Зигзагообразное строение алканов обусловлено. Физические и химические свойства алканов. Что мы узнали

Простейшими органическими соединениями являются углеводороды , состоящие из углерода и водорода. В зависимости от характера химических связей в углеводородах и соотношения между углеродом и водородом они подразделяются на предельные и непредельные (алкены, алкины и др.)

Предельными углеводородами (алканами, углеводородами метанового ряда) называются соединения углерода с водородом, в молекулах которых каждый атом углерода затрачивает на соединение с любым другим соседним атомом не более одной валентности, причем, все не затраченные на соединение с углеродом валентности насыщены водородом. Все атомы углерода в алканах находятся в sp 3 - состоянии. Предельные углеводороды образуют гомологический ряд, характеризующийся общей формулой С n Н 2n+2 . Родоначальником этого ряда является метан.

Изомерия. Номенклатура.

Алканы с n=1,2,3 могут существовать только в виде одного изомера

Начиная с n=4, появляется явление структурной изомерии.

Число структурных изомеров алканов быстро растет с увеличением числа углеродных атомов, например, пентан имеет 3 изомера, гептан - 9 и т.д.

Число изомеров алканов увеличивается и за счет возможных стереоизомеров. Начиная с C 7 Н 16 возможно существование хиральных молекул, которые образуют два энантиомера.

Номенклатура алканов.

Доминирующей номенклатурой является номенклатура IUPAC. В тоже время в ней присутствуют элементы тривиальных названий. Так, первые четыре члена гомологического ряда алканов имеют тривиальные названия.

СН 4 - метан

С 2 Н 6 - этан

С 3 Н 8 - пропан

С 4 Н 10 - бутан.

Названия остальных гомологов образованы от греческих латинских числительных. Так, для следующих членов ряда нормального (неразветвленного) строения используются названия:

С 5 Н 12 - пентан, С 6 Н 14 - гексан, С 7 Н 18 - гептан,

С 14 Н 30 - тетрадекан, С 15 Н 32 - пентадекан и т.д.

Основные правила IUPAC для разветвленных алканов

а) выбирают наиболее длинную неразветвленную цепь, название которой составляет основу (корень). К этой основе прибавляют суффикс “ан”

б) нумеруют эту цепь по принципу наименьших локантов,

в) заместитель указывают в виде префиксов в алфавитном порядке с указанием места нахождения. Если при родоначальной структуре находятся несколько одинаковых заместителей, то их количество указывают греческими числительными.

В зависимости от числа других углеродных атомов, с которыми непосредственно связан рассматриваемый углеродный атом, различают: первичные, вторичные, третичные и четвертичные углеродные атомы.

В качестве заместителей в разветвленных алканах фигурируют алкильные группы или алкильные радикалы, которые рассматриваются как результат отщепления от молекулы алкана одного водородного атома.

Название алкильных групп образуют от названия соответствующих алканов путем замены последних суффикса “ан” на суффикс “ил”.

СН 3 - метил

СН 3 СН 2 - этил

СН 3 СН 2 СН 2 - пропил

Для названия разветвленных алкильных групп используют также нумерацию цепи:

Начиная с этана, алканы способны образовывать конформеры, которым соответствует заторможенная конформация. Возможность перехода одной заторможенной конформации в другую через заслоненную определяется барьером вращения. Определение структуры, состава конформеров и барьеров вращения являются задачами конформационного анализа. Методы получения алканов.

1. Фракционная перегонка природного газа или бензиновой фракции нефти. Таким способом можно выделять индивидуальные алканы до 11 углеродных атомов.

2. Гидрирование угля. Процесс проводят в присутствии катализаторов (оксиды и сульфиды молибдена, вольфрама, никеля) при 450-470 о С и давлениях до 30 Мпа. Уголь и катализатор растирают в порошок и в суспензированном виде гидрируют, борботируя водород через суспензию. Получающиеся смеси алканов и циклоалканов используют в качестве моторного топлива.

3. Гидрирование СО и СО 2 .

СО + Н 2  алканы

СО 2 + Н 2  алканы

В качестве катализаторов этих реакций используют Со, Fe, и др. d - элементы.

4. Гидрирование алкенов и алкинов.

5. Металлоорганический синтез.

а). Синтез Вюрца.

2RHal + 2Na  R R + 2NaHal

Этот синтез малопригоден, если в качестве органических реагентов используют два разных галогеналкана.

б). Протолиз реактивов Гриньяра.

R Hal + Mg  RMgHal

RMgHal + HOH  RH + Mg(OH)Hal

в). Взаимодействие диалкилкупратов лития (LiR 2 Cu) с алкилгалогенидами

LiR 2 Cu + R X  R R + RCu + LiX

Сами диалкилкупраты лития получают двухстадийным способом

2R Li + CuI  LiR 2 Cu + LiI

6. Электролиз солей карбоновых кислот (синтез Кольбе).

2RCOONa + 2H 2 O  R R + 2CO 2 + 2NaOH + H 2 ­

7. Сплавление солей карбоновых кислот со щелочами.

Реакция используется для синтеза низших алканов.

8. Гидрогенолиз карбонильных соединений и галогеналканов.

а). Карбонильные соединения. Синтез Клемменса.

б). Галогеналканы. Каталитический гидрогенолиз.

В качестве катализаторов используют Ni, Pt, Pd.

в) Галогеналканы. Реагентное восстановление.

RHal + 2HI  RH + HHal + I 2

Химические свойства алканов.

Все связи в алканах малополярные, по этому для них характерны радикальные реакции. Отсутствие пи-связей делает невозможными реакции присоединения. Для алканов характерны реакции замещения, отщепления, горения.

Тип и название реакции

1. Реакции замещения

А) с галогенами хлором Cl 2 –на свету , Br 2 - при нагревании ) реакция подчиняется правилу Марковника (Правила Марковникова ) - в первую очередь галоген замещает водород у наименее гидрированного атома углерода. Реакция проходит поэтапно - за один этап замещается не более одного атома водорода.

Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с йодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и йода(обратимая реакция):

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Б) Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова. Один из атомов водорода заменяется на остаток NO 2 (нитрогруппа) и выделяется вода

2. Реакции отщепления

А) дегидрирование –отщепление водорода. Условия реакции катализатор –платина и температура.

CH 3 - CH 3 → CH 2 = CH 2 + Н 2

Б) крекинг процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Нпри такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов

C 6 H 14 C 2 H 6 + C 4 H 8

В) полное термическое разложение

СН 4 C + 2H 2

3. Реакции окисления

А) реакция горения При поджигании (t = 600 o С) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

С n Н 2n+2 + O 2 ––>CO 2 + H 2 O + Q

СН 4 + 2O 2 ––>CO 2 + 2H 2 O + Q

Б) Каталитическое окисление - при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–Спримерно в середине молекулы и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана (разрыв связи С 2 –С 3) получают уксусную кислоту

4. Реакции изомеризациих арактерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С 4 Н 10 C 4 H 10

5.. Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена).

Механиз реакции галогенирования:

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Галогенирование - это одна из реакций замещения. Галогенирование алканов подчиняется правилу Марковника (Правила Марковникова) - в первую очередь галогенируется наименее гидрированый атом углерода. Галогенирование алканов проходит поэтапно - за один этап галогенируется не более одного атома водорода.

CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)

CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)

CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Под действием света молекула хлора распадается на атомы, затем они атакуют молекулы метана, отрывая у них атом водорода, в результате этого образуются метильные радикалы СН 3 , которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.

Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N 2 O 4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова.

RH + HNO 3 = RNO 2 + H 2 O

т. е. один из атомов водорода заменяется на остаток NO 2 (ни-трогруппа) и выделяется вода.

Особенности строения изомеров сильно отражаются на течении этой реакции, так как легче всего она ведет к замещению на нитрогруппу атома водорода в остатке СИ (имеющемся лишь в некоторых изомерах), менее легко замещается водород в группе СН 2 и еще труднее - в остатке СН 3 .

Парафины довольно легко нитруются в газовой фазе при 150-475° С двуокисью азота или парами азотной кислоты; при этом происходит частично и. окисление. Нитрованием метана получается почти исключительно нитрометан:

Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов. Азотная кислота при обыкновенной температуре почти не действует на парафиновые углеводороды. При нагревании же действует главным образом как окислитель. Однако, как нашел М. И. Коновалов (1889), при нагревании азотная кислота действует отчасти и «нитрующим» образом; особенно хорошо идет реакция нитрования со слабой азотной кислотой при нагревании и повышенном давлении. Реакция нитрования выражается уравнением.

Последующие за метаном гомологи дают смесь различных нитропарафинов вследствие попутно идущего расщепления. При нитровании этана получаются нитроэтан СН 3 -СН 2 -NO 2 и нитрометан СН 3 -NO 2 . Из пропана образуется смесь нитропарафинов:

Нитрование парафинов в газовой фазе теперь осуществляется в промышленном масштабе.

Сульфахлорирование:

Важной в практическом отношении реакцией является сульфохлорирование алканов. При взаимодействии алкана с хлором и сернистым ангидридом при облучении происходит замещение водорода на хлорсульфонильную группу:

Стадии этой реакции:

Cl +R:H→R +HCl

R +SO 2 →RSO 2

RSO 2 + Cl:Cl→RSO 2 Cl+Cl

Алкансульфохлориды легко гидролизуются до алкансульфоксилост (RSO 2 OH),натриевые соли которых (RSO 3¯ Na + - алкансульфонат натрия) проявляют свойства,подобные мылам, и применяются в качестве детерагентов.

Химические свойства насыщенных углеводородов обусловлены наличием в их молекулах атомов углерода, водорода и связей $C-H$ и $C-C$.

В молекуле простейшего алкана метана химические связи образуют 8 валентных электронов (4 электрона атома углерода и 4 - атомов водорода), которые размещены на четырех связующих молекулярных орбиталях.

Итак, в молекуле метана из четырех $sp3$-гибридизированных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуются четыре $sp3-s (C-H)$ ковалентные связи (рис 1.).

Молекула этана образуется из двух углеродных тетраэдров - одной $sp3-sp3 (C-C)$ ковалентной связи и шести $sp3-s (C-H)$ ковалентных связей (рис. 2).

Рисунок 2. Строение молекулы этана: а - размещение $\sigma $-связей в молекуле; б - тетраэдрическое модель молекулы; в - шаростержневая модель молекулы; г- масштабная модель молекулы по Стюарту - Бриглебу

Особенности химических связей в алканах

В рассмотренных типах ковалентных связей области наибольшей электронной плотности находятся на линии, соединяющей ядра атомов. Эти ковалентные связи образованы локализованными $\sigma $-${\rm M}$${\rm O}$ и называются $\sigma $-связями. Важной особенностью этих связей является то, что электронная плотность в них распределена симметрично относительно оси, проходящей через ядра атомов (цилиндрическая симметрия электронной плотности). Благодаря этому атомы или группы атомов, которые соединены этой связью, могут свободно вращаться не вызывая деформации связи. Угол между направлениями валентностей атомов углерода в молекулах алканов составляет $109^\circ 28"$. Поэтому в молекулах этих веществ даже с прямой углеродной цепью атомы углерода в действительности размещаются не по прямой. Эта цепь имеет зигзагообразную форму, которая связана с сохранением межвалентных углов атомов углерода (рис. 3).

Рисунок 3. Схема строения углеродной цепи нормального алкана

В молекулах алканов с достаточно длинной углеродной цепью этот угол увеличен на $2^\circ$ вследствие отталкивания валентно не соединенных между собой атомов углерода.

Замечание 1

Каждая химическая связь характеризуется определенной энергией. Экспериментально установлено, что энергия связи $C-H$ в молекуле метана составляет 422,9 кДж/моль, этана - 401,9 кДж/моль, других алканов - около 419 кДж/моль. Энергия связи $C-C$ равен 350 кДж / моль.

Взаимосвязь строения алканов с их реакционной способностью

Высокая энергия связей $C-C$ и $C-H$ обуславливает низкую реакционную способность насыщенных углеводородов при комнатной температуре. Так, алканы не обесцвечивают бромную воду, раствор перманганата калия, не взаимодействуют с ионными реагентами (кислотами, щелочами), не реагируют с окислителями, с активными металлами. Поэтому, например, металлический натрий можно хранить в керосине, который представляет собой смесь насыщенных углеводородов. Даже концентрированная серная кислота, которая обугливает много органических веществ, при комнатной температуре не действует на алканы. Учитывая сравнительно малую реакционную способность насыщенных углеводородов, их в свое время назвали парафинами. Алканы не имеют способности присоединять водород, галогены и другие реагенты. Поэтому этот класс органических веществ назвали насыщенными углеводородами.

Химические реакции насыщенных углеводородов могут происходить за счет разрыва связей $C-C$ или $C-H$. Разрыв $C-H$-связей сопровождается отщеплением атомов водорода с образованием ненасыщеных соединений или последующим замещением отщеплений атомов водорода другими атомами или группами атомов.

В зависимости от строения алкана и условий реакции в молекулах насыщенных углеводородов связь $C-H$ может разрываться гомолитично:

Рисунок 4. Химические свойства алканов

И гетеролитично с образованием анионов и катионов:

Рисунок 5. Химические свойства алканов

При этом могут образовываться свободные радикалы, имеющие неспаренный электрон, но не имеют электрического заряда, или карбкатионы или карбанионы, которые имеют соответствующие электрические заряды. Свободные радикалы образуются в качестве промежуточных частиц в реакциях радикального механизма, а карбкатионы и карбанионы - в реакциях ионного механизма.

Вследствие того, что связи $C-C$ неполярные, а $C-H$-связи - малополярные и эти $\sigma $-связи имеют низкую поляризуемость, гетеролитический разрыв $\sigma $-связей в молекулах алканов с образованием ионов требует большой затраты энергии. Гемолитическое расщепление этих связей требует меньше енергии. Поэтому для насыщенных углеводородов более характерны реакции, протекающие по радикальному механизму. Расщепление $\sigma $-связи $C-C$ требует меньшей затраты энергии, чем расщепление связи $C-H$, поскольку энергия $C-C$-связи меньше энергии $C-H$-связи. Однако химические реакции чаще происходят с расщеплением $C-H$-связей, поскольку они более доступны для реагентов.

Влияние разветвленности и размеров алканов на их реакционную способность

Реакционная способность $C-H$-связи меняется при переходе от алканов линейной структуры к алканам-разветвленной структуры. Например, энергия диссоциации связи $C-H$ (кДж / моль) при образовании свободных радикалов меняется следующим образом:

Рисунок 6. Химические свойства алканов

Кроме того, значение энергии ионизации (ЭИ) для алканов показывает, что рост общего количества $\sigma $-связей повышает их донорные свойства и отколоть электрон становится легче для соединений с большей молекулярной массой, например:

Рисунок 7. Химические свойства алканов

Итак, в свободнорадикальных процессах реакции происходят преимущественно у третичного атома углерода, затем у вторичного и в последнюю очередь у первичного, что совпадает с рядом устойчивости свободных радикалов. Однако с повышением температуры наблюдаемая тенденция уменьшается или совсем нивелируется.

Таким образом, для алканов характерны два типа химических реакций:

  1. замещения водорода, в основном по радикальному механизму и
  2. расщепление молекулы за связями $C-C$ или $C-H$.

ОПРЕДЕЛЕНИЕ

Алканы – предельные (алифатические) углеводороды, состав которых выражается формулой C n H 2 n +2 .

Алканы образуют гомологический ряд, каждое химическое соединение которого по составу отличается от последующего и предыдущего на одинаковое число атомов углерода и водорода – CH 2 , а вещества, входящие в гомологический ряд, называются гомологами. Гомологический ряд алканов представлен в таблице 1.

Таблица 1. Гомологический ряд алканов.

В молекулах алканов выделяют первичные (т.е. связанные одной связью), вторичные (т.е. связанные двумя связями), третичные (т.е. связанные тремя связями) и четвертичные (т.е. связанные четырьмя связями) атомы углерода.

C 1 H3 – C 2 H 2 – C 1 H 3 (1 – первичные, 2- вторичные атомы углерода)

CH 3 –C 3 H(CH 3) – CH 3 (3- третичный атом углерода)

CH 3 – C 4 (CH 3) 3 – CH 3 (4- четвертичный атом углерода)

Для алканов характерна структурная изомерия (изомерия углеродного скелета). Так, у пентана имеются следующие изомеры:

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 (пентан)

CH 3 –CH(CH 3)-CH 2 -CH 3 (2-метилбутан)

CH 3 -C(CH 3) 2 -CH 3 (2,2 – диметилпропан)

Для алканов, начиная с гептана, характерна оптическая изомерия.

Атомы углерода в предельных углеводородах находятся в sp 3 –гибридизации. Углы между связями в молекулах алканов 109,5.

Химические свойства алканов

При обычных условиях алканы химически инертны — не реагируют ни с кислотами, ни со щелочами. Это объясняется высокой прочностью -связей С-С и С-Н. Неполярные связи С-С и С-Н способны расщепляться только гомолитически под действием активных свободных радикалов. Поэтому алканы вступают в реакции, протекающие по механизму радикального замещения. При радикальных реакция в первую очередь замещаются атомы водорода у третичных, затем у вторичных и первичных атомов углерода.

Реакции радикального замещения имеют цепной характер. Основные стадии: зарождение (инициирование) цепи (1) – происходит под действием УФ-излучения и приводит к образованию свободных радикалов, рост цепи (2) – происходит за счет отрыва атома водорода от молекулы алкана; обрыв цепи (3) – происходит при столкновении двух одинаковых или разных радикалов.

X:X → 2X . (1)

R:H + X . → HX + R . (2)

R . + X:X → R:X + X . (2)

R . + R . → R:R (3)

R . + X . → R:X (3)

X . + X . → X:X (3)

Галогенирование. При взаимодействии алканов с хлором и бромом при действии УФ-излучения или высокой температуры образуется смесь продуктов от моно- до полигалогензамещенных алканов:

CH 3 Cl +Cl 2 = CH 2 Cl 2 + HCl (дихлорметан)

CH 2 Cl 2 +Cl 2 = CHCl 3 + HCl (трихлорметан)

CHCl 3 +Cl 2 = CCl 4 + HCl (тетрахлорметан)

Нитрование (реакция Коновалова) . При действии разбавленной азотной кислоты на алканы при 140С и небольшом давлении протекает радикальная реакция:

CH 3 -CH 3 +HNO 3 = CH 3 -CH 2 -NO 2 (нитроэтан) + H 2 O

Сульфохлорирование и сульфоокисление. Прямое сульфирование алканов протекает с трудом и чаще всего сопровождается окислением, в результате чего образуются алкансульфонилхлориды:

R-H + SO 2 + Cl 2 → R-SO 3 Cl + HCl

Реакция сульфоокисления протекает аналогично, только в этом случае образуются алкансульфоновые кислоты:

R-H + SO 2 + ½ O 2 → R-SO 3 H

Крекинг – радикальный разрыв связей С-С. Протекает при нагревании и в присутствии катализаторов. При крекинге высших алканов образуются алкены, при крекинге метана и этана образуется ацетилен:

С 8 H 18 = C 4 H 10 (бутан)+ C 3 H 8 (пропан)

2CH 4 = C 2 H 2 (ацетилен) + 3H 2

Окисление . При мягком окислении метана кислородом воздуха могут быть получены метанол, муравьиный альдегид или муравьиная кислота. На воздухе алканы сгорают до углекислого газа и воды:

C n H 2 n +2 + (3n+1)/2 O 2 = nCO 2 + (n+1)H 2 O

Физические свойства алканов

При обычных условиях С 1 -С 4 – газы, С 5 -С 17 – жидкости, начиная с С 18 – твердые вещества. Алканы практически нерастворимы в воде, но, хорошо растворимы в неполярных растворителях, например, в бензоле. Так, метан СН 4 (болотный, рудничий газ) – газ без цвета и запаха, хорошо растворимый в этаноле, эфире, углеводородах, но плохо растворимый в воде. Метан используют в качестве высококалорийного топлива в составе природного газа, в качестве сырья для производства водорода, ацетилена, хлороформа и других органических веществ в промышленных масштабах.

Пропан С 3 Н 8 и бутан С 4 Н 10 – газы, применяемые в быту, в качестве балонных газов, за счет легкой сжижаемости. Пропан используется в качестве автомобильного топлива, поскольку является более экологически чистым, чем бензин. Бутан – сырье для получения 1,3 –бутадиена, использующегося в производстве синтетического каучука.

Получение алканов

Алканы получают из природных источников – природного газа (80-90% — метан, 2-3% — этан и другие предельные углеводороды), угля, торфа, древесины, нефти и горного воска.

Выделяют лабораторные и промышленные способы получения алканов. В промышленности алканы получают из битумного угля (1) или по реакции Фишера-Тропша (2):

nC + (n+1)H 2 = C n H 2 n +2 (1)

nCO + (2n+1)H 2 = C n H 2 n +2 + H 2 O (2)

К лабораторным способам получения алканов относят: гидрирование непредельных углеводородов при нагревании и в присутствии катализаторов (Ni, Pt, Pd) (1), взаимодействием воды с металлоорганическими соединениями (2), электролизом карбоновых кислот (3), по реакциям декарбоксилирования (4) и Вюрца (5) и другими способами.

R 1 -C≡C-R 2 (алкин) → R 1 -CH = CH-R 2 (алкен) → R 1 -CH 2 – CH 2 -R 2 (алкан) (1)

R-Cl + Mg → R-Mg-Cl + H 2 O → R-H (алкан) + Mg(OH)Cl (2)

CH 3 COONa↔ CH 3 COO — + Na +

2CH 3 COO — → 2CO 2 + C 2 H 6 (этан) (3)

CH 3 COONa + NaOH → CH 4 + Na 2 CO 3 (4)

R 1 -Cl +2Na +Cl-R 2 →2NaCl + R 1 -R 2 (5)

Примеры решения задач

ПРИМЕР 1

Задание Определите массу хлора, необходимого для хлорирования по первой стадии 11,2 л метана.
Решение Запишем уравнение реакции первой стадии хлорирования метана (т.е. в реакции галогенирования происходит замещения всего одного атома водорода, в результате чего образуется монохлорпроизводное):

CH 4 + Cl 2 = CH 3 Cl + HCl (хлорметан)

Найдем количество вещества метана:

v(CH 4) = V(CH 4)/V m

v(CH 4) = 11,2/22,4 = 0,5 моль

По уравнению реакции количество моль хлора и количество моль метана равны 1 моль, следовательно, практическое количество моль хлора и метана также будет одинаковым и будет равно:

v(Cl 2) = v(CH 4) = 0,5 моль

Зная количество вещества хлора можно найти его массу (что и поставлено в вопросе задачи). Масса хлора рассчитывается как произведение количества вещества хлора на его молярную массу (молекулярная масса 1 моль хлора; молекулярная масса рассчитывается с помощью таблицы химических элементов Д.И. Менделеева). Масса хлора будет равна:

m(Cl 2) = v(Cl 2)×M(Cl 2)

m(Cl 2) = 0,5×71 = 35,5 г

Ответ Масса хлора равна 35,5 г

Алканами в химии называют предельные углеводороды, у которых углеродная цепь является незамкнутой и состоит из углерода, связанных друг с другом при помощи одинарных связей. Также характерной особенностью алканов есть то, что они совсем не содержат двойных либо тройных связей. Порой алканы называют парафинами, дело в том, что парафины собственно и являются смесью предельных углеродов, то есть алканов.

Формула алканов

Формулу алкана можно записать как:

При этом n больше или равно 1.

Алканам свойственна изомерия углеродного скелета. При этом соединения могут принимать разные геометрические формы, как например это показано на картинке ниже.

Изомерия углеродного скелета алканов

С увеличением роста углеродной цепи увеличивается и количество изомеров. Так, например, у бутана есть два изомера.

Получение алканов

Алкан как правило получают различными синтетическими методами. Скажем, один из способов получения алкана предполагает реакцию «гидрирования», когда алканы добываются из ненасыщенных углеводов под воздействием катализатора и при температуре.

Физические свойства алканов

Алканы от других веществ отличаются полным отсутствием цвета, также они не растворим в воде. Температура плавления алканов повышается с увеличением их молекулярной массы и длины углеводородной цепи. То есть чем более разветвленным является алкан, тем у него большая температура горения и плавления. Газообразные алканы и вовсе горят бледно-голубым или бесцветным пламенем, при этом выделяя много тепла.

Химические свойства алканов

Алканы в химическом плане малоактивные вещества, по причине прочности крепких сигма связей С-С и С-Н. При этом связи С-С неполярны, а С-Н малополярны. А так как все это малополяризируемые виды связей, которые относятся к сигма виду, то разрываться они будут по механизму гомолитическому, в результате чего образуются радикалы. И как следствия химические свойства алканов представляют собой в основном реакции радикального замещения.

Так выглядит формула радикального замещения алканов (галогенирование алканов).

Помимо этого также можно выделить такие химические реакции как нитрирование алканов (реакция Коновалова).

Реакция эта протекает при температуре 140 С, причем лучше всего именно с третичным атомом углерода.

Крекинг алканов – эта реакция протекает при действии высоких температур и катализаторов. Тогда создаются условия, когда высшие алканы могут рвать свои связи образуя алканы более низкого порядка.

В таблице представлены некоторые представители ряда алканов и их радикалы.

Формула

Название

Название радикала

CH3 метил

C3H7 пропил

C4H9 бутил

изобутан

изобутил

изопентан

изопентил

неопентан

неопентил

Из таблицы видно, что эти углеводороды отличаются друг от друга количеством групп - СН2 -.Такой ряд сходных по строению, обладающих близкими химическими свойствами и отличающихся друг от друга числом данных групп называется гомологическим рядом. А вещества, составляющие его называются гомологами.

Гомологи - вещества сходные по строению и свойствам, но отличающиеся по составу на одну или несколько гомологических разностей (- СН2 -)

Углеродная цепь - зигзаг (если n ≥ 3)

σ - связи (свободное вращение вокруг связей)

длина (-С-С-) 0,154 нм

энергия связи (-С-С-) 348 кДж/моль

Все атомы углерода в молекулах алканов находятся в состоянии sр3-гибридизации

угол между связями С-C составляет 109°28", поэтому молекулы нормальных алканов с большим числом атомов углерода имеют зигзагообразное строение (зигзаг). Длина связи С-С в предельных углеводородах равна 0,154 нм (1нм=1*10-9м).

а) электронная и структурная формулы;

б) пространственное строение

4. Изомерия - характерна СТРУКТУРНАЯ изомерия цепи с С4

Один из этих изомеров (н -бутан) содержит неразветвленную углеродную цепь, а другой — изобутан — разветвленную (изостроение).

Атомы углерода в разветвленной цепи различаются типом соединения с другими углеродными атомами. Так, атом углерода, связанный только с одном другим углеродным атомом, называется первичным , с двумя другими атомами углерода - вторичным , с тремя - третичным , с четырьмя - четвертичным .

С увеличением числа атомов углерода в составе молекул увеличиваются возможности для разветвления цепи, т.е. количество изомеров растет с ростом числа углеродных атомов.

Сравнительная характеристика гомологов и изомеров


1. Свою номенклатуру имеют радикалы (углеводородные радикалы)

Алкан

С n H2n+2

Радикал (R)

С n H2n+ 1

НАЗВАНИЕ

Физические свойства

В обычных условиях

С1- С4 - газы

С5- С15 - жидкие

С16 - твёрдые

Температуры плавления и кипения алканов, их плотности увеличиваются в гомологическом ряду с ростом молекулярной массы. Все алканы легче воды, в ней не растворимы, однако растворимы в неполярных растворителях (например, в бензоле) и сами являются хорошими растворителями. Физические свойства некоторых алканов представлены в таблице.

Таблица 2. Физические свойства некоторых алканов

а) Галогенирование

при действии света - hν или нагревании (стадийно - замещение атомов водорода на галоген носит последовательный цепной характер. Большой вклад в разработку цепных реакций внёс физик, академик, лауреат Нобелевской премии Н. Н. Семёнов)

В реакции образуются вещества галогеналканы или С n H 2 n +1 Г

(Г - это галогены F, Cl, Br, I)

CH4 + Cl2 hν → CH3Cl + HCl (1 стадия) ;

метан хлорметан CH3Cl + Cl2 hν → CH2Cl2 + HCl (2 стадия);

дихлорметан

СH2Cl2 + Cl2 hν → CHCl3 + HCl (3 стадия);

трихлорметан

CHCl3 + Cl2 hν → CCl4 + HCl (4 стадия).

тетрахлорметан

Скорость реакции замещения водорода на атом галогена у галогеналканов выше, чем у соответствующего алкана, это связано с взаимным влиянием атомов в молекуле:

Электронная плотность связи С - Cl смещена к более электроотрицательному хлору, в результате на нём скапливается частичный отрицательный заряд, а на атоме углерода - частичный положительный заряд.

На атом углерода в метильной группе (- СН3) создаётся дефицит электронной плотности, поэтому он компенсирует свой заряд за счёт соседних атомов водорода, в результате связь С - Н становится менее прочной и атомы водорода легче замещаются на атомы хлора. При увеличении углеводородного радикала наиболее подвижными остаются атомы водорода у атома углерода ближайщего к заместителю:

CH3 - CH2 - Cl + Cl2 h ν CH3 - CHCl2 + HCl

хлорэтан 1 ,1 -дихлорэтан

Со фтором реакция идёт со взрывом.

С хлором и бромом требуется инициатор.

Иодирование происходит обратимо, поэтому требуется окислитель для удаления HI из рекции.

Внимание!

В реакциях замещения алканов легче всего замещаются атомы водорода у третичных атомов углерода, затем у вторичных и, в последнюю очередь, у первичных. Для хлорирования эта закономерность не соблюдается при T >400˚ C .


б) Нитрование

(реакция М.И. Коновалова, он провёл её впервые в 1888 г)

CH4 + HNO3(раствор ) С CH3NO2 + H2O

нитрометан

RNO2 или С n H2n+1 NO2 ( нитроалкан )