Числовые неравенства. Числовые неравенства и их свойства. Формулы основных неравенств

С неравенствами мы познакомились в школе, где применяем числовые неравенства. В данной статье рассмотрим свойства числовых неравенств, не которых строятся принципы работы с ними.

Свойства неравенств аналогичны свойствам числовых неравенств. Будут рассмотрены свойства, его обоснования, приведем примеры.

Yandex.RTB R-A-339285-1

Числовые неравенства: определение, примеры

При введении понятия неравенства имеем, что их определение производится по виду записи. Имеются алгебраические выражения, которые имеют знаки ≠ , < , > , ≤ , ≥ . Дадим определение.

Определение 1

Числовым неравенством называют неравенство, в записи которого обе стороны имеют числа и числовые выражения.

Числовые неравенства рассматриваем еще в школе после изучения натуральных чисел. Такие операции сравнения изучаются поэтапно. Первоначальные имею вид 1 < 5 , 5 + 7 > 3 . После чего правила дополняются, а неравенства усложняются, тогда получаем неравенства вида 5 2 3 > 5 , 1 (2) , ln 0 . 73 - 17 2 < 0 .

Свойства числовых неравенств

Чтобы правильно работать с неравенствами, необходимо использовать свойства числовых неравенств. Они идут из понятия неравенства. Такое понятие задается при помощи утверждения, которое обозначается как «больше» или «меньше».

Определение 2

  • число a больше b , когда разность a - b – положительное число;
  • число a меньше b , когда разность a - b – отрицательное число;
  • число a равно b , когда разность a - b равняется нулю.

Определение используется при решении неравенств с отношениями «меньше или равно», «больше или равно». Получаем, что

Определение 3

  • a больше или равно b , когда a - b является неотрицательным числом;
  • a меньше или равно b , когда a - b является неположительным числом.

Определения будут использованы при доказательствах свойств числовых неравенств.

Основные свойства

Рассмотрим 3 основные неравенства. Использование знаков < и > характерно при свойствах:

Определение 4

  • антирефлексивности , которое говорит о том, что любое число a из неравенств a < a и a > a считается неверным. Известно, что для любого a имеет место быть равенство a − a = 0 , отсюда получаем, что а = а. Значит, a < a и a > a неверно. Например, 3 < 3 и - 4 14 15 > - 4 14 15 являются неверными.
  • ассиметричности . Когда числа a и b являются такими, что a < b , то b > a , и если a > b , то b < a . Используя определение отношений «больше», «меньше» обоснуем его. Так как в первой части имеем, что a < b , тогда a − b является отрицательным числом. А b − a = − (a − b) положительное число, потому как число противоположно отрицательному числу a − b . Отсюда следует, что b > a . Аналогичным образом доказывается и вторая его часть.

Пример 1

Например, при заданном неравенстве 5 < 11 имеем, что 11 > 5 , значит его числовое неравенство − 0 , 27 > − 1 , 3 перепишется в виде − 1 , 3 < − 0 , 27 .

Перед тем, как перейти к следующему свойству, заметим, что при помощи ассиметричности можно читать неравенство справа налево и наоборот. Таким образом, числовое неравенство можно изменять и менять местами.

Определение 5

  • транзитивности . Когда числа a , b , c соответствуют условию a < b и b < c , тогда a < c , и если a > b и b > c , тогда a > c .

Доказательство 1

Первое утверждение можно доказать. Условие a < b и b < c означает, что a − b и b − c являются отрицательными, а разность а - с представляется в виде (a − b) + (b − c) , что является отрицательным числом, потому как имеем сумму двух отрицательных a − b и b − c . Отсюда получаем, что а - с является отрицательным числом, а значит, что a < c . Что и требовалось доказать.

Аналогичным образом доказывается вторая часть со свойством транизитивности.

Пример 2

Разобранное свойство рассматриваем на примере неравенств − 1 < 5 и 5 < 8 . Отсюда имеем, что − 1 < 8 . Аналогичным образом из неравенств 1 2 > 1 8 и 1 8 > 1 32 следует, что 1 2 > 1 32 .

Числовые неравенства, которые записываются с помощью нестрогих знаков неравенства, обладают свойством рефлексивности, потому как a ≤ a и a ≥ a могут иметь случай равенства а = а. им присуща ассиметричность и транзитивность.

Определение 6

Неравенства, имеющие в записи знаки ≤ и ≥ , имеют свойства:

  • рефлексивности a ≥ a и a ≤ a считаются верными неравенствами;
  • антисимметричности, когда a ≤ b , тогда b ≥ a , и если a ≥ b , тогда b ≤ a .
  • транзитивности, когда a ≤ b и b ≤ c , тогда a ≤ c , а также, если a ≥ b и b ≥ c , то тогда a ≥ c .

Доказательство производится аналогичным образом.

Другие важные свойства числовых неравенств

Для дополнения основных свойств неравенств используются результаты, которые имеют практическое значение. Применяется принцип метода оценка значений выражений, на которых и базируются принципы решения неравенств.

Данный пункт раскрывает свойства неравенств для одного знака строгого неарвенства. Аналогично производится для нестрогих. Рассмотрим на примере, сформулировав неравенство если a < b и c являются любыми числами, то a + c < b + c . Справедливыми окажутся свойства:

  • если a > b , то a + c > b + c ;
  • если a ≤ b , то a + c ≤ b + c ;
  • если a ≥ b , то a + c ≥ b + c .

Для удобного представления дадим соответствующее утверждение, которое записывается и приводятся доказательства, показываются примеры использования.

Определение 7

Прибавление или вычисления числа к обеим сторонам. Иначе говоря, когда a и b соответствуют неравенству a < b , тогда для любого такого числа имеет смысл неравенство вида a + c < b + c .

Доказательство 2

Чтобы доказать это, необходимо, чтобы уравнение соответствовало условию a < b . Тогда (a + c) − (b + c) = a + c − b − c = a − b . Из условия a < b получим, что a − b < 0 . Значит, (a + c) − (b + c) < 0 , откуда a + c < b + c . Множество действительных числе могут быть изменены с помощью прибавления противоположного числа – с.

Пример 3

К примеру, если обе части неравенства 7 > 3 увеличиваем на 15 , тогда получаем, что 7 + 15 > 3 + 15 . Это равно 22 > 18 .

Определение 8

Когда обе части неравенства умножить или разделить на одно и то же число c , получим верное неравенство. Если взять число c отрицательным, то знак поменяется на противоположный. Иначе это выглядит так: для a и b неравенство выполняется, когда a < b и c являются положительными числами, то a· c < b · c , а если v является отрицательным числом, тогда a · c > b · c .

Доказательство 3

Когда имеется случай c > 0 , необходимо составить разность левой и правой частей неравенства. Тогда получаем, что a · c − b · c = (a − b) · c . Из условия a < b , то a − b < 0 , а c > 0 , тогда произведение (a − b) · c будет отрицательным. Отсюда следует, что a · c − b · c < 0 , где a · c < b · c . Другая часть доказывается аналогичным образом.

При доказательстве деление на целое число можно заменить умножением на обратное заданному, то есть 1 c . Рассмотрим пример свойства на определенных числах.

Пример 4

Разрешено обе части неравенства 4 < 6 умножаем на положительное 0 , 5 , тогда получим неравенство вида − 4 · 0 , 5 < 6 · 0 , 5 , где − 2 < 3 . Когда обе части делим на - 4 , то необходимо изменить знак неравенства на противоположный. отсюда имеем, что неравенство примет вид − 8: (− 4) ≥ 12: (− 4) , где 2 ≥ − 3 .

Теперь сформулируем вытекающие два результата, которые используются при решении неравенств:

  • Следствие 1. При смене знаков частей числового неравенства меняется сам знак неравенства на противоположный, как a < b , как − a > − b . Это соответствует правилу умножения обеих частей на - 1 . Оно применимо для перехода. Например, − 6 < − 2 , то 6 > 2 .
  • Следствие 2. При замене обратными числами частей числового неравенства на противоположный, меняется и его знак, причем неравенство останется верным. Отсюда имеем, что a и b являются положительными числами, a < b , 1 a > 1 b .

При делении обеих частей неравенства a < b разрешается на число a · b . Данное свойство используется при верном неравенстве 5 > 3 2 имеем, что 1 5 < 2 3 . При отрицательных a и b c условием, что a < b , неравенство 1 a > 1 b может получиться неверным.

Пример 5

Например, − 2 < 3 , однако, - 1 2 > 1 3 являются неверным равенством.

Все пункты объединяет то, что действия над частями неравенства дают верное неравенство на выходе. Рассмотрим свойства, где изначально имеется несколько числовых неравенств, а его результат получим при сложении или умножении его частей.

Определение 9

Когда числа a , b , c , d справедливы для неравенств a < b и c < d , тогда верным считается a + c < b + d . Свойство можно формировать таким образом: почленно складывать числа частей неравенства.

Доказательство 4

Докажем, что (a + c) − (b + d) является отрицательным числом, тогда получим, что a + c < b + d . Из условия имеем, что a < b и c < d . Выше доказанное свойство позволяет прибавлять к обеим частям одинаковое число. Тогда увеличим неравенство a < b на число b , при c < d , получим неравенства вида a + c < b + c и b + c < b + d . Полученное неравенство говорит о том, что ему присуще свойство транзитивности.

Свойство применяется для почленного сложения трех, четырех и более числовых неравенств. Числам a 1 , a 2 , … , a n и b 1 , b 2 , … , b n справедливы неравенства a 1 < b 1 , a 2 < b 2 , … , a n < b n , можно доказать метод математической индукции, получив a 1 + a 2 + … + a n < b 1 + b 2 + … + b n .

Пример 6

Например, при данных трех числовых неравенствах одного знака − 5 < − 2 , − 1 < 12 и 3 < 4 . Свойство позволяет определять то, что − 5 + (− 1) + 3 < − 2 + 12 + 4 является верным.

Определение 10

Почленное умножение обеих частей дает в результате положительное число. При a < b и c < d , где a , b , c и d являются положительными числами, тогда неравенство вида a · c < b · d считается справедливым.

Доказательство 5

Чтобы доказать это, необходимо обе части неравенства a < b умножить на число с, а обе части c < d на b . В итоге получим, что неравенства a · c < b · c и b · c < b · d верные, откуда получим свойство транизитивности a · c < b · d .

Это свойство считается справедливым для количества чисел, на которые необходимо умножить обе части неравенства. Тогда a 1 , a 2 , … , a n и b 1 , b 2 , … , b n являются положительные числами, где a 1 < b 1 , a 2 < b 2 , … , a n < b n , то a 1 · a 2 · … · a n < b 1 · b 2 · … · b n .

Заметим, что при записи неравенств имеются неположительные числа, тогда их почленное умножение приводит к неверным неравенствам.

Пример 7

К примеру, неравенство 1 < 3 и − 5 < − 4 являются верными, а почленное их умножение даст результат в виде 1 · (− 5) < 3 · (− 4) , считается, что − 5 < − 12 это является неверным неравенством.

Следствие: Почленное умножение неравенств a < b с положительными с a и b , причем получается a n < b n .

Свойства числовых неравенств

Рассмотрим ниже приведенную свойства числовых неравенств.

  1. a < a , a > a - неверные неравенства,
    a ≤ a , a ≥ a - верные неравенства.
  2. Если a < b , то b > a - антисимметричность.
  3. Если a < b и b < c то a < c - транзитивность.
  4. Если a < b и c - любоое число, то a + b < b + c .
  5. Если a < b и c - положительное число, то a · c < b · c ,
    Если a < b и c - отрицательное число, то a · c > b · c .

Следствие 1: если a < b , то - a > - b .

Следствие 2: если a и b - положительные числа и a < b , то 1 a > 1 b .

  1. Если a 1 < b 1 , a 2 < b 2 , . . . , a n < b n , то a 1 + a 2 + . . . + a n < b 1 + b 2 + . . . + b n .
  2. Если a 1 , a 2 , . . . , a n , b 1 , b 2 , . . . , b n - положительные числа и a 1 < b 1 , a 2 < b 2 , . . . , a n < b n , то a 1 · a 2 · . . . · a n < b 1 · b 2 · . . . b n .

Cледствие 1: если a < b , a и b - положительные числа, то a n < b n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1) Основное понятие неравенства

2) Основные свойства числовых неравенств. Неравенства содержащие переменную.

3) Графическое решение неравенств второй степени

4) Системы неравенств. Неравенства и системы неравенств с двумя переменными.

5) Решение рациональных неравенств методом интервалов

6) Решение неравенств, содержащих переменную под знаком модуля

1. Основное понятие неравенства

Неравенство — соотношение между числами (или любыми математическими выражениями, способными принимать численное значение), указывающее, какое из них больше или меньше другого. Над этими выражениями можно по определенным правилам производить следующие действия: сложение, вычитание, умножение и деление (причем при умножении или делении Н. на отрицательное число смысл его меняется на противоположный). Одно из основных понятий линейного программирования линейные неравенства вида

a 1 x 1 + a 2 x 2 +... + a n x n * b ,

где a 1 ,..., a n , b — постоянные и знак * — один из знаков неравенства, напр. ≥,

· алгебраические

· трансцендентные

Алгебраические неравенства подразделяются на неравенства первой, второй, и т. д. степени.

Неравенство - алгебраическое, второй степени.

Неравенство - трансцендентное.

2. Основные свойства числовых неравенств . Неравенства содержащие переменную

1) Графиком квадратичной функции y = ах 2 +bх + с является парабола с ветвями, направленными вверх, если а > 0 , и вниз, если а (иногда говорят, что парабола направлена выпуклостью вниз, если а > 0 и выпуклостью вверх, если а). При этом возможны три случая:

2) Парабола пересекает ось 0х (т. е. уравнение ах 2 + bх + с = 0 имеет два различных корня). То есть, если а

y = ах 2 +bх + с a>0 D>0 y = ах 2 +bх + с a D >0,

Парабола имеет вершину на оси 0х (т. е. уравнение ах 2 + х + с = 0 имеет один корень, так называемый двукратный корень) То есть, если d=0, то при a>0 решением неравенства служит вся числовая прямая, а при a ах 2 + х + с

y = ах 2 +bх + с a>0 D = 0 y = ах 2 +bх + с a D =0,

3) Если d0 и ниже ее при a

y = ах 2 +bх + с a>0 D 0 y = ах 2 +bх + с a D0,

4) Решить неравенство графическим способом

1. Пусть f(x) = 3х 2 -4х - 7 тогда найдем такие х при которых f(x) ;

2. Найдем нули функции.

f(x) при х .

Ответ f(x) при х .

Пусть f(x)=х 2 +4х +5 тогда Найдем такие х при которых f(x)>0,

D=-4 Нет нулей.

4. Системы неравенств. Неравенства и системы неравенств с двумя переменными

1) Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств.

2) Множество решений неравенства f(х;у)>0 можно графически изобразить на координатной плоскости. Обычно линия, заданная уравнением f(х;у)=0 ,разбивает плоскость на 2 части, одна из которых является решением неравенства. Чтобы определить, какая из частей, надо подставить координаты произвольной точки М(х0;у0) , не лежащей на линии f(х;у)=0, в неравенство. Если f(х0;у0) > 0 , то решением неравенства является часть плоскости, содержащая точку М0. если f(х0;у0)

3) Множество решений системы неравенств есть пересечение множеств решений входящих в нее неравенств. Пусть, например, задана система неравенств:

Для первого неравенства множество решений есть круг радиусом 2 и с центром в начале координат, а для второго- полуплоскость, расположенная над прямой 2х+3у=0. Множеством решений данной системы служит пересечение указанных множеств, т.е. полукруг.

4) Пример. Решить систему неравенств:

Решением 1-го неравенства служит множество , 2-го множество (2;7) и третьего - множество .

Пересечением указанных множеств является промежуток(2;3], который и есть множество решений системы неравенств.

5. Решение рациональных неравенств методом интервалов

В основе метода интервалов лежит следующее свойство двучлена (х-а ): точка х=α делит числовую ось на две части — справа от точки α двучлен (х‑α)>0 , а слева от точки α (х-α) .

Пусть требуется решить неравенство (x-α 1)(x-α 2)...(x-α n)>0 , где α 1 , α 2 ...α n-1 , α n — фиксированные числа, среди которых нет равных, причем такие, что α 1 (x-α 1)(x-α 2)...(x‑α n)>0 методом интервалов поступают следующим образом: на числовую ось наносят числа α 1 , α 2 ...α n-1 , α n ; в промежутке справа от наибольшего из них, т.е. числа α n , ставят знак «плюс», в следующем за ним справа налево интервале ставят знак «минус», затем — знак «плюс», затем знак «минус» и т.д. Тогда множество всех решений неравенства (x-α 1)(x‑α 2)...(x-α n)>0 будет объединение всех промежутков, в которых поставлен знак «плюс», а множество решений неравенства (x-α 1)(x-α 2)...(x‑α n) будет объединение всех промежутков, в которых поставлен знак «минус».

1) Решение рациональных неравенств (т.е неравенств вида P(x) Q(x) где - многочлены) основано на следующем свойстве непрерывной функции: если непрерывная функция обращается в нуль в точках х1 и х2 (х1;х2) и между этими точками не имеет других корней, то в промежутках(х1;х2) функция сохраняет свой знак.

Поэтому для нахождения промежутков знакопостоянства функции y=f(x) на числовой прямой отмечают все точки, в которых функция f(x) обращается в нуль или терпит разрыв. Эти точки разбивают числовую прямую на несколько промежутков, внутри каждого из которых функция f(x) непрерывна и не обращается в нуль, т.е. сохраняет знак. Чтобы определить этот знак, достаточно найти знак функции в какой либо точке рассматриваемого промежутка числовой прямой.

2) Для определения интервалов знакопостоянства рациональной функции, т.е. Для решения рационального неравенства, отмечаем на числовой прямой корни числителя и корни знаменателя, которые как и являются корнями и точками разрыва рациональной функции.

Решение неравенств методом интервалов

Решение . Область допустимых значений определяется системой неравенств:

Для функции f(x) = - 20. Находим f(x) :

откуда x = 29 и x = 13.

f (30) = - 20 = 0,3 > 0,

f (5) = - 1 - 20 = - 10

Ответ: ; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Числовые неравенства и их свойства

    В презентации подробно изложены содержание тем ЧИСЛОВЫЕ НЕРАВЕНСТВА и СВОЙСТВА ЧИСЛОВЫХ НЕРАВЕНСТВ, приведены примеры на доказательство числовых неравенств. (Алгебра 8 класс, автор Макарычев Ю.Н.)

    Просмотр содержимого документа
    «Числовые неравенства и их свойства»

    Числовые неравенства

    и их свойства

    учитель математики МОУ «Упшинская ООШ»

    Оршанского района Республики Марий Эл

    (К учебнику Ю.А.Макарычева Алгебра 8


    Числовые неравенства

    Результат сравнения двух и более чисел записывают в виде неравенств, используя знаки , , =

    Сравнение чисел мы осуществляем, пользуясь различными правилами (способами). Удобно иметь обобщенный способ сравнения, который охватывает все случаи.


    Определение:

    Число а больше числа b, если разность ( a – b) – положительное число.

    Число а меньше числа b, если разность ( a – b) – отрицательное число.

    Число а равно числу b, если разность ( a – b) – равна нулю


    Обобщенный способ сравнения чисел

    Пример 1.


    Применение обобщенного способа сравнения чисел для доказательства неравенств

    Пример 2. Доказать, что среднее арифметическое двух положительных чисел не меньше среднего геометрического этих чисел.





    Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.

    Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.





    Р = 3а

    Умножим на 3 обе части каждого из неравенств

    54,2 ∙ 3 а ∙ 3

    162,6

    Применение свойств числовых неравенств