Формула ньютона лейбница неопределенный интеграл. Определённый интеграл и методы его вычисления. Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной

Пусть на некотором отрезке оси Ох задана некоторая непрерывная функция f. Положим, что эта функция не меняет своего знака на всем отрезке.

Если f есть непрерывная и неотрицательная на некотором отрезке функция, а F есть её некоторая первообразная на этом отрезке, тогда площадь криволинейной трапеции S равна приращению первообразной на данном отрезке .

Эту теорему можно записать следующей формулой:

S = F(b) - F(a)

Интеграл функции f(x) от а до b будет равен S. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись (a;b)∫f(x). Ниже представлен пример как это будет выглядеть.

Формула Ньютона-Лейбница

Значит, мы можем приравнять между собой эти два результата. Получим: (a;b)∫f(x)dx = F(b) - F(a), при условии, что F есть первообразная для функции f на . Эта формула имеет название формулы Ньютона - Лейбница . Она будет верна для любой непрерывной на отрезке функции f.

Формула Ньютона-Лейбница применяется для вычисления интегралов. Рассмотрим несколько примеров:

Пример 1 : вычислить интеграл. Находим первообразную для подынтегральной функции x 2 . Одной из первообразных будет являться функция (x 3)/3.

Теперь используем формулу Ньютона - Лейбница:

(-1;2)∫x 2 dx = (2 3)/3 - ((-1) 3)/3 = 3

Ответ: (-1;2)∫x 2 dx = 3.

Пример 2 : вычислить интеграл (0;pi)∫sin(x)dx.

Находим первообразную для подынтегральной функции sin(x). Одной из первообразных будет являться функция -cos(x). Воспользуемся формулой Ньютона-Лейбница:

(0;pi)∫cos(x)dx = -cos(pi) + cos(0) = 2.

Ответ: (0;pi)∫sin(x)dx=2

Иногда для простоты и удобства записи приращение функции F на отрезке (F(b)-F(a)) записывают следующим образом:

Используя такое обозначение для приращения, формулу Ньютона-Лейбница можно переписать в следующем виде:

Как уже отмечалось выше, это лишь сокращение для простоты записи, больше ни на что эта запись не влияет. Эта запись и формула (a;b)∫f(x)dx = F(b) - F(a) будут эквивалентны.

Формула Ньютона - Лейбница

Основная теорема анализа или формула Ньютона - Лейбница даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной

Формулировка

Рассмотрим интеграл от функции y = f (x ) в пределах от постоянного числа a до числа x , которое будем считать переменным. Запишем интеграл в следующем виде:

Данный вид интеграла называется интегралом с переменным верхним пределом. Используя теорему о среднем в определённом интеграле , легко показать что данная функция непрерывная и дифференцируемая. А также производная от данной функции в точке x равна самой интегрируемой функции. От сюда следует, что любая непрерывная функция имеет первообразную в виде квадратуры: . А так как класс первообразных функций функции f отличается на константу, легко показать, что: определенный интеграл от функции f на равен разности значений первообразных в точках b и а


Wikimedia Foundation . 2010 .

  • Формула Полной Вероятности
  • Формула Релея - Джинса

Смотреть что такое "Формула Ньютона - Лейбница" в других словарях:

    Формула Ньютона-Лейбница - Основная теорема анализа или формула Ньютона Лейбница даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной Формулировка Рассмотрим интеграл от функции y = f(x) в пределах от постоянного числа a до… … Википедия

    Формула конечных приращений - У этого термина существуют и другие значения, см. Теорема Лагранжа. Формула конечных приращений или теорема Лагранжа о среднем значении утверждает, что если функция непрерывна на отрезке и … Википедия

    Формула Стокса - Теорема Стокса одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса. Содержание 1 Общая формулировка 2… … Википедия

    НЬЮТОНА - ЛЕЙБНИЦА ФОРМУЛА - формула, выражающая значение определенного интеграла от заданной функции f по отрезку в виде разности значений на концах отрезка любой первообразной Fэтой функции Названа именами И. Ньютона (I. Newton) и Г. Лейбница (G. Leibniz), т. к. правило,… … Математическая энциклопедия

    НЬЮТОНА-ЛЕЙБНИЦА ФОРМУЛА - основная формула интегрального исчисления. Выражает связь между определенным интегралом от функции f(x) и какой либо ее первообразной F(x) … Большой Энциклопедический словарь

    Формула Лейбница - У этого термина существуют и другие значения, см. Список объектов, названных в честь Лейбница. У этого термина существуют и другие значения, см. Формула Лейбница (значения). Формулой Лейбница в интегральном исчислении называется правило… … Википедия

    Ньютона-Лейбница формула - Ньютона Лейбница формула, основная формула интегрального исчисления. Выражает связь между определённым интегралом от функции f(х) и какой либо её первообразной F(х). . * * * НЬЮТОНА ЛЕЙБНИЦА ФОРМУЛА НЬЮТОНА ЛЕЙБНИЦА ФОРМУЛА, основная формула… … Энциклопедический словарь

    Формула прямоугольников

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Теорема Ньютона - Формула Ньютона Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной. Если непрерывна на отрезке и ее любая первообразная на этом отрезке, то имеет … Википедия

Определённым интегралом от непрерывной функции f (x ) на конечном отрезке [a , b ] (где ) называется приращение какой-нибудь её первообразной на этом отрезке. (Вообще, понимание заметно облегчится, если повторить тему неопределённого интеграла) При этом употребляется запись

Как видно на графиках внизу (приращение первообразной функции обозначено ), определённый интеграл может быть как положительным, так и отрицательным числом (Вычисляется как разность между значением первообразной в верхнем пределе и её же значением в нижнем пределе, т. е. как F (b ) - F (a )).

Числа a и b называются соответственно нижним и верхним пределами интегрирования, а отрезок [a , b ] – отрезком интегрирования.

Таким образом, если F (x ) – какая-нибудь первообразная функция для f (x ), то, согласно определению,

(38)

Равенство (38) называется формулой Ньютона-Лейбница . Разность F (b ) – F (a ) кратко записывают так:

Поэтому формулу Ньютона-Лейбница будем записывать и так:

(39)

Докажем, что определённый интеграл не зависит от того, какая первообразная подынтегральной функции взята при его вычислении. Пусть F (x ) и Ф(х ) – произвольные первообразные подынтегральной функции. Так как это первообразные одной и той же функции, то они отличаются на постоянное слагаемое: Ф(х ) = F (x ) + C . Поэтому

Тем самым установлено, что на отрезке [a , b ] приращения всех первообразных функции f (x ) совпадают.

Таким образом, для вычисления определённого интеграла необходимо найти любую первообразную подынтегральной функции, т.е. сначала следует найти неопределённый интеграл. Постоянная С из последующих вычислений исключается. Затем применяется формула Ньютона-Лейбница: в первообразную функцию подставляется значение верхнего предела b , далее - значение нижнего предела a и вычисляется разность F(b) - F(a) . Полученное число и будет определённым интегралом. .

При a = b по определению принимается

Пример 1.

Решение. Сначала найдём неопределённый интеграл:

Применяя формулу Ньютона-Лейбница к первообразной

(при С = 0), получим

Однако при вычислении определённого интеграла лучше не находить отдельно первообразную, а сразу записывать интеграл в виде (39).

Пример 2. Вычислить определённый интеграл

Решение. Используя формулу

Свойства определённого интеграла

Теорема 2. Величина определённого интеграла не зависит от обозначения переменной интегрирования , т.е.

(40)

Пусть F (x ) – первообразная для f (x ). Для f (t ) первообразной служит та же функция F (t ), в которой лишь иначе обозначена независимая переменная. Следовательно,

На основании формулы (39) последнее равенство означает равенство интегралов

Теорема 3. Постоянный множитель можно выносить за знак определённого интеграла , т.е.

(41)

Теорема 4. Определённый интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме определённых интегралов от этих функций , т.е.

(42)

Теорема 5. Если отрезок интегрирования разбит на части, то определённый интеграл по всему отрезку равен сумме определённых интегралов по его частям , т.е. если

(43)

Теорема 6. При перестановке пределов интегрирования абсолютная величина определённого интеграла не меняется, а изменяется лишь его знак , т.е.

(44)

Теорема 7 (теорема о среднем). Определённый интеграл равен произведению длины отрезка интегрирования на значение подынтегральной функции в некоторой точке внутри его , т.е.

(45)

Теорема 8. Если верхний предел интегрирования больше нижнего и подынтегральная функция неотрицательна (положительна), то и определённый интеграл неотрицателен (положителен), т.е. если


Теорема 9. Если верхний предел интегрирования больше нижнего и функции и непрерывны, то неравенство

можно почленно интегрировать , т.е.

(46)

Свойства определённого интеграла позволяют упрощать непосредственное вычисление интегралов.

Пример 5. Вычислить определённый интеграл

Используя теоремы 4 и 3, а при нахождении первообразных – табличные интегралы (7) и (6), получим


Определённый интеграл с переменным верхним пределом

Пусть f (x ) – непрерывная на отрезке [a , b ] функция, а F (x ) – её первообразная. Рассмотрим определённый интеграл

(47)

а через t обозначена переменная интегрирования, чтобы не путать её с верхней границей. При изменении х меняется и опредёленный интеграл (47), т.е. он является функцией верхнего предела интегрирования х , которую обозначим через Ф (х ), т.е.

(48)

Докажем, что функция Ф (х ) является первообразной для f (x ) = f (t ). Действительно, дифференцируя Ф (х ), получим

так как F (x ) – первообразная для f (x ), а F (a ) – постояная величина.

Функция Ф (х ) – одна из бесконечного множества первообразных для f (x ), а именно та, которая при x = a обращается в нуль. Это утверждение получается, если в равенстве (48) положить x = a и воспользоваться теоремой 1 предыдущего параграфа.

Вычисление определённых интегралов методом интегрирования по частям и методом замены переменной

где, по определению, F (x ) – первообразная для f (x ). Если в подынтегральном выражении произвести замену переменной

то в соответствии с формулой (16) можно записать

В этом выражении

первообразная функция для

В самом деле, её производная, согласно правилу дифференцирования сложной функции , равна

Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения a и b , т.е.

Но, согласно формуле Ньютона-Лейбница, разность F (b ) – F (a ) есть