Действия с неравенствами примеры. Соблюдение вашей конфиденциальности на уровне компании. Сбор и использование персональной информации

Самый широко известный и простой в использовании инструмент для измерения углов - транспортир. Для того, чтобы с помощью него измерить плоский угол, необходимо совместить центральное отверстие транспортира с вершиной угла, а нулевое деление - с одной из его сторон. Значение деления, которое пересечет вторая сторона угла и будет величиной угла. Таким образом можно измерить углы до 180 градусов. Если же необходимо измерить угол величиной свыше 180 градусов, достаточно измерить угол, его сторонами и вершиной и дополняющий его до 360 градусов (полного угла), а затем вычесть измеренную величину из 360 градусов. Полученная величина и будет величиной искомого угла.

Линейки. Таблицы Брадиса

Для измерения величины плоского угла достаточно дополнить угол еще одной стороной так, чтобы образовался прямоугольный треугольник. Измерив величины сторон полученного треугольника, можно получить значение любой тригонометрической функции угла, величину которого необходимо узнать. Зная значение синуса, косинуса, тангенса или котангенса угла, можно, воспользовавшись таблицей Брадиса, узнать величину угла.
Есть определенные известные величины углов, которые можно измерить с помощью школьной линейки-угольника. Выпускают два вида таких линеек, оба вида представляют из себя прямоугольные треугольники, выполненные из дерева, пластика или металла. Первый вид угольника - равнобедренный прямоугольный треугольник, два угла которого имеют величину 45 градусов. Второй вид - прямоугольный треугольник, один из углов которого равен 30 градусам, а второй - 60 градусам соответственно. Совместив одну из вершин угольника с вершиной угла - со стороной угла при совпадении другой стороны угла со смежной стороной угольника можно найти соответствующую величину угла. Таким образом, с помощью линеек-угольников можно найти величины углов в 30, 45, 60 и 90 градусов.

Теодолит

Инструменты, перечисленные в предыдущих пунктах, используются для измерения углов на плоскости. На практике - в , строительстве, топографии - используется специальный прибор для измерения так называемых горизонтальных и вертикальных углов под названием теодолит. Основными измерительными элементами теодолита являются специальные цилиндрические кольца (лимбы), на которые равномерно нанесена градусная разметка. Установленный с помощью специальной подставки в вершину угла прибор наводится с помощью зрительной трубы сначала на точку, находящуюся на одной стороне угла, где производится замер, затем на другой стороне угла, и снова производится замер. Разность замеров определяет величину угла в первом полуприеме. Затем производится второй полуприем - в обратном направлении. Среднее арифметическое значений, полученных в двух полуприемах является величиной измеряемого угла.

На уроке мы вспомним, что такое единицы измерения, узнаем какими единицами можно измерять углы, познакомимся с такой единицей измерения, как градус, научимся измерять углы в градусах и чертить их с помощью транспортира. Также мы узнаем о других единицах измерения углов, которые применяются в различных ситуациях.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок и

Какие-то вещи можно измерить, какие-то нельзя. Например, нельзя измерить дружбу или любовь. А расстояние, вес, температуру вполне можно. Чтобы что-то измерять, нужно всем договориться о единицах измерения.

Метр, дюйм, аршин - это и есть такие договоренности при измерении длины. Эталонный метр хранится во Франции, в Палате мер и весов. Килограмм, фунт, пуд - это договоренности для измерения массы. Эталонный килограмм тоже хранится в Палате мер и весов.

Единицы измерения придуманы для конкретных величин. В секундах не измерить вес, а в аршинах - время.

В геометрии такая же ситуация. Есть сантиметры, для измерения длин отрезков, но они не подходят для измерения углов. Для измерения углов есть свои единицы измерения. На этом уроке мы рассмотрим одну из них, а именно градусы.

Разделим полный угол на 360 равных частей. Для этого удобно использовать окружность. Поделим ее на 360 частей и соединим каждое полученное деление с центром. Получим 360 равных углов (см. Рис. 1).

Рис. 1. Окружность, разделенная на 360 равных углов

Один такой маленький угол назовем углом в 1° (см. Рис. 2).

Рис. 2. 1 градус

Не важно, какого размера будет окружность, которую мы делим. Поделим обе окружности на 360 частей, получим равные углы в 1°, хотя стороны одного угла визуально длиннее, чем у другого (см. Рис. 3).

Рис. 3. Углы равны

Стороны углов можно продолжать бесконечно, от этого размер угла не меняется (см. Рис. 4).

Рис. 4. Более явный пример равенства углов

Величина любого угла - это сколько раз в него умещается угол в 1°.

Вот мы видим угол 13° (см. Рис. 5).

Рис. 5. Угол 13°

Понятно, что полный угол состоит из 360 таких углов. То есть он равен 360° (см. Рис. 6).

Рис. 6. Полный угол

Развернутый угол - это половина полного угла. Он равен (см. Рис. 7).

Рис. 7. Развернутый угол

Прямой угол является половиной развернутого и равен 90° (см. Рис. 8).

Рис. 8. Прямой угол

Эталон градуса нет нужды где-то хранить. Если нужно, то всегда можно полный угол разделить на 360 частей, или развернутый - на 180, или прямой - на 90.

Линейка нужна для того, чтобы измерить имеющийся отрезок или начертить отрезок нужной длины. Чтобы измерить угол или начертить угол нужной величины, мы тоже используем линейку, только не прямую, а круглую. Она называется транспортиром (см. Рис. 9).

Рис. 9. Транспортир

Единицы измерения на ней - градусы. Шкала начинается с нуля и заканчивается 180°.То есть максимальный угол, который мы можем измерить или начертить, - это 180°, развернутый.

Транспортиры могут быть разных размеров, но это не влияет на то, какого размера углы ими измеряют. Для более крупного транспортира у углов нужно чертить стороны длиннее.

1. Измерим пару углов.

Прямая часть транспортира совмещается с одной стороной угла, центр транспортира с вершиной угла. Смотрим, где оказалась вторая сторона угла, - 54° (см. Рис. 10, 11).

Рис. 10. Измерение угла

Проделаем то же самое со вторым углом, 137°.

Рис. 11. Измерение угла

Если сторона угла не достает до шкалы, то ее нужно сначала продлить.

2. Начертим углы 29°, 81° и 140°.

Сначала чертим одну сторону угла по линейке (см. Рис. 12).

Рис. 12. Построение одной стороны угла

Отмечаем вершину. Совмещаем с транспортиром. Отмечаем точкой нужное значение угла - 29° (см. Рис. 13).

Рис. 13. Использование транспортира для построения углов

Убираем транспортир. Соединяем полученную точку с вершиной (см. Рис. 14).

Рис. 14. Угол 29°

Точно так же строим два других угла (см. Рис. 15).

Рис. 15. Построение углов

Итак, мы с вами обсудили, что для измерения углов люди договорились использовать градусы. Градус - это полного угла.

Инструментом для измерения и построения углов является транспортир.

Можно не использовать названия углов - полный, развернутый, прямой. Мы можем просто говорить - 360 градусов, 180 или 90 градусов.

На самом деле бывает, когда мы одни величины измеряем единицами, казалось бы, для них не предназначенными, «чужими» единицами.

Можно ли измерить расстояние в минутах? Да, мы часто используем этот способ. «От моего дома до школы 5 минут». Если быть точнее, то «5 минут пешком». Мы здесь используем известную всем величину - скорость пешехода. И величина «5 минут» на самом деле означает «расстояние, которое пешеход проходит за 5 минут». Скорость пешехода - 5 км/ч, 5 минут - это часа, умножим одно на другое. Получаем примерно 400 метров. Не очень точно, зато удобно.

Точно по такому же принципу устроена другая единица измерения расстояния - световой год. Световой год - расстояние, которое проходит свет за 1 год. С помощью этой единицы меряют расстояния между звездами.

Очень распространенный пример использования «чужой» единицы измерения - это измерять вес в килограммах. На самом деле килограмм - единица измерения массы, а вес - это другая физическая величина. Если хотите подробнее узнать, в чем разница между массой и весом, и почему измерять вес в килограммах не верно, то наберите в поисковой системе «масса и вес» и получите множество пояснений по этому поводу.

Атмосферное давление мы до сих пор измеряем в миллиметрах (миллиметрах ртутного столба).

Хотя для угла есть свои «родные» единицы измерения - градусы, которые мы и проходим на этом уроке, все-таки его можно измерять и с помощью линейных величин, например сантиметров. Если нужно измерить угол , то можно достроить его до треугольника, так чтобы один угол был прямым, и разделить длину одной стороны на другую.

Получим величину угла , которая называется тангенсом.

Если увеличить треугольник, то ничего не изменится (см. Рис. 16).

Рис. 16. Тангенс

Ведь во сколько раз увеличилась одна сторона, во столько и вторая.

То есть величины часто можно измерять «чужими» единицами, но это чуть сложнее, там нужны некоторые дополнительные договоренности.

Существуют и другие единицы измерения углов.

1. Минуты и секунды.

Как и метр можно делить на дециметры, сантиметры, миллиметры для более точных измерений, так и градусы делятся на более мелкие единицы измерения.

Если угол в 1° разделить на 60 равных частей, то величина полученного угла называется минута, 1′.

Если минуту поделить на 60 частей, то полученная величина называется секундой. Секунда - уже очень маленькая величина, но ее тоже можно делить дальше.

Почему вообще стали делить на 360 частей полный угол, ведь это не очень удобно? В древнем Вавилоне была шестидесятеричная система (у нас десятеричная). Им было удобно делить на 60.

2. Грады.

Чтобы сделать измерение углов ближе к нашей десятичной системе счисления, были предложены грады. Для этого прямой угол делится на 100 частей. Полученная величина называется град. Полный угол составляет тогда 400 градов. Система не прижилась, и сейчас ее не используют.

3. Радиан.

Если взять два радиуса окружности так, чтобы кусочек окружности между ними тоже был равен радиусу, то угол между радиусами мы и примем за новую единицу измерения. Он называется 1 рад (радиан). Эта мера используется наравне с градусной. У нее есть свои преимущества и свои недостатки по сравнению с градусами (см. Рис. 17).

Рис. 17. Радианы

Например, теперь полный угол (вся окружность) состоит не из целого числа единичных углов. Полный угол состоит из 6 с лишним единичных углов. Не очень удобно, зато теперь длина дуги (части окружности) и угол хорошо связаны. Если взять окружность радиуса 1 см, то величина угла совпадает с длиной дуги. Угол 1 рад - дуга 1 см, угол 2 рад - длина дуги 2 см.

Список литературы

  1. Зубарева И.И., Мордкович А.Г. Математика. 5 класс. - М.: Мнемозина, 2013.
  2. Виленкин Н.Я. и др. Математика. 5 кл. - М.: Мнемозина, 2013.
  3. Ерина Т.М. Математика 5кл. Раб. тетрадь к уч. Виленкина, 2013. - М.: Мнемозина, 2013.
  1. Shkolo.ru ().
  2. Cleverstudents.ru ().
  3. Festival.1september.ru ().

Домашнее задание

  1. Зубарева И.И., Мордкович А.Г. Математика. 5 класс. - М.: Мнемозина, 2013. Стр. 144 № 522.
  2. Начертите углы: 23°, 167°, 84°.
  3. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по математике для 5 класса (5-е изд.) - 2010. Стр. 163 № 3.

Неравенства в математике играют заметную роль. В школе в основном мы имеем дело с числовыми неравенствами , с определения которых мы начнем эту статью. А дальше перечислим и обоснуем свойства числовых неравенств , на которых базируются все принципы работы с неравенствами.

Сразу отметим, что многие свойства числовых неравенств аналогичны . Поэтому, излагать материал будем по такой же схеме: формулируем свойство, приводим его обоснование и примеры, после чего переходим к следующему свойству.

Навигация по странице.

Числовые неравенства: определение, примеры

Когда мы вводили понятие неравенства, то заметили, что неравенства часто определяют по виду их записи. Так неравенствами мы назвали имеющие смысл алгебраические выражения, содержащие знаки не равно ≠, меньше <, больше >, меньше или равно ≤ или больше или равно ≥. На основе приведенного определения удобно дать определение числового неравенства:

Встреча с числовыми неравенствами происходит на уроках математики в первом классе сразу после знакомства с первыми натуральными числами от 1 до 9 , и знакомства с операцией сравнения. Правда, там их называют просто неравенствами, опуская определение «числовые». Для наглядности не помешает привести пару примеров простейших числовых неравенств из того этапа их изучения: 1<2 , 5+2>3 .

А дальше от натуральных чисел знания распространяются на другие виды чисел (целые, рациональные, действительные числа), изучаются правила их сравнения, и это значительно расширяет видовое разнообразие числовых неравенств: −5>−72 , 3>−0,275·(7−5,6) , .

Свойства числовых неравенств

На практике работать с неравенствами позволяет ряд свойств числовых неравенств . Они вытекают из введенного нами понятия неравенства. По отношению к числам это понятие задается следующим утверждением, которое можно считать определением отношений «меньше» и «больше» на множестве чисел (его часто называют разностным определением неравенства):

Определение.

Это определение можно переделать в определение отношений «меньше или равно» и «больше или равно». Вот его формулировка:

Определение.

  • число a больше или равно числу b тогда и только тогда, когда a−b – неотрицательное число;
  • число a меньше или равно числу b тогда и только тогда, когда a−b – неположительное число.

Данные определения мы будем использовать при доказательстве свойств числовых неравенств, к обзору которых мы и переходим.

Основные свойства

Обзор начнем с трех основных свойств неравенств. Почему они основные? Потому, что они являются отражением свойств неравенств в самом общем смысле, а не только по отношению к числовым неравенствам.

Числовым неравенствам, записанным с использованием знаков < и >, характерно:

Что касается числовых неравенств, записанных при помощи знаков нестрогих неравенства ≤ и ≥, то они обладают свойством рефлексивности (а не антирефлексивности), так как неравенства a≤a и a≥a включают в себя случай равенства a=a . Также им свойственны антисимметричность и транзитивность.

Итак, числовые неравенства, записанные при помощи знаков ≤ и ≥, обладают свойствами:

  • рефлексивности a≥a и a≤a – верные неравенства;
  • антисимметричности, если a≤b , то b≥a , и если a≥b , то b≤a .
  • транзитивности, если a≤b и b≤c , то a≤c , а также, если a≥b и b≥c , то a≥c .

Их доказательство очень похоже на уже приведенные, поэтому не будем на них останавливаться, а перейдем к другим важным свойствам числовых неравенств.

Другие важные свойства числовых неравенств

Дополним основные свойства числовых неравенств еще серией результатов, имеющих большое практическое значение. На них основаны методы оценки значений выражений, на них базируются принципы решения неравенств и т.п. Поэтому целесообразно хорошо разобраться с ними.

В этом пункте свойства неравенств будем формулировать только для одного знака строгого неравенства, но стоит иметь в виду, что аналогичные свойства будут справедливы и для противоположного ему знака, а также для знаков нестрогих неравенств. Поясним это на примере. Ниже мы сформулируем и докажем такое свойство неравенств: если a

  • если a>b , то a+c>b+c ;
  • если a≤b , то a+c≤b+c ;
  • если a≥b , то a+c≥b+c .

Для удобства представим свойства числовых неравенств в виде списка, при это будем давать соответствующее утверждение, записывать его формально с помощью букв, приводить доказательство, после чего показывать примеры использования. А в конце статьи сведем все свойства числовых неравенств в таблицу. Поехали!

    Прибавление (или вычитание) любого числа к обеим частям верного числового неравенства дает верное числовое неравенство. Другими словами, если числа a и b таковы, что a

    Для доказательства составим разность левой и правой частей последнего числового неравенства, и покажем, что она отрицательна при условии a(a+c)−(b+c)=a+c−b−c=a−b . Так как по условию a

    На доказательстве этого свойства числовых неравенств для вычитания числа c не останавливаемся, так как на множестве действительных чисел вычитание можно заменить прибавлением −c .

    Например, если к обеим частям верного числового неравенства 7>3 прибавить число 15 , то получится верное числовое неравенство 7+15>3+15 , что то же самое, 22>18 .

    Если обе части верного числового неравенства умножить (или разделить) на одно и то же положительное число c, то получится верное числовое неравенство. Если обе части неравенства умножить (или разделить) на отрицательное число c , и изменить знак неравенства на противоположный, то получится верное неравенство. В буквенном виде: если для чисел a и b выполняется неравенство ab·c.

    Доказательство. Начнем со случая, когда c>0 . Составим разность левой и правой частей доказываемого числового неравенства: a·c−b·c=(a−b)·c . Так как по условию a0 , то произведение (a−b)·c будет отрицательным числом как произведение отрицательного числа a−b на положительное число c (что следует из ). Следовательно, a·c−b·c<0 , откуда a·c

    На доказательстве рассмотренного свойства для деления обеих частей верного числового неравенства на одно и то же число c не останавливаемся, так как деление всегда можно заменить умножением на 1/c .

    Покажем пример применения разобранного свойства на конкретных числах. Например, можно обе части верного числового неравенства 4<6 умножить на положительное число 0,5 , что дает верное числовое неравенство −4·0,5<6·0,5 , откуда −2<3 . А если обе части верного числового неравенства −8≤12 разделить на отрицательное число −4 , и изменить знак неравенства ≤ на противоположный ≥, то получится верное числовое неравенство −8:(−4)≥12:(−4) , откуда 2≥−3 .

    Из только что разобранного свойства умножения обеих частей числового равенства на число следуют два практически ценных результата. Так их и сформулируем в виде следствий.

    Все разобранные выше в этом пункте свойства объединяет то, что сначала дано верное числовое неравенство, и из него посредствам некоторых манипуляций с частями неравенства и знаком получается другое верное числовое неравенство. Сейчас мы приведем блок свойств, в которых изначально дано не одно, а несколько верных числовых неравенств, а новый результат получается из их совместного использования после сложения или умножения их частей.

    Если для чисел a , b , c и d справедливы неравенства a

    Докажем, что (a+c)−(b+d) – отрицательное число, этим будет доказано, что a+c

    По индукции это свойство распространяется на почленное сложение трех, четырех, и, вообще, любого конечного числа числовых неравенств. Так, если для чисел a 1 , a 2 , …, a n и b 1 , b 2 , …, b n справедливы неравенства a 1 a 1 +a 2 +…+a n .

    Например, нам даны три верных числовых неравенства одного знака −5<−2 , −1<12 и 3<4 . Рассмотренное свойство числовых неравенств позволяет нам констатировать, что неравенство −5+(−1)+3<−2+12+4 – тоже верное.

    Можно почленно умножать числовые неравенства одного знака, обе части которых представлены положительными числами. В частности, для двух неравенств a

    Для доказательства можно умножить обе части неравенста a

    Указанное свойство справедливо и для умножения любого конечного числа верных числовых неравенств с положительными частями. То есть, если a 1 , a 2 , …, a n и b 1 , b 2 , …, b n – положительные числа, причем a 1 a 1 ·a 2 ·…·a n .

    Отдельно стоит заметить, что если в записи числовых неравенств содержатся неположительные числа, то их почленное умножение может приводить к неверным числовым неравенствам. Например, числовые неравенства 1<3 и −5<−4 – верные и одного знака, почленное умножение этих неравенств дает 1·(−5)<3·(−4) , что то же самое, −5<−12 , а это неверное неравенство.

    • Следствие. Почленное умножение одинаковых верных неравенств вида a

В заключение статьи, как и было обещано, соберем все изученные свойства в таблицу свойств числовых неравенств :

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.