Критерий гурвица пример решения. Правило составления матрицы Гурвица. Алгоритмическая форма критерия гурвица

Обычный (или простой) критерий Гурвица учитывает только крайние исходы x i max и x i min каждой альтернативы:

x i max = max (x ij ) , x i min = min (x ij ) , j = 1..M

Он позволяет учесть субъективное отношение применяющего данный критерий ЛПР за счет придания этим исходам разных "весов". Для этого в расчет критерия введен "коэффициент оптимизма" λ, 0 ≤ λ ≤ 1 . Формула для расчета критерия Гурвица для i -й альтернативы с коэффициентом оптимизма λ выглядит следующим образом:

H i (λ) = λ x i max + (1 - λ) x i min

Если исходы представляют возможные выигрыши, то оптимальной признается альтернатива с максимальным значением критерия Гурвица:

Х* = Х k , H k (λ) = max (H i (λ) ) , i = 1..N

Как видно из формулы, правильный выбор коэффициента оптимизма λ оказывает существенное влияние на результат применения критерия. Остановимся подробнее на логике подбора λ .

Если ЛПР настроен пессимистически, то для него важнее меньше потерять при плохом развитии событий, пусть даже это означает не такой большой выигрыш при удачном состоянии. Значит, удельный вес наихудшего исхода x i min в оценке альтернативы должен быть выше, чем для x i mах . Это обеспечивается, когда λ находится в пределах от 0 до 0.5 , исключая последнее значение.

При λ = 0 критерий Гурвица "вырождается" в критерий Вальда и подходит только для очень пессимистично настроенных ЛПР.

Оптимистичный ЛПР, напротив, ориентируется на лучшие исходы, так как для него важнее больше выиграть, а не меньше проиграть. Больший удельный вес в оценке наилучшего исхода достигается при λ больше 0.5 и до 1 включительно. При λ = 1 критерий Гурвица становится критерием "максимакса", который учитывает исключительно наибольший исход каждой альтернативы.

Если у ЛПР нет ярко выраженного уклона ни в сторону пессимизма, ни оптимизма, коэффициент λ принимается равным 0.5 .

Пример применения критерия Гурвица

В условиях задачи из п.2.7 (табл.2.2) рассмотрим принятие решения по критерию Гурвица для ЛПР, настроенного оптимистически (λ = 0.8 ), и ЛПР-пессимиста (λ = 0.3 ). Порядок действий таков:

1. Найдем максимальные x i max и минимальные x i min исходы для каждого проекта:

x 1 max = max (45, 25, 50) = 50 x 1 min = min (45, 25, 50) = 25

x 2 max = max (20, 60, 25) = 60 x 2 min = min (20, 60, 25) = 20

2. Рассчитаем величину критерия Гурвица при заданных значениях коэффициента оптимизма:

ЛПР-оптимист (λ=0.8 ):

H 1 (0.8) = λ x 1 max + (1 - λ) x 1 min = 0.8×50 + (1 - 0.8) ×25 = 45

H 2 (0.8) = λ x 2 max + (1 - λ) x 2 min = 0.8×60 + (1 - 0.8) ×20 = 52

ЛПР-пессимист (λ=0.3 ):

H 1 (0.3) = λ x 1 max + (1- λ) x 1 min = 0.3×50 + (1 - 0.3) ×25 = 32.5

H 2 (0.3) = λ x 2 max + (1- λ) x 2 min = 0.3×60 + (1 - 0.3) ×20 = 32

3. Сравним полученные величины. Оптимальными для каждого ЛПР будут альтернативы с максимальным значением критерия Гурвица:

ЛПР-оптимист (λ = 0.8 ):

45 < 52 => H 1 (0.8) < H 2 (0.8) => X* = X 2

ЛПР-пессимист (λ = 0.3 ):

32.5 < 32 => H 1 (0.3) > H 2 (0.3) => X* = X 1

Как мы видим, выбор оптимальной альтернативы в одних и тех же условиях существенным образом зависит от отношения ЛПР к риску. Если для пессимиста оба проекта примерно равноценны, то оптимист, который надеется на лучшее, выберет второй проект. Его высокая наилучшая прибыль (60 ) при больших значениях коэффициента λ значительно повышает ценность данного проекта по критерию Гурвица.

В 1895 г. швейцарским ученым А. Гурвицем был предложен критерий, определяющий условия, которым должны удовлетворять коэффициенты характеристического уравнения системы для обеспечения отрицательности вещественных частей корней ее характеристического уравнения.

Приведем формулировку критерия Гурвица без доказательства. Так как характеристическое уравнение всегда может быть приведено к виду, когда а п > 0, то можно дать следующую формулировку критерия Гурвица.

Для того, чтобы система управления была устойчива, необходимо и достаточно, чтобы определитель Гурвица и все его диагональные миноры были положительными.

Если характеристическое уравнение системы я-го порядка имеет вид:

а п Х п + а я _ х я " х + ... + а } Х + я 0 =0,

то определитель Гурвица, составленный из коэффициентов характеристического уравнения, будет иметь вид:

а его диагональные миноры, определяемые из определителя Гурвица так, как показано в (6.8), будут иметь вид:

Для составления определителя Гурвица из коэффициентов характеристического уравнения я-й степени целесообразно сначала выписать по главной диагонали определителя все коэффициента уравнения от я л _, до а 0 в порядке убывания индексов коэффициентов. Затем необходимо дополнить столбцы определителя вверх и вниз от элементов главной диагонали. При дополнении столбцов вверх следует вписать в столбец коэффициенты с последовательно убывающими индексами, а при дополнении вниз - коэф-

фициенты с последовательно возрастающими индексами. На место коэффициентов, индексы которых больше чем п и меньше чем нуль, необходимо поставить нули. Условия устойчивости системы порядка п по данному критерию запишутся в виде:

а п > 0; А, > 0; Д 2 > 0 ... Д > 0; Д„>0. (6.9)

Элементы последнего столбца определителя, за исключением нижнего, будут равны нулю. Поэтому он может быть представлен в следующем виде:

Так как для устойчивой системы Д„_, > 0, то условие Д„ > 0 сводится к условию а 0 > 0.

Для получения условий нахождения системы на границе устойчивости необходимо Д п приравнять нулю, т. е. Д„ =0, соблюдая при этом условие положительности всех остальных определителей (миноров). Но условие Д п =д 0 Д„_, =0 распадается на два условия:

а 0 = 0 (6.10)

А я _,=0. (6.11)

Условие (6.10) соответствует границе устойчивости, когда характеристическое уравнение имеет нулевой корень (апериодическая граница устойчивости). Условие (6.11) соответствует границе устойчивости, когда характеристическое уравнение имеет пару чисто мнимых корней (колебательная граница устойчивости).

Значения параметров систем управления, при которых система находится на границе устойчивости, будем называть критическими значениями параметров.

Рассмотрим определение условий устойчивости для систем 1-, 2- и 3-го порядков, используя критерий устойчивости Гурви-ца. При этом считаем, что характеристическое уравнение системы приведено к виду, когда а п > 0.

1. Система управления, движение которой описывается уравнением первого порядка. Ее характеристическое уравнение имеет вид:

я,Х. + а 0 = 0.

Условия устойчивости:

д, > 0; Д, = д 0 > 0.

2. Система управления, движение которой описывается уравнением второго порядка. Ее характеристическое уравнение имеет вид:

а 2 Х 2 + а{к + д 0 = 0; д 2 >0.

Условия устойчивости:

или д, д 0 > 0, но так как д, > 0, то для того чтобы Д2 = д, д 0 >0, необходимо, чтобы д 0 > 0.

Таким образом, необходимым и достаточным условием устойчивости систем 1-го и 2-го порядков является положительность коэффициентов их характеристических уравнений, что подтверждает выводы, сделанные в предыдущем параграфе.

3. Система управления, движение которой описывается уравнением 3-го порядка. Ее характеристическое уравнение имеет вид:

д 3 А 3 + а 2 Х 2 + д,^ + д 0 =0; д 3 > 0. Условия устойчивости по Гурвицу имеют вид:

Д2 = Д 2 Д| - а ц а г >0» Д = о 0 а 2 > 0.

Так как Д 2 >0, то для выполнения последнего неравенства необходимо, чтобы д 0 > 0.

Окончательно условия устойчивости по критерию Гурвица для данной системы выглядят следующим образом:

д 3 > 0; д 2 > 0; д, > 0; д 0 > 0; д 2 д, >д 0 д 3 .

Полученный результат подтверждает ранее сделанный вывод, что положительность коэффициентов является только необходимым, но недостаточным условием устойчивости для систем третьего и выше порядков.

Рассмотрим для примера исследование устойчивости системы управления, уравнение движения которой имеет вид:

0,001 + 0,18-Р + 0,97-^- + 1,8- + 50* =

0,0015^^ + 1,5- + 10#. сИ 1 сИ

Характеристическое уравнение исследуемой системы имеет вид:

0,001Х 4 + 0,18А 3 + 0,97А. 2 + 1,8А. + 50 = 0.

Все коэффициенты характеристического уравнения положительные, поэтому необходимое условие устойчивости выполняется.

Составляем определитель Гурвица по ранее изложенному правилу:

  • 0,18 1,8 0 0
  • 0,001 0,97 50 0
  • 0 0,18 1,8 0
  • 0 0,001 0,97 50

Условия устойчивости:

  • 1) Д = 0,18 > 0;
  • 0,18 1,8 0,001 0,97
  • 2) Д 2 =
  • 3) Д, =

0,18-0,97 - 1,8 -0,001 =0,1728 > 0;

0,18 1,8 0 0,001 0,97 50 0 0,18 1,8

1,8(0,18-0,97 - 0,001 - 1,8) -

0,18 2 50 = -1,31

Следовательно, исследуемая система неустойчивая.

Применение критерия устойчивости Гурвица ограничено рядом присущих ему недостатков. Во-первых, применение этого критерия требует знания всех коэффициентов характеристического уравнения системы, т. е. всех параметров системы, что крайне неудобно при экспериментальных исследованиях систем, так как обычно характеристики рассматриваемой системы определяются из испытаний разомкнутой системы. Во-вторых, критерий устойчивости Гурвица позволяет определить, устойчива система или нет, но не позволяет определить, как следует изменить параметры системы, чтобы сделать систему устойчивой, если она неустойчивая. И, наконец, применение критерия Гурвица для системы высокого порядка связано со значительными математическими трудностями, особенно, если необходимо получить буквенный результат. Значительными достоинствами по сравнению с этим критерием обладают частотные критерии устойчивости.

Контрольные вопросы

  • -. Ответ: 1с п = 122,21.
  • (0,5р + 1)(0,05р + 1)(0,005 + 1) р
  • 3. Исследовать устойчивость системы, характеристическое уравнение которой имеет вид: X 6 + 6А. 5 + 15Х 4 + 20А 3 + 5Х 2 + + 1 = 0. Ответ: система устойчивая.

Задача отыскания критерия устойчивости для систем, описываемых дифференциальными уравнениями любого порядка, была сформулирована Максвеллом в 1868 году. Эта задача была впервые решена в алгебраической форме Раусом в 1873 году для уравнений четвертой и пятой степени и в 1877 году – полностью.

Поскольку критерий Рауса дан в форме алгоритма, определяющего последовательность математических операций, необходимых для решения задачи, использование его в практике является неудобным. Поэтому большее распространение получил алгебраический критерий устойчивости, сформулированный в 1895 году математиком А. Гурвицем. Этот критерий был найден Гурвицем по просьбе словацкого профессора Стодолы, занимавшегося исследованием процесса регулирования турбин.

Ниже критерий Гурвица приводится без доказательства.

Для характеристического уравнения (5.9) составим квадратную матрицу (таблицу) коэффициентов, содержащую п строк и п столбцов:

Эта таблица составляется следующим образом.

По диагонали от левого верхнего до правого нижнего углов выписывают­ся все коэффициенты по порядку от а 1 до а п. Каждая строка дополняется коэффициентами с возрастающими индексами слева направо так, чтобы чередовались строки с нечетными и четными индексами. В случае отсутствия данного коэффициента, а также если индекс его меньше нуля или больше п, на месте его пишется нуль.

Критерий устойчивости сводится к тому, что при а 0 > 0 должны быть больше нуля все п определителей Гурвица, получаемых из квадратной матри­цы коэффициентов.

Определители Гурвица составляются по следующему правилу (см. (5.11)):

(5.12)

(5.13)

(5.14)

Последний определитель включает в себя всю матрицу. Но так как в последнем столбце матрицы все элементы, кроме нижнего, равны нулю, то последний определитель Гурвица выражается через предпоследний сле­дующим образом:

(5.15)

Однако в устойчивой системе предпоследний определитель тоже должен быть положительным. Поэтому условие положительности последнего опреде­лителя сводится к условию а п > 0, т. е. к положительности свободного члена характеристического уравнения.

Условия нахождения системы на границе устойчивости можно получить, приравнивая нулю последний определитель:
, при положительности всех остальных определителей. Как следует из (5.15), это условие распадает­ся на два условия:а п =0 и
. Первое условие соответствует границе устойчивости первого типа (апериодическая граница устойчивости) и вто­рое – границе устойчивости второго типа (колебательная граница устойчи­вости).

Раскрывая определители, фигурирующие в общей формулировке критерия устойчивости Гурвица, можно получить в виде частных случаев критерии устойчивости для системы первого, второго, третьего, четвертого и более них порядков.

1. Уравнение первого порядка

Для этого уравнения критерий Гурвица дает

т. е. коэффициенты характеристического уравнения должны быть положительными.

2. Уравнение второго порядка

Для этого уравнения критерий Гурвица требует

Последний определитель, как отмечалось выше, сводится к условию положительности последнего коэффициента: а 2 >0.

Таким образом, и для уравнения второго порядка необходимым и достаточным условием устойчивости является положительность всех коэффициентов характеристического уравнения.

3. Уравнение третьего порядка

Для этого уравнения получаем условия

Третий (последний) определитель Δ 3 дает условие а 3 > 0. Условие Δ 2 >0 , при а 0 > 0, а 1 > 0 и а 3 > 0 может выполняться только при а 2 >. 0.

Следовательно, для уравнения третьего порядка уже недостаточно положительности всех коэффициентов характеристического уравнения. Требуется еще выполнение определенного соотношения между коэффициентами:

4. Уравнение четвертого порядка

На основании критерия Гурвица можно получить, что для уравнения четвертого порядка, кроме положительности всех коэффициентов, требуется выполнение условия

5. Уравнение пятого порядка

Для уравнения пятого порядка, кроме положительности всех коэффи­циентов, должны выполняться еще два условия:

Как видно, уже для уравнения пятой степени условия устойчивости по критерию Гурвица получаются достаточно громоздкими. Поэтому использование этого критерия практически ограничивается уравнениями четвертого порядка.

Существенным недостатком крите­рия Гурвица является также то, что для уравнений высоких порядков в лучшем случае можно получить ответ о том, устойчива или неустойчива си­стема автоматического регулирования. При этом в случае неустойчивой системы критерий не дает ответа на то, каким образом надо изменить параметры системы, чтобы сделать ее устойчивой. Это обстоятельство привело к поискам других критериев, которые были бы бо­лее удобными в инженерной практике.

Для иллюстрации применения кри­терия Гурвица рассмотрим пример на определение устойчивости дистанционной следящей системы. Принципи­альная и структурная схемы изображены на рис. 5.4. В качестве чувстви­тельного элемента использованы два сельсина (СД и СП), включенные по трансформаторной схеме. Передаточная функция сельсинов равна коэффи­циенту передачи схемы:

где
ошибка, равная разности углов поворота командной и испол­нительной осей.

Передаточная функция усилителя:

где k 2 – коэффициент усиления и Т у – постоянная времени усилителя.

Передаточная функция двигателя (Д):

где
коэффициент передачи двигателя но скорости, аT M – электромеханическая постоянная времени двигателя совместно с оконечным каска­дом усилителя.

Передаточная функция редуктора (Р) равна его коэффициенту передачи, определяемому передаточным отношением:

Так как цепь регулирования состоит из включенных последовательно звеньев, то передаточная функция разомкнутой цепи будет равна произведению передаточных функций отдельных звеньев:

где
общий коэффициент усиления разомкнутой цепи.

Характеристическое уравнение:

После подстановки
получаем

В данном случае характеристическое уравнение имеет третий порядок. Нетрудно видеть, что условие положительности всех коэффициентов выпол­няется всегда, если выполнено условие К >0, что будет при правильном согласовании направления вращения двигателя со знаком рассогласования.

Дополнительное условие
, накладываемое на коэффициенты характеристического уравнения, сводится при подстановке значений коэффициентов ( и
) к неравенству

которое и является условием устойчивости рассматриваемой системы.

Из этого неравенства, в частности, можно заметить, что увеличение каждой постоянной времени сказывается отрицательно на устойчивости системы, так как при этом снижается предельное значение общего коэффи­циента усиления К, при котором система еще остается устойчивой.

Критерий Гурвица основан на следующих двух предположениях: «природа» может находиться в самом невыгодном состоянии с вероятностью (1 - y) и в самом выгодном состоянии с вероятностью y , где y - коэффициент доверия. Если результат h ji - прибыль, полезность, доход и т.п., то критерий Гурвица записывается так:

W = max[ y max+(1- y)min]

Когда целевая функция представляет затраты (потери), то:

W = min[ y min+(1- y)max]

Назначение сервиса . С помощью онлайн калькулятора выбирается оптимальная стратегия по критерию Гурвица. Результаты вычислений оформляются в отчете формата Word (см. Пример оформления).

Инструкция Для расчета и оформления решения в формате Word и Excel необходимо выбрать

размерность платежной матрицы 2 3 4 5 6 7 8 9 10 x 2 3 4 5 6 7 8 9 10

Критерий Гурвица устанавливает баланс между случаями крайнего пессимизма и крайнего оптимизма путем взвешивания обоих способов поведения соответствующими весами (1 - y) и y , где 0Пример . Исходные данные:

8 4 6 20
7 7 7 7
6 12 8 10
Критерий Вальда .
По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т.е.
a = max(min a ij)
Критерий Вальда ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
A i П 1 П 2 П 3 П 4 min(a ij)
A 1 8 4 6 20 4
A 2 7 7 7 7 7
A 3 6 12 8 10 6
Выбираем из (4; 7; 6) максимальный элемент max=7
Вывод: выбираем стратегию N=2.
Критерий Севиджа .
Критерий минимального риска Севиджа рекомендует выбирать в качестве оптимальной стратегии ту, при которой величина максимального риска минимизируется в наихудших условиях, т.е. обеспечивается:
a = min(max r ij)
Критерий Сэвиджа ориентирует статистику на самые неблагоприятные состояния природы, т.е. этот критерий выражает пессимистическую оценку ситуации.
Находим матрицу рисков.
Риск – мера несоответствия между разными возможными результатами принятия определенных стратегий. Максимальный выигрыш в j-м столбце b j = max(a ij) характеризует благоприятность состояния природы.
1. Рассчитываем 1-й столбец матрицы рисков.
r 11 = 8 - 8 = 0; r 21 = 8 - 7 = 1; r 31 = 8 - 6 = 2;
2. Рассчитываем 2-й столбец матрицы рисков.
r 12 = 12 - 4 = 8; r 22 = 12 - 7 = 5; r 32 = 12 - 12 = 0;
3. Рассчитываем 3-й столбец матрицы рисков.
r 13 = 8 - 6 = 2; r 23 = 8 - 7 = 1; r 33 = 8 - 8 = 0;
4. Рассчитываем 4-й столбец матрицы рисков.
r 14 = 20 - 20 = 0; r 24 = 20 - 7 = 13; r 34 = 20 - 10 = 10
A i П 1 П 2 П 3 П 4
A 1 0 8 2 0
A 2 1 5 1 13
A 3 2 0 0 10
Результаты вычислений оформим в виде таблицы.
A i П 1 П 2 П 3 П 4 max(a ij)
A 1 0 8 2 0 8
A 2 1 5 1 13 13
A 3 2 0 0 10 10
Выбираем из (8; 13; 10) минимальный элемент min=8

Критерий Гурвица .
Критерий Гурвица является критерием пессимизма - оптимизма. За оптимальную принимается та стратегия, для которой выполняется соотношение:
max(s i)
где s i = y min(a ij) + (1-y)max(a ij)
При y = 1 получим критерий Вальде, при y = 0 получим – оптимистический критерий (максимакс).
Критерий Гурвица учитывает возможность как наихудшего, так и наилучшего для человека поведения природы. Как выбирается y? Чем хуже последствия ошибочных решений, тем больше желание застраховаться от ошибок, тем y ближе к 1.
Рассчитываем s i .
s 1 = 0.5 4+(1-0.5) 20 = 12
s 2 = 0.5 7+(1-0.5) 7 = 7
s 3 = 0.5 6+(1-0.5) 12 = 9
A i П 1 П 2 П 3 П 4 min(a ij) max(a ij) y min(a ij) + (1-y)max(a ij)
A 1 8 4 6 20 4 20 12
A 2 7 7 7 7 7 7 7
A 3 6 12 8 10 6 12 9
Выбираем из (12; 7; 9) максимальный элемент max=12
Вывод: выбираем стратегию N=1.
Обобщенный критерий Гурвица .
Данный критерий является некоторым обобщением критериев крайнего пессимизма и крайнего оптимизма и также представляет собой частный случай обобщенного критерия Гурвица относительно выигрышей при следующем допущении:
λ 1 =1-λ, λ2=λ3=…=λ n-1 =0, λ n =λ, где 0 ≤ λ ≤ 1
Тогда показатель эффективности стратегии A i по Гурвицу есть:
G i =(1-λ)min a ij + λmax a ij
Оптимальной стратегией A i0 считается стратегия с максимальным значением показателя эффективности.
Строим вспомогательную матрицу B, полученную путем упорядочивания показателей доходностей в каждой строке.
Подход пессимиста . λ выбирается из ус

Для устойчивости системы необходимо и достаточно, чтобы все миноры определителя Гурвица были положительны. По коэффициентам характеристического уравнения составляется определитель Гурвица.

Для этого по главной диагонали делителя выписываются все коэффициенты характеристического уравнения, начиная со второго (т.е. а 1 , а 2 , а 3 , ... ,а n), затем вверх записываются коэффициенты с возрастающим индексом, а вниз - с убывающим индексом.

Например, для третьего коэффициента в главной диагонали а 3 вверх записываются а 4 , а 5 (индекс возрастает), а вниз - а 2 , а 1 , а 0 . На остальные оставшиеся места вписываются нули.

Д
ля проверки правильности заполнения определителя Гурвица необхо­димо учесть, что по строкам чередуются коэффициенты с нечётными и чёт­ными индексами. Так первая строка - нечётные а 1 а 3 а 5 а 7 ..., вторая строка - четные а 0 а 2 а 4 а 6 и т.д.

Покажем вычисление миноров в определителе Гурвица для системы 6-го порядка.

Последний определитель обычно не рассчитывается. В данном случае
. Если выполняется первое необходимое условие устойчивости (все а>0), то при>0всегда положителен.

Пусть необходимо определить устойчивость системы пятого порядка. Тогда а 6 =0 >0 неравенства принимают вид:


Если необходимо определить устойчивость системы четвертого порядка, то

неравенства принимают вид:



Для устойчивости системы третьего порядка достаточно

.

Для систем седьмого порядка определение устойчивости по Гурвицу обычно не делают из-за громоздкости расчетов.

ПРИМЕР 1. Определить устойчивость САУ по критерию Гурвица по следующему характеристическому уравнению:

Решение. 1. Все коэффициенты характеристического уравнения положительные. Значит необходимое условие устойчивости выполняется.

2. Составляется определитель Гурвица

Определяют значения миноров согласно неравенствам:

Ответ. Все миноры определителя Гурвица положительны, значит вещественная часть корней характеристического уравнения отрицательна и, согласно теореме Ляпунова, САУ устойчива.

Критерий устойчивости Рауса

Для устойчивости систем необходимо и достаточно, чтобы все коэффициенты первого столбца таблицы Рауса были положительны.

Таблица Рауса составляется по правилам:

а) в первой строке таблицы Рауса записываются соответственно коэффициенты а 0, а 2, а 4 ….;

б) во второй строке таблицы Рауса записываются соответственно коэффициенты а 1, а 3, а 5 ….;

в) коэффициенты третьей строки таблицы Рауса вычисляются по формулам:

г) коэффициенты четвертой строки таблицы Рауса определяются по формулам:

д) коэффициенты n-й строки таблицы Рауса вычисляются по формулам

где i – номер столбца; j – номер строки.

ПРИМЕР 2. Определить устойчивость САУ по критерию Рауса по характеристическому уравнению примера 1.

Решение. 1. Вычисляют третью строку таблицы Рауса:

2. Определяют четвертую строку:

3. Вычисляют пятую строку:

4. Определяют шестую строку:

По результатам расчета составляют таблицу Рауса.

Таблица 1

Таблица Рауса

№ строки

1 столбец

2 столбец

3 столбец