбранных точек линеаризации;

2) все нелинейные зависимости ММ должны быть непрерывными и непрерывно дифференцируемыми (гладкими) в малой окрестности режима (*);

3) отклонения переменных от их значений в опорном режиме должны быть достаточно малыми; для САР и У это требование вполне согласуется с целью управления – регулированием значений управляемых переменных в соответствии с предписанными законами их изменения;

4) для линейных уравнений в составе ММ линеаризация состоит в формальной замене всех переменных на их отклонения (приращения);

5) для получения линеаризованной ММ всей системы в стандартном виде, например в форме уравнений состояния, следует сначала проводить линеаризацию каждого из уравнений в составе ММ. Это будет намного проще и быстрее, чем попытка получения нелинейной ММ системы в стандартном виде с последующей ее линеаризацией;

6) при соблюдении всех условий применения метода касательных, свойства линеаризованной ММ дают объективное представление о локальных свойствах нелинейной ММ в малой окрестности опорного режима. Этот факт имеет строгое математическое обоснование в виде теорем Ляпунова (первый метод) и является теоретической базой для практического применения линейной теории управления.