Критерий пирсона для данных химического анализа. Проверка гипотезы о распределении. Критерий Пирсона. Условия и ограничения применения критерия хи-квадрат Пирсона

Проверка статистических гипотез включает в себя большой пласт задач математической статистики. Зная некоторые характеристики выборки (или имея просто выборочные данные), мы можем проверять гипотезы о виде распределении случайной величины или ее параметрах (примеры этих задач на странице Проверка гипотез о параметрах распределения).

Ниже в примерах мы разберем основные учебные задачи на проверку гипотез о виде распределения. Чаще всего для этого используется критерий согласия $\chi^2$ Пирсона, а также критерий Колмогорова-Смирнова.

Критерий согласия Пирсона (или критерий $\chi^2$ - "хи квадрат") - наиболее часто употребляемый для проверки гипотезы о принадлежности некоторой выборки теоретическому закону распределения (в учебных задачах чаще всего проверяют "нормальность" - распределение по нормальному закону).

В учебных задачах обычно используется следующий алгоритм :

  1. Выбор теоретического закона распределения (обычно задан заранее, если не задан - анализируем выборку, например с помощью гистограммы относительных частот, которая имитирует плотность распределения).
  2. Оцениваем параметры распределения по выборке (для этого вычисляется математическое ожидание и дисперсия): $a, \sigma$ для нормального, $a,b$ - для равномерного, $\lambda$ - для распределения Пуассона и т.д.
  3. Вычисляются теоретические значения частот (через теоретические вероятности попадания в интервал) и сравниваются с исходными (выборочными).
  4. Анализируется значение статистики $\chi^2$ и делается вывод о соответствии (или нет) теоретическому закону распределения.

Подробные примеры на разные распределения и критерии вы найдете ниже.


Понравилось? Добавьте в закладки

Примеры решений на проверку гипотез онлайн

Критерий Пирсона, нормальное распределение

Пример 1. Используя критерий Пирсона, при уровне значимости 0,05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X по результатам выборки:
X 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3
N 7 9 28 27 30 26 21 25 22 9 5

Пример 2. Были исследованы 200 готовых деталей на отклонения истинного размера от расчетного. Сгруппированные данные приведены в следующей таблице:
По данному статистическому ряду построить гистограмму. По виду гистограммы выдвинуть гипотезу о виде закона распределения (например, предположить, что исследуемая величина имеет нормальный закон распределения). Подобрать параметры закона распределения (равные их оценкам на основе опытных данных). На том же графике построить функцию плотности вероятности, соответствующую выдвинутой гипотезе. С помощью критерия согласия проверить, согласуется ли гипотеза с опытными данными. Уровень значимости взять, например, равным 0,05.

Критерий Пирсона, распределение по закону Пуассона

Пример 3. Отдел технического контроля проверил n партий однотипных изделий и установил, что число нестандартных изделий в одной партии имеет эмпирическое распределение, приведенное в таблице, в одной строке которой указано количество xi нестандартных изделий в одной партии, а в другой строке – количество ni партий, содержащих xi нестандартных изделий. Требуется при уровне значимости α0,05 проверить гипотезу о том, что случайная величина X (число нестандартных изделий в одной партии) распределена по закону Пуассона.

Пример 4. В результате обследования 150 человек были получены данные о количестве приобретаемых за месяц цветных иллюстрированных журналов. Соответствует ли данное распределение закону редких событий Пуассона?

Критерий Пирсона, распределение по показательному закону

Пример 5. В итоге испытаний 1000 элементов на время безотказной работы (час.) получено распределение, приведенное в таблице. Требуется при уровне значимости проверить гипотезу о том, что данные в генеральной совокупности распределены по показательному закону.
Время безотказной работы 0-10 10-20 20-30 30-40 40-50 50-60 60-70
Число отказавших элементов 365 245 150 100 70 45 25

Критерий Пирсона, распределение по равномерному закону

Пример 6. В некоторой местности в течение 300 суток регистрировалась среднесуточная температура воздуха. В итоге наблюдений было получено эмпирическое распределение, приведенное в таблице 40 (в первом столбце указан интервал температуры в градусах, во втором столбце – частота $n_i$, т.е. количество дней, среднесуточная температура которых принадлежит этому интервалу).
Требуется при уровне значимости 0,05 проверить гипотезу о том, что среднесуточная температура воздуха распределена равномерно.

Критерий Колмогорова

Пример 7. Имеются выборочные данные о числе сделок, заключенных фирмой с частными лицами в течение месяца:
- число заключенных сделок 0-10 10-20 20-30 30-40 40-50
- число частных лиц 23 24 11 9 3
Проверить при уровне значимости 0,05, используя критерий согласия Колмогорова, гипотезу о нормальном законе распределения.

Пример 8. В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:Можно ли считать при уровне значимости 0,05, что недовесы овощей являются устойчивым и закономерным процессом при продаже овощей в данном городе (т.е. описываются одной и той же функцией распределения)?

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

Статистический критерий

Правило, по которому гипотеза Я 0 отвергается или принимается, называется статистическим критерием. В названии критерия, как правило, содержится буква, которой обозначается специально составленная характеристика из п. 2 алгоритма проверки статистической гипотезы (см. п. 4.1), рассчитываемая в критерии. В условиях данного алгоритма критерий назывался бы «в -критерий».

При проверке статистических гипотез возможны два типа ошибок:

  • - ошибка первого рода (можно отвергнуть гипотезу Я 0 , когда она на самом деле верна);
  • - ошибка второго рода (можно принять гипотезу Я 0 , когда она на самом деле не верна).

Вероятность а допустить ошибку первого рода называется уровнем значимости критерия.

Если за р обозначить вероятность допустить ошибку второго рода, то (l - р) - вероятность не допустить ошибку второго рода, которая называется мощностью критерия.

Критерий согласия х 2 Пирсона

Существует несколько типов статистических гипотез:

  • - о законе распределения;
  • - однородности выборок;
  • - численных значениях параметров распределения и т.д.

Мы будем рассматривать гипотезу о законе распределения на примере критерия согласия х 2 Пирсона.

Критерием согласия называют статистический критерий проверки нулевой гипотезы о предполагаемом законе неизвестного распределения.

В основе критерия согласия Пирсона лежит сравнение эмпирических (наблюдаемых) и теоретических частот наблюдений, вычисленных в предположении определенного закона распределения. Гипотеза # 0 здесь формулируется так: по исследуемому признаку генеральная совокупность распределена нормально.

Алгоритм проверки статистической гипотезы # 0 для критерия х 1 Пирсона:

  • 1) выдвигаем гипотезу Я 0 - по исследуемому признаку генеральная совокупность распределена нормально;
  • 2) вычисляем выборочную среднюю и выборочное среднее квадратическое отклонение о в;

3) по имеющейся выборке объема п рассчитываем специально составленную характеристику ,

где: я, - эмпирические частоты, - теоретические частоты,

п - объем выборки,

h - величина интервала (разность между двумя соседними вариантами),

Нормализованные значения наблюдаемого признака,

- табличная функция. Также теоретические частоты

могут быть вычислены с помощью стандартной функции MS Excel НОРМРАСП по формуле ;

4) по выборочному распределению определяем критическое значение специально составленной характеристики xl P

5) при гипотеза # 0 отвергается, при гипотеза # 0 принимается.

Пример. Рассмотрим признак X - величину показателей тестирования осужденных в одной из исправительных колоний по некоторой психологической характеристике, представленный в виде вариационного ряда:

На уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности.

1. На основе эмпирического распределения можно выдвинуть гипотезу Н 0 : по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осу-

жденных распределена нормально. Альтернативная гипотеза 1: по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных не распределена нормально.

2. Вычислим числовые выборочные характеристики:

Интервалы

х г щ

х} щ

3. Вычислим специально составленную характеристику j 2 . Для этого в предпоследнем столбце предыдущей таблицы найдем теоретические частоты по формуле , а в последнем столбце

проведем расчет характеристики % 2 . Получаем х 2 = 0,185.

Для наглядности построим полигон эмпирического распределения и нормальную кривую по теоретическим частотам (рис. 6).

Рис. 6.

4. Определим число степеней свободы s : к = 5, т = 2, s = 5-2-1 = 2.

По таблице или с помощью стандартной функции MS Excel «ХИ20БР» для числа степеней свободы 5 = 2 и уровня значимости а = 0,05 найдем критическое значение критерия xl P . =5,99. Для уровня значимости а = 0,01 критическое значение критерия х%. = 9,2.

5. Наблюдаемое значение критерия х =0,185 меньше всех найденных значений Хк Р.-> поэтому гипотеза Я 0 принимается на обоих уровнях значимости. Расхождение эмпирических и теоретических частот незначимое. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности. Таким образом, по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных распределена нормально.

  • 1. Корячко А.В., Куличенко А.Г. Высшая математика и математические методы в психологии: руководство к практическим занятиям для слушателей психологического факультета. Рязань, 1994.
  • 2. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных: Учеб, пособие. СПб., 2008.
  • 3. Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2010.
  • 4. Сошникова Л.А. и др. Многомерный статистический анализ в экономике: Учеб, пособие для вузов. М., 1999.
  • 5. Суходольский Е.В. Математические методы в психологии. Харьков, 2004.
  • 6. Шмойлова Р.А., Минашкин В.Е., Садовникова Н.А. Практикум по теории статистики: Учеб, пособие. М., 2009.

Критерий Пирсона

Критерий Пирсона , или критерий χ 2 - наиболее часто употребляемый критерий для проверки гипотезы о законе распределения . Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая требует статистической проверки.

Обозначим через X исследуемую случайную величину . Пусть требуется проверить гипотезу H 0 о том, что эта случайная величина подчиняется закону распределения F (x ) . Для проверки гипотезы произведём выборку, состоящую из n независимых наблюдений над случайной величиной X. По выборке можно построить эмпирическое распределение F * (x ) исследуемой случайной величины. Сравнение эмпирического F * (x ) и теоретического распределений производится с помощью специально подобранной случайной величины - критерия согласия . Одним из таких критериев и является критерий Пирсона.

Статистика критерия

Для проверки критерия вводится статистика:

где - предполагаемая вероятность попадения в i -й интервал, - соответствующее эмпирическое значение, n i - число элементов выборки из i -го интервала.

Эта величина в свою очередь является случайной (в силу случайности X) и должна подчиняться распределению χ 2 .

Правило критерия

Перед тем, как сформулировать правило принятия или отвержения гипотезы необходимо учесть, что критерий Пирсона обладает правосторонней критической областью .

Правило.
Если полученная статистика превосходит квантиль закона распределения заданного уровня значимости с или с степенями свободы , где k - число наблюдений или число интервалов (для случая интервального вариационного ряда), а p - число оцениваемых параметров закона распределения , то гипотеза отвергается. В противном случае гипотеза принимается на заданном уровне значимости .

Литература

  • Кендалл М., Стьюарт А. Статистические выводы и связи. - М.: Наука, 1973.

См. также

  • Критерий Пирсона на сайте Новосибирского государственного университета
  • Критерии типа хи-квадрат на сайте Новосибирского государственного технического университета (Рекомендации по стандартизации Р 50.1.033–2001)
  • О выборе числа интервалов на сайте Новосибирского государственного технического университета
  • О критерии Никулина на сайте Новосибирского государственного технического университета

Wikimedia Foundation . 2010 .

Смотреть что такое "Критерий Пирсона" в других словарях:

    Критерий Пирсона, или критерий χ² (Хи квадрат) наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая… … Википедия

    Или Критерий согласия Колмогорова Смирнова статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели.… … Википедия

    - (максиминный критерий) один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма. История Критерий Вальда был предложен Абрахамом Вальдом в 1955 году для выборок равного объема, а затем распространен на … Википедия

    Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия

    - (F критерий, φ* критерий, критерий наименьшей значимой разности) апостериорный статистический критерий, используемый для сравнения дисперсий двух вариационных рядов, то есть для определения значимых различий между групповыми средними в… … Википедия

    Критерий Кохрена используют при сравнении трёх и более выборок одинакового объёма. Расхождение между дисперсиями считается случайным при выбранном уровне значимости, если: где квантиль случайной величины при числе суммируемых… … Википедия

    Статистический критерий, названный по имени Хьюберта Лиллиефорса, профессора статистики Университета Джорджа Вашингтона, являющийся модификацией критерия Колмогорова–Смирнова. Используется для проверки нулевой гипотезы о том, что выборка… … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Добавить иллюстрации. Т Крит … Википедия

    В статистике критерий согласия Колмогорова (также известный, как критерий согласия Колмогорова Смирнова) используется для того, чтобы определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли… … Википедия

    критерий независимости - для таблиц сопряженности проверяет гипотезу о том, что переменные строки и столбца независимы. К таким критериям относится критерий независимости хи квадрат (Пирсона) и точный критерий Фишера … Словарь социологической статистики

Книги

  • Критерии проверки отклонения распределения от равномерного закона. Руководство по применению: монография , Лемешко Б.Ю.. Книга рассчитана на специалистов, в той или иной степени сталкивающихся в своей деятельности с вопросами статистического анализа данных с обработкой результатовэкспериментов, применением…

При проверке статистических гипотез о соответствии отдельных параметров закона распределения случайных величин предполагалось, что законы распределения этих величин известны. Однако при решении практических задач (особенно экономических) модель закона распределения в общем случае заранее неизвестна, поэтому возникает необходимость выбора модели закона распределения, согласующейся с результатами выборочных наблюдений.

Пусть x 1 , x 2 ,...,x n – выборка наблюдений случайной величины Х с неизвестной непрерывной функцией распределения F(x) . Проверяется гипотеза Н 0 , утверждающая, что Х распределена по закону, имеющему функцию распределения F(x) , равную функции F 0 (x) , т.е. проверяется нулевая гипотеза .

Критерии, с помощью которых проверяется нулевая гипотеза о неизвестном распределении, называются критериями согласия . Рассмотрим критерий согласия Пирсона.

Схема проверки нулевой гипотезы :

1. По выборке x 1 , x 2 ,..., x n строят вариационный ряд; он может быть как дискретным, так и интервальным. Рассмотрим для определенности дискретный вариационный ряд

x i x 1 x 2 ... x k-1 x k
m i m 1 m 2 ... m k-1 m k

2. По данным предыдущих исследований или по предварительным данным делают предположение (принимают гипотезу) о модели закона распределения случайной величины Х .

3. По выборочным данным проводят оценку параметров выбранной модели закона распределения. Предположим, что закон распределения имеет r параметров (например, биномиальный закон имеет один параметр p ; нормальный – два параметра (a 0 , σ x ) и т.д.).

4. Подставляя выборочные оценки значений параметров распределения, находят теоретические значения вероятностей

, i=1, 2,..., k .

5. Рассчитывают теоретические частоты , где .

6. Рассчитывают значение критерия согласия Пирсона

.

Эта величина при стремится к распределению с степенями свободы. Поэтому для рассчетов используют таблицы распределения .

7. Задаваясь уровнем значимости α, находят критическую область (она всегда правосторонняя) ; значение определяют из соотношения . Если численное значение попадает в интервал , то гипотеза отклоняется и принимается альтернативная гипотеза о том, что выбранная модель закона распределения не подтверждается выборочными данными, при этом допускается ошибка, вероятность которой равна α.

Задача 6. Экзаменационный билет по математике содержит 10 заданий. Пусть Х – случайная величина числа задач, решенных абитуриентами на вступительном экзамене. Результаты сдачи экзамена по математике для 300 абитуриентов таковы:



i
x i
m i

Х .

Решение. Для составления гипотезы о модели закона распределения случайной величины Х сделаем следующие предположения:

· вероятность решения задачи не зависит от исхода решения других задач;

· вероятность решить любую отдельно взятую задачу одна и та же и равна p , а вероятность не решить задачу равна q=1-p .

При этих допущениях можно предположить, что Х подчинена биномиальному закону распределения (нулевая гипотеза), т.е. вероятность того, что абитуриент решит x задач, может быть подсчитана по формуле

Найдем оценку параметра p , входящего в модель (1).

Здесь p – это вероятность того, что абитуриент решит задачу. Оценкой вероятности p является относительная частота p * , которая вычисляется по формуле

,

где – среднее число задач, решенных одним абитуриентом;

v – число задач, решаемое каждым абитуриентом.

Тогда оценку для p получим в виде

Подставим значения p * =0,6 и q * =1-0,6=0,4 в выражение (1) и при различных x i получим теоретические вероятности и частоты (табл. 1).

Таблица 1

Номер группы i x i
0,0001 0,03
0,0016 0,48
0,0106 3,18
0,0425 12,75
0,1115 33,45
0,2007 60,21
0,2508 75,24
0,2150 64,50
0,1209 36,27
0,0403 12,09
0,0060 1,80

Из таблицы видно, что для групп 1, 2, 3 и 11 теоретическая частота . Такие группы обычно объединяются с соседними. Значения для групп 1, 2 и 3 можно объединить с . Это представляется естественным, потому что за 0, 1, 2 и 3 решенные задачи на экзамене обычно ставится неудовлетворительная оценка. Объединим так же группу 11 с группой 10 и составим табл. 2.



Таблица 2

Номер группы i
x i 0-3 9-10
m i

По данным табл. 2 рассчитываем величину критерия согласия:

Зададимся уровнем значимости α=0,05, тогда для степеней свободы .

Величина , следовательно, нулевая гипотеза должна быть отвергнута.

Задача 7. Результаты взвешиваний 50 случайным образом отобранных пачек чая приведены ниже (в граммах):

150, 147, 152, 148, 149, 153,. 151, 150,149, 147, 153, 151, 152, 151, 149, 152, 150, 148, 152, 150, 152, 151, 148, 151, 152, 150, 151, 149, 148, 149, 150, 150, 151, 149, 151, 150, 151, 150, 149, 148, 147, 153, 147, 152, 150, 151, 149, 150, 151, 153.

Оценить закон распределения случайной величины Х – массы пачки чая – для уровня значимости α=0,05.

Решение. Масса пачки чая – непрерывная случайная величина, но в силу того, что взвешивание проведено с дискретностью 1 г и размах составляет 147÷153 г, непрерывная величина может быть представлена дискретным вариационным рядом:

Таблица 1.

В качестве модели закона распределения выберем нормальный закон , число параметров которого r =2: a 0 – математическое ожидание, σ x – среднее квадратичное отклонение.

По выборочным данным получим оценки параметров нормального закона распределения:

;

, s=1,68 .

Для рассчета теоретических частот воспользуемся табличными значениями функции Лапласа Ф(z ). Алгоритм вычисления состоит в следующем:

Находим по нормированным значениям случайной величины Z значения Ф(z ), а затем F N (x ):

, .

Например,

x 1 =147; z 1 =(147–150,14)/1,68= –1,87; Ф(–1,87)= –0,46926; F N (147)=0,03074;

Находим ;

Находим , и если некоторое , то соответствующие группы объединяются.

Результаты вычисления , и приведены в табл. 2.

По таблице находим по схеме: для уровня значимости и числа степеней свободы . Следовательно критическая область .

Величина не входит в критическую область, поэтому гипотеза о том, что случайная величина Х – масса пачки чая – подчинена нормальному закону распределения, согласуется с выборочными данными.

Таблица 2

i x i +x i +1 m i Ф(z i ) F N (x i ) F N (x i+1 ) = F N (x i+1 )– – F N (x i )
–∞÷147 –0,50000 0,00000 0,03074 0,03074 1,537 -
147÷148 –0,46926 0,03074 0,10204 0,07130 3,563 0,237
148÷149 –0,39796 0,10204 0,24825 0,14621 7,31 0,730
149÷150 –0,25175 0,24825 0,46812 0,21987 10,99 0,813
150÷151 –0,03188 0,46812 0,69497 0,22685 11,34 0,010
151÷152 0,19497 0,69497 0,86650 0,17153 8,58 0,683
152÷153 0,36650 0,86650 0,95543 0,08893 4,45 2,794
153÷∞ 0,45543 0,95543 1,00000 0,04457 2,23 -
Σ=50 Σ=1,00000 Σ=5,267

Цель занятий: Привить студентам навыки проверки статистических гипотез. Обратить особое внимание на усвоение понятий, связанных с проверкой гипотез (статистический критерий, ошибки 1 и 2 рода и т.д.). После решения каждой задачи обсудить другие варианты выводов с разными и разными уровнями значимости.

К занятию по данной теме должны быть подготовлены ответы на следующие вопросы:

1. Как изменяются вероятности совершения ошибки первого и второго рода при увеличении объема выборки?

2. Зависят ли вероятности совершения ошибок первого и второго рода от вида альтернативной гипотезы, от применяемого критерия?

3. В чем состоит односторонность действия статистических критериев значимости?

4. Можно ли, применяя статистический критерий значимости, сделать вывод: «Проверяемая нулевая гипотеза верна»?

5. В чем состоит различие между построением двусторонней критической области и построением доверительного интервала для одного и того же параметра?

Задача 1. Были исследованы 200 готовых деталей на отклонение истинного размера от расчетного. Сгруппированные данные исследований приведены в табл.5.

Таблица 5

По данному статистическому ряду построить гистограмму. По виду гистограммы выдвинуть гипотезу о виде закона распределения (например, предложить, что исследуемая величина имеет нормальный закон распределения). Подобрать параметры закона распределения (равные их оценкам на основе опытных данных). На том же графике построить функцию плотности вероятности, соответствующую выдвинутой гипотезе. С помощью критерия согласия проверить, согласуется ли гипотеза с опытными данными. Уровень значимости взять, например, равным 0,05 .

Решение. Для того чтобы получить представление о виде закона распределения изучаемой величины, строим гистограмму. Для этого над каждым интервалом построим прямоугольник, площадь которого численно равна частоте попадания в интервал


(рис.8.)

По виду гистограммы можно выдвинуть предположение о том, что исследуемая величина имеет нормальный закон распределения. Параметры нормального закона распределения (математическое ожидание и дисперсию) оценим на основе опытных данных, считая в качестве представителя каждого интервала его середину:

.

Итак, выдвигаем гипотезу, что исследуемая величина имеет нормальный закон распределения N(5;111,6) , т.е. имеет функцию плотности вероятности

.

График её удобнее строить с помощью таблиц функции

.

Например, точка максимума и точки перегиба имеют ординаты соответственно

Вычислим меру расхождения между выдвинутой гипотезой и опытными данными, т.е. . Для этого сначала вычисляем вероятности, приходящиеся на каждый интервал в соответствии с гипотезой

Аналогично ,

Вычисление удобно вести, оформляя запись следующим образом:

0,069 0,242 0,362 0,242 0,069 13,8 48,4 72,4 48,4 23,8 5,2 -6,4 -1,4 7,5 -1,8 -27,04 40,96 1,96 57,76 3,24 1,96 0,85 0,02 1,19 0,23

Итак, вычислено значение . Построим критическую область для уровня значимости . Число степеней свободы для равно 2 (число интервалов , а на наложено три связи: , и . В результате ). Для заданного уровня значимости и числа степеней свободы находим из таблицы, распределения такое значение , чтобы .

В нашем случае , и критической областью будет интервал [5,99; ¥). Значение в критическую область не входит. Вывод: гипотеза опытным данным не противоречит (что не означает, конечно, что гипотеза верна).

Задача 2. В виде статистического ряда приведены сгруппированные данные о времени безотказной работы 400 приборов:

Согласуются ли эти данные с предположением, что время безотказной работы прибора имеет интегральную функцию распределения ? Уровень значимости взять, например, равным 0,02 .

Решение. Подсчитаем вероятности, приходящиеся в соответствии с гипотезой на интервалы:

p =P(0;

p =P(500

p =P(1000

p = P(1500

Вычисляем c .

n i p i np i n i - np i (n i - np i) 2 (n i -np i) / np i
0,6324 0,2325 0,0852 0,0317 252,96 34,08 12,68 4,04 -15 14,92 3,32 16,32 222,6 11,02 0,06 2,42 6,53 0,87

Число степеней свободы равно трём, так как на 4 величины n наложена только одна связь Sn = n (r =4 -1=3). Для трех степеней свободы и уровня значимости b=0,02 находим из таблицы распределения c критическое значение c =9,84. Значение c =9,88 входит в критическую область. Вывод: гипотеза противоречит опытным данным. Гипотезу отвергаем и вероятность того, что мы при этом ошибаемся, равна 0,02.

Задача 3 . Монету подбросили 50 раз. 32 раза выпал герб. С помощью критерия согласия “хи-квадрат ” проверить, согласуются ли эти данные с предположением, что монета была симметричной.

Решение. Выдвигаем гипотезу, что монета была симметричной, т. е. вероятность выпадания герба равна 1/2 . В нашем опыте герб выпал 32 раза и 18 раз выпала цифра Вычисляем значение c в .

n i p i np i n i - np i (n i - np i) (n i - np i) / np i
1/2 1/2 1,96 1,96

Число степеней свободы для c равно r = 2–1=1 ; так как слагаемых два, а на n наложена одна связь ν + ν =50 .

Для числа степеней свободы r =1 и уровня значимости, например, равного β=0,05 находим из таблицы распределения c , что P( c 3,84)=0,05 , т.е. областью критических значений c при уровне значимости β=0,05 будет интервал [3.84; ). Вычисленное значение c =3,92 попадает в критическую область, гипотеза отвергается. Вероятность того, что мы при этом ошибаемся равна 0,05 .

Задача 4. Изготовитель утверждает что в данной большой партии изделий только 10% изделий низкого сорта.Было отобрано наугад пять изделий и среди них оказалось три изделия низкого сорта. С помощью леммы Неймана-Пирсона построить критерий и проверить гипотезу о том, что процент изделий низкого сорта действительно равен 10 (p =0,1) против альтернативы, что процент не низкосортных изделий больше 10 (p=p >p ). Вероятность ошибки первого рода выбрать »0,01 , т.е. включить в критическую область столько точек, чтобы вероятность отвергнуть проверяемую гипотезу, если она верна, была 0,01 . Эта вероятность назначается приблизительно, чтобы не прибегать к рандомизации, о которой студенты не имеют представления. Если p =0,6 , то какова вероятность ошибки второго рода?

Решение. Согласно гипотезе p 0 =0,1 при альтернативном значении p >p . По лемме Неймана-Пирсона в критическую область следует отнести те значения k , для которых

= >C,

где С - некоторая постоянная,

,

k + (5 -k) ,

.

Так как , то выражение в скобке неотрицательно. Поэтому

Значит в критическую область следует включить те из значений {0,2,1,3,4,5} , которые больше некоторого , зависящего от уровня значимости (от вероятности ошибки первого рода). Для определения в предположении, что гипотеза верна, вычисляем вероятности

Если к критической области отнести значения {3,4,5} , то вероятность ошибки первого рода будет равна

В условиях задачи оказалось, что среди пяти проверенных три бракованных изделия. Значение входит в критическую область. Гипотезу отвергаем в пользу альтернативы и вероятность того, что мы это делаем ошибочно, меньше 0,01 .

Вероятностью ошибки второго рода называется вероятность принять гипотезу, когда она не верна. Гипотеза будет принята при . Если вероятность изготовления бракованного изделия на самом деле равна , то вероятность принять ложную гипотезу равна

Задача 5. Известно, что при тщательном перемешивании теста изюмины распределяются в нём примерно по закону Пуассона, т.е. вероятность наличия в булочке изюмин равна приблизительно , где - среднее число изюмин, приходящееся на булочку. При выпечке булочек с изюмом полагается по стандарту на 1000 булочек 9000 изюмин. Имеется подозрение, что в тесто засыпали изюму меньше, чем полагается по стандарту. Для проверки выбирается одна булочка и пересчитываются изюмины в ней. Построить критерий для проверки гипотезы о том, что против альтернативы . Вероятность ошибки первого рода взять приблизительно 0,02.

Решение. Для проверки гипотезы: против альтернативы по лемме Неймана-Пирсона в критическую область следует включить те значения для которых

где - некоторая постоянная.

Тогдаn 1 Н 1 , так как ее справедливость означает эффективность применения новой технологии).

Фактическое значение статистики критерия

.

При конкурирующей гипотезе Н 1 критическое значение статистики находится из условия , т.е. , откуда t кр =t 0,95 =1,96 .

Так как фактически наблюдаемое значение t =4,00 больше критического значения t кр (при любой из взятых конкурирующих гипотез), то гипотеза Н 0 отвергается, т.е. на 5%-ом уровне значимости можно сделать вывод, что новая технология позволяет повысить среднюю выработку рабочих.

Задача 2. Произведены две выборки урожая пшеницы: при своевременной уборке урожая и уборке с некоторым опазданием. В первом случае при наблюдении 8 участков выборочная средняя урожайность составила 16,2 ц/га, а среднее квадратическое отклонение – 3,2 ц/га; во втором случае при наблюдении 9 участков те же характеристики равнялись соответственно 13,9 ц/га и 2,1 ц/га. На уровне значимости α=0,05 выяснисть влияние своевременой уборки урожая на среднее значение урожайности.

Решение. Проверяемая гипотеза , т.е. средние значения урожайности при своевременной уборке урожая и с некоторым опозданием равны. В качестве альтернативной гипотезы берем гипотезу , принятие которой означает существенное влияние на урожайность сроков уборки.

Фактически наблюдаемое значение статистики критерия

.

Критическое значение статистики для односторонней области определяется при числе степеней свободы l=n 1 +n 2 -2=9+8-2= =15 из условия θ(t,l )=1–2·0,05=0,9, откуда по таблице t -распределения (Приложение 6) находим, t кр =1,75. Так как , то гипотеза Н 0 принимается. Это означает, что имеющиеся выборочные данные на 5%-ом уровне значимости не позволяют считать, что некоторое запаздывание в сроках уборки оказывает существенное влияние на величину урожая. Еще раз подчеркнем, что это не означает безоговорочную верность гипотезы Н 0 . Вполне возможно, что только незначительный объем выборки позволил принять эту гипотезу, а при увеличении объемов выборки (числа отобранных участков) гипотеза Н 0 будет отвергнута.

Задача 3. Имеются следующие данные об урожайности пшеницы на 8 опытных участках одинакового размера (ц/га): 26,5; 26,2; 35,9; 30,1; 32,3; 29,3; 26,1; 25,0. Есть основание предполагать, что значение урожайности третьего участка x * =35,9 зарегистрировано неверно. Является ли это значение аномальным (резко выделяющимся) на 5%-ном уровне значимости?

Решение. Исключив значение x * =35,9, найдем для оставшихся наблюдений и . Фактически наблюдаемое значение больше табличного , следовательно, значение x * =35,9 является аномальным, и его следует отбросить.

Задача 4. На двух токарных станках обрабатываются втулки. Отобраны две пробы: из втулок, сделанных на первом станке n 1 =15 шт., на втором станке – n 2 =18 шт. По данным этих выборок рассчитаны выборочные дисперсии (для первого станка) и (для второго станка). Полагая, что размеры втулок подчиняются нормальному закону распределения, на уровне значимости α=0,05 выяснить, можно ли считать, что станки обладают различной точностью.

Решение. Имеем нулевую гипотезу , т.е. дисперсии размера втулок, обрабатываемых на каждом станке, равны. Возьмем в качестве конкурирующей гипотезу (дисперсия больше для первого станка).

.

По таблице P .

Решение. Проверяемая гипотеза . В качестве альтернативной возьмем гипотезу . Так как генеральная дисперсия σ 2 неизвестна, то используем t -критерий Стьюдента. Статистика критерия равна . Критическое значение статистики t кр =1,83.

Так как |t |>t кр (2,25>1,83), то гипотеза Н 0 отвергается, т.е. на 5%-ном уровне значимости сделанный прогноз должен быть отвергнут.

Задача 6. Для эмпирического распределени