Первообразная для функции имеет вид. Первообразная функции и общий вид

Этот урок — первый из серии видео, посвященных интегрированию. В нём мы разберём, что такое первообразная функции, а также изучим элементарные приёмы вычисления этих самых первообразных.

На самом деле здесь нет ничего сложного: по существу всё сводится к понятию производной, с которым вы уже должны знакомы.:)

Сразу отмечу, что, поскольку это самый первый урок в нашей новой теме, сегодня не будет никаких сложных вычислений и формул, но то, что мы изучим сегодня, ляжет в основу гораздо более сложных выкладок и конструкций при вычислении сложных интегралов и площадей.

Кроме того, приступая к изучению интегрирования и интегралов в частности, мы неявно предполагаем, что ученик уже, как минимум, знаком к понятиям производной и имеет хотя бы элементарные навыки их вычисления. Без четкого понимания этого, делать в интегрировании совершенно нечего.

Однако здесь же кроется одна из самых частых и коварных проблем. Дело в том, что, начиная вычислять свои первые первообразные, многие ученики путают их с производными. В результате на экзаменах и самостоятельных работах допускаются глупые и обидные ошибки.

Поэтому сейчас я не буду давать четкого определения первообразной. А взамен предлагаю вам посмотреть, как она считается на простом конкретном примере.

Что такое первообразная и как она считается

Мы знаем такую формулу:

\[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

Считается эта производная элементарно:

\[{f}"\left(x \right)={{\left({{x}^{3}} \right)}^{\prime }}=3{{x}^{2}}\]

Посмотрим внимательно на полученное выражение и выразим ${{x}^{2}}$:

\[{{x}^{2}}=\frac{{{\left({{x}^{3}} \right)}^{\prime }}}{3}\]

Но мы можем записать и так, согласно определению производной:

\[{{x}^{2}}={{\left(\frac{{{x}^{3}}}{3} \right)}^{\prime }}\]

А теперь внимание: то, что мы только что записали и есть определением первообразной. Но, чтобы записать ее правильно, нужно написать следующее:

Аналогично запишем и такое выражение:

Если мы обобщим это правило, то сможем вывести такую формулу:

\[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

Теперь мы можем сформулировать четкое определение.

Первообразной функции называется такая функция, производная которой равна исходной функции.

Вопросы о первообразной функции

Казалось бы, довольно простое и понятное определение. Однако, услышав его, у внимательного ученика сразу возникнет несколько вопросов:

  1. Допустим, хорошо, эта формула верна. Однако в этом случае при $n=1$ у нас возникают проблемы: в знаменателе появляется «ноль», а на «ноль» делить нельзя.
  2. Формула ограничивается только степенями. Как считать первообразную, например, синуса, косинуса и любой другой тригонометрии, а также констант.
  3. Экзистенциальный вопрос: а всегда ли вообще можно найти первообразную? Если да, то как быть с первообразной суммы, разности, произведения и т.д.?

На последний вопрос я отвечу сразу. К сожалению, первообразная, в отличие от производной, считается не всегда. Нет такой универсальной формулы, по которой из любой исходной конструкции мы получим функцию, которая будет равна этой сходной конструкции. А что касается степеней и констант — сейчас мы об этом поговорим.

Решение задач со степенными функциями

\[{{x}^{-1}}\to \frac{{{x}^{-1+1}}}{-1+1}=\frac{1}{0}\]

Как видим, данная формула для ${{x}^{-1}}$ не работает. Возникает вопрос: а что тогда работает? Неужели мы не можем посчитать ${{x}^{-1}}$? Конечно, можем. Только давайте для начала вспомним такое:

\[{{x}^{-1}}=\frac{1}{x}\]

Теперь подумаем: производная какой функции равна $\frac{1}{x}$. Очевидно, что любой ученик, который хоть немного занимался этой темой, вспомнит, что этому выражению равна производная натурального логарифма:

\[{{\left(\ln x \right)}^{\prime }}=\frac{1}{x}\]

Поэтому мы с уверенностью можем записать следующее:

\[\frac{1}{x}={{x}^{-1}}\to \ln x\]

Эту формулу нужно знать, точно так же, как и производную степенной функции.

Итак, что нам известно на данный момент:

  • Для степенной функции — ${{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}$
  • Для константы — $=const\to \cdot x$
  • Частный случай степенной функции — $\frac{1}{x}\to \ln x$

А если простейшие функции мы начнем умножать и делить, как тогда посчитать первообразную произведения или частного. К сожалению, аналогии с производной произведения или частного здесь не работают. Какой-либо стандартной формулы не существует. Для некоторых случаев существуют хитрые специальные формулы — с ними мы познакомимся на будущих видеоуроках.

Однако запомните: общей формулы, аналогичной формуле для вычисления производной частного и произведения, не существует.

Решение реальных задач

Задача № 1

Давайте каждую из степенных функций посчитаем отдельно:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Возвращаясь к нашему выражению, мы запишем общую конструкцию:

Задача № 2

Как я уже говорил, первообразные произведений и частного «напролом» не считаются. Однако здесь можно поступить следующим образом:

Мы разбили дробь на сумму двух дробей.

Посчитаем:

Хорошая новость состоит в том, что зная формулы вычисления первообразных, вы уже способны считать более сложные конструкции. Однако давайте пойдем дальше и расширим наши знания еще чуть-чуть. Дело в том, что многие конструкции и выражения, которые, на первый взгляд, не имеют никакого отношения к ${{x}^{n}}$, могут быть представлены в виде степени с рациональным показателем, а именно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\]

\[\sqrt[n]{x}={{x}^{\frac{1}{n}}}\]

\[\frac{1}{{{x}^{n}}}={{x}^{-n}}\]

Все эти приемы можно и нужно комбинировать. Степенные выражения можно

  • умножать (степени складываются);
  • делить (степени вычитаются);
  • умножать на константу;
  • и т.д.

Решение выражений со степенью с рациональным показателем

Пример № 1

Посчитаем каждый корень отдельно:

\[\sqrt{x}={{x}^{\frac{1}{2}}}\to \frac{{{x}^{\frac{1}{2}+1}}}{\frac{1}{2}+1}=\frac{{{x}^{\frac{3}{2}}}}{\frac{3}{2}}=\frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

\[\sqrt{x}={{x}^{\frac{1}{4}}}\to \frac{{{x}^{\frac{1}{4}}}}{\frac{1}{4}+1}=\frac{{{x}^{\frac{5}{4}}}}{\frac{5}{4}}=\frac{4\cdot {{x}^{\frac{5}{4}}}}{5}\]

Итого всю нашу конструкцию можно записать следующим образом:

Пример № 2

\[\frac{1}{\sqrt{x}}={{\left(\sqrt{x} \right)}^{-1}}={{\left({{x}^{\frac{1}{2}}} \right)}^{-1}}={{x}^{-\frac{1}{2}}}\]

Следовательно, мы получим:

\[\frac{1}{{{x}^{3}}}={{x}^{-3}}\to \frac{{{x}^{-3+1}}}{-3+1}=\frac{{{x}^{-2}}}{-2}=-\frac{1}{2{{x}^{2}}}\]

Итого, собирая все в одно выражение, можно записать:

Пример № 3

Для начала заметим, что $\sqrt{x}$ мы уже считали:

\[\sqrt{x}\to \frac{4{{x}^{\frac{5}{4}}}}{5}\]

\[{{x}^{\frac{3}{2}}}\to \frac{{{x}^{\frac{3}{2}+1}}}{\frac{3}{2}+1}=\frac{2\cdot {{x}^{\frac{5}{2}}}}{5}\]

Перепишем:

Надеюсь, я никого не удивлю, если скажу, что то, что мы только что изучали — это лишь самые простые вычисления первообразных, самые элементарные конструкции. Давайте сейчас рассмотрим чуть более сложные примеры, в которых помимо табличных первообразных еще потребуется вспомнить школьную программу, а именно, формулы сокращенного умножения.

Решение более сложных примеров

Задача № 1

Вспомним формулу квадрата разности:

\[{{\left(a-b \right)}^{2}}={{a}^{2}}-ab+{{b}^{2}}\]

Давайте перепишем нашу функцию:

Первообразную такой функции нам сейчас предстоит найти:

\[{{x}^{\frac{2}{3}}}\to \frac{3\cdot {{x}^{\frac{5}{3}}}}{5}\]

\[{{x}^{\frac{1}{3}}}\to \frac{3\cdot {{x}^{\frac{4}{3}}}}{4}\]

Собираем все в общую конструкцию:

Задача № 2

В этом случае нам нужно раскрыть куб разности. Вспомним:

\[{{\left(a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}\cdot b+3a\cdot {{b}^{2}}-{{b}^{3}}\]

С учетом этого факта можно записать так:

Давайте немного преобразуем нашу функцию:

Считаем как всегда — по каждому слагаемому отдельно:

\[{{x}^{-3}}\to \frac{{{x}^{-2}}}{-2}\]

\[{{x}^{-2}}\to \frac{{{x}^{-1}}}{-1}\]

\[{{x}^{-1}}\to \ln x\]

Запишем полученную конструкцию:

Задача № 3

Сверху у нас стоит квадрат суммы, давайте его раскроем:

\[\frac{{{\left(x+\sqrt{x} \right)}^{2}}}{x}=\frac{{{x}^{2}}+2x\cdot \sqrt{x}+{{\left(\sqrt{x} \right)}^{2}}}{x}=\]

\[=\frac{{{x}^{2}}}{x}+\frac{2x\sqrt{x}}{x}+\frac{x}{x}=x+2{{x}^{\frac{1}{2}}}+1\]

\[{{x}^{\frac{1}{2}}}\to \frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

Давайте напишем итоговое решение:

А теперь внимание! Очень важная вещь, с которой связана львиная доля ошибок и недопониманий. Дело в том, что до сих пор считая первообразные с помощью производных, приводя преобразования, мы не задумывались о том, чему равна производная константы. А ведь производная константы равна «нулю». А это означает, что можно записать такие варианты:

  1. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}$
  2. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+1$
  3. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+C$

Вот это очень важно понимать: если производная функции всегда одна и та же, то первообразных у одной и той же функции бесконечно много. Просто к нашим первообразным мы можем дописывать любые числа-константы и получать новые.

Неслучайно, в пояснении к тем задачам, которые мы только что решали, было написано «Запишите общий вид первообразных». Т.е. уже заранее предполагается, что их не одна, а целое множество. Но, на самом деле, они отличаются лишь константой $C$ в конце. Потому в наших задачах мы исправим то, что мы не дописали.

Еще раз переписываем наши конструкции:

В таких случаях следует дописывать, что $C$ — константа — $C=const$.

Во второй нашей функции мы получим следующую конструкцию:

И последняя:

И вот теперь мы действительно получили то, что от нас требовалось в исходном условии задачи.

Решение задач на нахождение первообразных с заданной точкой

Сейчас, когда мы знаем о константах и об особенностях записи первообразных, вполне логично возникает следующий тип задач, когда из множества всех первообразных требуется найти одну-единственную такую, которая проходила бы через заданную точку. В чем состоит эта задача?

Дело в том, что все первообразные данной функции отличаются лишь тем, что они сдвинуты по вертикали на какое-то число. А это значит, что какую бы точку на координатной плоскости мы не взяли, обязательно пройдет одна первообразная, и, причем, только одна.

Итак, задачи, которые сейчас мы будем решать, сформулированы следующем образом: не просто найти первообразную, зная формулу исходной функции, а выбрать именно такую из них, которая проходит через заданную точку, координаты которой будут даны в условии задачи.

Пример № 1

Для начала просто посчитаем каждое слагаемое:

\[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

\[{{x}^{3}}\to \frac{{{x}^{4}}}{4}\]

Теперь подставляем эти выражения в нашу конструкцию:

Эта функция должна проходить через точку $M\left(-1;4 \right)$. Что значит, что она проходит через точку? Это значит, что если вместо $x$ поставить везде $-1$, а вместо $F\left(x \right)$ — $-4$, то мы должны получить верное числовое равенство. Давайте так и сделаем:

Мы видим, что у нас получилось уравнение относительно $C$, поэтому давайте попробуем его решить:

Давайте запишем то самое решение, которое мы искали:

Пример № 2

В первую очередь необходимо раскрыть квадрат разности по формуле сокращенного умножения:

\[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

Исходная конструкция запишется следующим образом:

Теперь давайте найдем $C$: подставим координаты точки $M$:

\[-1=\frac{8}{3}-12+18+C\]

Выражаем $C$:

Осталось отобразить итоговое выражение:

Решение тригонометрических задач

В качестве финального аккорда к тому, что мы только что разобрали, предлагаю рассмотреть две более сложные задачи, в которых содержится тригонометрия. В них точно так же потребуется найти первообразные для всех функций, затем выбрать из этого множества одну-единственную, которая проходит через точку $M$ на координатной плоскости.

Забегая наперед, хотел бы отметить, что тот прием, который мы сейчас будем использовать для нахождения первообразных от тригонометрических функций, на самом деле, является универсальным приемом для самопроверки.

Задача № 1

Вспомним следующую формулу:

\[{{\left(\text{tg}x \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x}\]

Исходя из этого, мы можем записать:

Давайте подставим координаты точки $M$ в наше выражение:

\[-1=\text{tg}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}+C\]

Перепишем выражение с учетом этого факта:

Задача № 2

Тут будет чуть сложнее. Сейчас увидите, почему.

Вспомним такую формулу:

\[{{\left(\text{ctg}x \right)}^{\prime }}=-\frac{1}{{{\sin }^{2}}x}\]

Чтобы избавится от «минуса», необходимо сделать следующее:

\[{{\left(-\text{ctg}x \right)}^{\prime }}=\frac{1}{{{\sin }^{2}}x}\]

Вот наша конструкция

Подставим координаты точки $M$:

Итого запишем окончательную конструкцию:

Вот и все, о чем я хотел сегодня вам рассказать. Мы изучили сам термин первообразных, как считать их от элементарных функций, а также как находить первообразную, проходящую через конкретную точку на координатной плоскости.

Надеюсь, этот урок хоть немного поможет вам разобраться в этой сложной теме. В любом случае, именно на первообразных строятся неопределенные и неопределенные интегралы, поэтому считать их совершенно необходимо. На этом у меня все. До новых встреч!

Первообразная.

Первообразную легко понять на примере.

Возьмем функцию у = х 3 . Как мы знаем из предыдущих разделов, производной от х 3 является 3х 2:

(х 3)" = 3х 2 .

Следовательно, из функции у = х 3 мы получаем новую функцию: у = 3х 2 .
Образно говоря, функция у = х 3 произвела функцию у = 3х 2 и является ее «родителем». В математике нет слова «родитель», а есть родственное ему понятие: первообразная.

То есть: функция у = х 3 является первообразной для функции у = 3х 2 .

Определение первообразной:

В нашем примере (х 3)" = 3х 2 , следовательно у = х 3 – первообразная для у = 3х 2 .

Интегрирование.

Как вы знаете, процесс нахождения производной по заданной функции называется дифференцированием. А обратная операция называется интегрированием.

Пример-пояснение :

у = 3х 2 + sin x .

Решение :

Мы знаем, что первообразной для 3х 2 является х 3 .

Первообразной для sin x является –cos x .

Складываем два первообразных и получаем первообразную для заданной функции:

у = х 3 + (–cos x ),

у = х 3 – cos x .

Ответ :
для функции у = 3х 2 + sin x у = х 3 – cos x .

Пример-пояснение :

Найдем первообразную для функции у = 2 sin x .

Решение :

Замечаем, что k = 2. Первообразной для sin x является –cos x .

Следовательно, для функции у = 2 sin x первообразной является функция у = –2 cos x .
Коэффициент 2 в функции у = 2 sin x соответствует коэффициенту первообразной, от которой эта функция образовалась.

Пример-пояснение :

Найдем первообразную для функции y = sin 2x .

Решение :

Замечаем, что k = 2. Первообразной для sin x является –cos x .

Применяем нашу формулу при нахождении первообразной для функции y = cos 2x :

1
y = - · (–cos 2x ),
2

cos 2x
y = – ----
2

cos 2x
Ответ : для функции y = sin 2x первообразной является функция y = – ----
2


(4)

Пример-пояснение .

Возьмем функцию из предыдущего примера: y = sin 2x .

Для этой функции все первообразные имеют вид:

cos 2x
y = – ---- + C .
2

Пояснение .

Возьмем первую строчку. Читается она так: если функция y = f(x )равна 0, то первообразной для для нее является 1. Почему? Потому что производная единицы равна нулю: 1" = 0.

В таком же порядке читаются и остальные строчки.

Как выписывать данные из таблицы? Возьмем восьмую строчку:

(-cos x )" = sin x

Пишем вторую часть со знаком производной, затем знак равенства и производную.

Читаем: первообразной для функции sin x является функция -cos x .

Или: функция -cos x является первообразной для функции sin x .

Документ

Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...


  • Определение первообразной.

    Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любого х из заданного промежутка.

    Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.


    Определение неопределенного интеграла.

    Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

    Выражение называют подынтегральным выражением , а f(x) – подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

    Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

    На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

    Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

    Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

    Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.


    Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

    • первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;
    • второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

    Рассмотрим пример.

    Пример.

    Найти первообразную функции , значение которой равно единице при х = 1 .

    Решение.

    Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1 . Искомая первообразная примет вид .

    Пример.

    Найти неопределенный интеграл и результат проверить дифференцированием.

    Решение.

    По формуле синуса двойного угла из тригонометрии , поэтому