В каких средах возникают волны. Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных. Примеры задач с решением

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является деформация сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой траектории. Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия силы тяжести и силы поверхностного натяжения.

Рис.1. Продольные (а) и поперечные (б) механические волны

Вопрос 30

Длина волны.

Каждая волна распространяется с какой-то скоростью. Подскоростью волны понимают скорость распространения возмущения. Например, удар по торцу стального стержня вызывает в нем местное сжатие, которое затем распространяется вдоль стержня со скоростью около 5 км/с.

Скорость волны определяется свойствами среды, в которой эта волна распространяется . При переходе волны из одной среды в другую ее скорость изменяется.

Помимо скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.

Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней :

v - скорость волны; T - период колебаний в волне; λ (греческая буква «ламбда») - длина волны.

Выбрав направление распространения волны за направление оси x и обозначив через y координату колеблющихся в волне частиц, можно построить график волны . График синусоидальной волны (при фиксированном времени t) изображен на рисунке 45. Расстояние между соседними гребнями (или впадинами) на этом графике совпадает с длиной волны λ.


Формула (22.1) выражает связь длины волны с ее скоростью и периодом. Учитывая, что период колебаний в волне обратно пропорционален частоте, т. е. T = 1/ν, можно получить формулу, выражающую связь длины волны с ее скоростью и частотой:

Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней .

Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны .

Вопрос 30.1

Уравнение волн

Для получения уравнения волны, то есть аналитического выражения функции двух переменных S = f (t, x) , представим что, в некоторой точке пространства возникают гармонические колебания с круговой частотой w и начальной фазой, для упрощения равной нулю (см. рис.8). Смещение в точке М : S м = A sin w t , где А - амплитуда. Поскольку частицы среды, заполняющие пространство, связаны между собой, то колебания от точки М распространяются вдоль оси х со скоростью v . Через некоторое время Dt они достигают точки N . Если в среде отсутсвует затухание, то смещение в этой точке имеет вид: S N = A sin w (t - Dt) , т.е. колебания запаздывают на время Dt относительно точки M . Поскольку , то заменив произвольный отрезок MN координатой х , получим уравнение волны в виде.

1. Вы уже знаете, что процесс распространения механических колебаний в среде называют механической волной .

Закрепим один конец шнура, слегка натянем его и сместим свободный конец шнура вверх, а затем вниз (приведем его в колебания). Мы увидим, что по шнуру «побежит» волна (рис. 84). Части шнура обладают инертностью, поэтому они будут смещаться относительно положения равновесия не одновременно, а с некоторым запаздыванием. Постепенно в колебание придут все участки шнура. По нему распространится колебание, иными словами, будет наблюдаться волна.

Анализируя распространение колебаний по шнуру, можно заметить, что волна «бежит» в горизонтальном направлении, а колебания частицы совершают в вертикальном направлении.

Волны, направление распространения которых перпендикулярно направлению колебаний частиц среды, называют поперечными.

Поперечные волны представляют собой чередование горбов и впадин .

Кроме поперечных волн, могут существовать и продольные.

Волны, направление распространения которых совпадает с направлением колебаний частиц среды, называют продольными.

Закрепим один конец длинной пружины, подвешенной на нитях, и ударим по другому ее концу. Увидим, как возникшее на конце пружины сгущение витков «побежит» по ней (рис. 85). Происходит перемещение сгущений и разрежений .

2. Анализируя процесс образования поперечных и продольных волн можно сделать следующие выводы:

- механические волны образуются благодаря инертности частиц среды и взаимодействию между ними, проявляющемуся в существовании сил упругости ;

- каждаячастицасреды совершает вынужденные колебания, такие же, что и первая частица, приведенная в колебания ; частота колебаний всех частиц одинакова и равна частоте источника колебаний ;

- колебаниекаждойчастицы происходит с запаздыванием, которое обусловлено ее инертностью; это запаздывание тем больше, чем дальше находится частица от источника колебаний.

Важным свойством волнового движения является то, что вместе с волной не переносится вещество. В этом легко убедиться. Если набросать на поверхность воды кусочки пробки и создать волновое движение, то можно увидеть, что волны «побегут» по поверхности воды. Кусочки же пробки будут подниматься вверх на гребне волны и опускаться вниз на впадине.

3. Рассмотрим, в какой среде распространяются продольные и поперечные волны.

Распространение продольных волн связано с изменением объема тела. Они могут распространяться как в твердых, так в жидких и газообразных телах, поскольку во всех этих телах при изменении их объема возникают силы упругости.

Распространение поперечных волн связан, главным образом с изменением формы тела. В газах и жидкостях при изменении их формы силы упругости не возникают, поэтому поперечные волны в них распространяться не могут. Поперечные волны распространяются только в твердых телах.

Примером волнового движения в твердом теле является распространение колебаний во время землетрясений. От центра землетрясения распространяются как продольные, так и поперечные волны. Сейсмическая станция принимает сначала продольные волны, а затем поперечные, так как скорость последних меньше. Если известны скорости поперечной и продольной волн и измерен промежуток времени между их приходом, то можно определить расстояние от центра землетрясения до станции.

4. Вы уже знакомы с понятием длины волны. Вспомним его.

Длиной волны называют расстояние, на которое волна распространяется за время, равное периоду колебаний.

Можно также сказать, что длина волны - это расстояние между двумя ближайшими горбами или впадинами поперечной волны (рис. 86, а ) или расстояние между двумя ближайшими сгущениями или разрежениями продольной волны (рис. 86, б ).

Длина волны обозначается буквой l и измеряется в метрах (м).

5. Зная длину волны, можно определить ее скорость.

За скорость волны принимают скорость перемещения гребня или впадины в поперечной волне, сгущения или разрежения в продольной волне .

v = .

Как показывают наблюдения, при одной и той же частоте скорость волны, а соответственно и длина волны зависят от среды, в которой они распространяются. В таблице 15 приведены значения скорости звука в разных средах при разной температуре. Из таблицы видно, что в твердых телах скорость звука больше, чем в жидкостях и газах, а в жидкостях больше, чем в газах. Это связано с тем, что молекулы в жидкостях и твердых телах расположены ближе друг к другу, чем в газах, и сильнее взаимодействуют.

Таблица 15

Среда

Температура, ° С

Скорость, м/с

Углекислый газ

0

259

Воздух

0

332

Воздух

10

338

Воздух

30

349

Гелий

0

965

Водород

0

128

Керосин

15

1330

Вода

25

1497

Медь

20

4700

Сталь

20

50006100

Стекло

20

5500

Сравнительно большая скорость звука в гелии и водороде объясняется тем, что масса молекул этих газов меньше, чем других, и соответственно у них меньше инертность.

Скорость волн зависит и от температуры. В частности, скорость звука тем больше, чем выше температура воздуха. Причиной этого является то, что при повышении температуры увеличивается подвижность частиц.

Вопросы для самопроверки

1. Что называют механической волной?

2. Какая волна называется поперечной? продольной?

3. Каковы особенности волнового движения?

4. В каких средах распространяются продольные волны, а в каких - поперечные? Почему?

5. Что называют длиной волны?

6. Как связана скорость волны с длиной волны и периодом колебаний? С длиной волны и частотой колебаний?

7. От чего зависит скорость волны при постоянной частоте колебаний?

Задание 27

1. Поперечная волна движется влево (рис. 87). Определите направление движения частицы A в этой волне.

2 * . Происходит ли при волновом движении передача энергии? Ответ поясните.

3. Чему равно расстояние между точками A и B ; A и C ; A и D ; A и E ; A и F ; B и F поперечной волны(рис. 88)?

4. На рисунке 89 показано мгновенное положение частиц среды и направление их движения в поперечной волне. Начертите положение этих частиц и укажите направление их движения через промежутки времени, равные T /4, T /2, 3T /4 и T .

5. Чему равна скорость звука в меди, если при частоте колебаний 400 Гц длина волны составляет 11,8 м?

6. Лодка качается на волнах, распространяющихся со скоростью 1,5 м/с. Расстояние между двумя ближайшими гребнями волн 6 м. Определите период колебаний лодки.

7. Определите частоту вибратора, который создает в воде при 25 °С волны длиной 15 м.

Механические волны

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной .

Механические волны бывают разных видов. Если в волне частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, то волна называется поперечной . Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне.

Если смещение частиц среды происходит в направлении распространения волны, то волна называется продольной . Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн.

Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты.

Как в поперечных, так и в продольных волнах переноса вещества в направлении распространения волны не происходит. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами . В реальных средах эти свойства распределены по всему объему. Так, например, любой малый элемент твердого тела обладает массой и упругостью. В простейшей одномерной модели твердое тело можно представить как совокупность шариков и пружинок (рис. 2.6.3).

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных.

Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига . Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна.

В жидкостях и газах упругая деформация сдвига не возникает. Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появится. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой или газообразной средах .


Значительный интерес для практики представляют простые гармонические или синусоидальные волны . Они характеризуются амплитудой A колебания частиц, частотой f идлиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ.

Смещение y (x , t ) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX , вдоль которой распространяется волна, и от времени t по закону.

ОПРЕДЕЛЕНИЕ

Продольная волна – это волна, при распространении которой смещение частиц среды происходит в направлении распространения волны (рис.1, а).

Причиной возникновения продольной волны является сжатия/растяжения, т.е. сопротивление среды изменению ее объема. В жидкостях или газах такая деформация сопровождается разрежением или уплотнением частиц среды. Продольные волны могут распространяться в любых средах – твердых, жидких и газообразных.

Примерами продольных волн являются волны в упругом стержне или звуковые волны в газах.

Поперечные волны

ОПРЕДЕЛЕНИЕ

Поперечная волна – это волна, при распространении которой смещение частиц среды происходит в направлении, перпендикулярном распространению волны (рис.1,б).

Причиной поперечной волны является деформация сдвига одного слоя среды относительно другого. При распространении поперечной волны в среде образуются гребни и впадины. Жидкости и газы, в отличие от твердых тел, не обладают упругостью по отношению к сдвигу слоев, т.е. не оказывают сопротивления изменению формы. Поэтому поперечные волны могут распространяться только в твердых телах.

Примерами поперечных волн могут служить волны, бегущие по натянутой веревке или по струне.

Волны на поверхности жидкости не являются ни продольными, ни поперечными. Если бросить на поверхность воды поплавок, то можно увидеть, что он движется, покачиваясь на волнах, по круговой . Таким образом, волна на поверхности жидкости имеет как поперечную, так и продольную компоненты. На поверхности жидкости также могут возникать волны особого типа – так называемые поверхностные волны . Они возникают в результате действия и силы поверхностного натяжения.

Примеры решения задач

ПРИМЕР 1

Задание Определить направление распространения поперечной волны, если поплавок в некоторый момент времени имеет направление скорости, указанное на рисунке.

Решение Сделаем рисунок.

Начертим поверхность волны вблизи поплавка через некоторый промежуток времени , учитывая, что за это время поплавок опустился вниз, так как его в момент времени была направлена вниз. Продолжив линию вправо и влево, покажем положение волны в момент времени . Сравнив положение волны в начальный момент времени (сплошная линия) и в момент времени (пунктирная линия), делаем вывод о том, что волна распространяется влево.

Все мы хорошо знакомы с прилагательными «продольный» и «поперечный». И не просто знакомы, а активно используем их в повседневной жизни. Но когда речь заходит о волнах, неважно каких - в жидкости, воздухе, твердой материи или то часто возникает ряд вопросов. Обычно, слыша слова «поперечные и продольные волны», среднестатистический человек представляет синусоиду. Действительно, колебательные возмущения на воде именно так и выглядят, поэтому жизненный опыт дает именно такую подсказку. На самом деле мир более сложен и разнообразен: в нем существуют как продольные волны, так и поперечные.

Если в какой-либо среде (поле, газ, жидкость, твердая материя) возникают колебания, переносящие энергию от одной точки к другой со скоростью, зависящей от свойств самой среды, то они называются волнами. Из-за того, что колебания распространяются не мгновенно, фазы волны в начальной точке и какой-либо конечной по мере удаления от источника все больше различаются. Важный момент, который следует всегда помнить: при переносе энергии через колебания сами частицы, из которых состоит среда, не перемещаются, а остаются на своих уравновешенных положениях. Причем, если рассматривать процесс более детально, становится понятно, что колеблются не единичные частицы, а их группы, сосредоточенные в какой-либо единице объема. Это можно проиллюстрировать на примере с обыкновенной веревкой: если один ее конец зафиксировать, а с другого производить волнообразные движения (в любой плоскости), то хотя волны возникают, материал веревки не разрушается, что происходило бы при движении частиц в ее структуре.

Продольные волны характерны только газообразным и жидким средам, а вот поперечные - также и твердым телам. В настоящее время существующая классификация делит все колебательные возмущения на три группы: электромагнитные, жидкостные и упругие. Последние, как можно догадаться из названия, присущи упругим (твердым) средам, поэтому их иногда называют механическими.

Продольные волны возникают тогда, когда частицы среды колеблются, ориентируясь вдоль вектора распространения возмущения. Примером может служить удар по торцу металлического стержня плотным массивным предметом. распространяются в перпендикулярном вектору воздействия направлении. Закономерный вопрос: «Почему же в газах и жидких средах могут возникать только продольные волны»? Объяснение простое: причина этого заключается в том, что частицы, составляющие данные среды, могут свободно перемещаться, так как жестко не зафиксированы, в отличие от твердых тел. Соответственно, поперечные колебания принципиально невозможны.

Вышесказанное можно сформулировать немного иначе: если в среде деформация, вызванная возмущением, проявляется в виде сдвига, растяжения и сжатия, то речь идет о твердом теле, для которого возможны как продольные, так и поперечные волны. Если же появление сдвига невозможно, то среда может быть любой.

Особый интерес представляют продольные (ПЭВ). Хотя теоретически ничего не мешает возникновению таких колебаний, официальная наука отрицает их существование в естественной среде. Причина, как всегда бывает, проста: современная электродинамика исходит из принципа, что электромагнитные волны могут быть только поперечными. Отказ от подобного мировоззрения повлечет за собой необходимость пересмотра многих фундаментальных убеждений. Несмотря на это, существует много публикаций результатов экспериментов, практически доказывающих существование ПЭВ. А это косвенно означает обнаружение еще одного состояния материи, при котором, собственно, возможна генерация данного типа волн.