Сернистая кислота свойства и получение. Ромбическая сера. Применение серной кислоты

ОПРЕДЕЛЕНИЕ

Безводная серная кислота представляет собой тяжелую, вязкую жидкость, которая легко смешивается с водой в любой пропорции: взаимодействие характеризуется исключительно большим экзотермическим эффектом (~880 кДж/моль при бесконечном разбавлении) и может привести к взрывному вскипанию и разбрызгиванию смеси, если воду добавлять к кислоте; поэтому так важно всегда использовать обратный порядок в приготовлении растворов и добавлять кислоту в воду, медленно и при перемешивании.

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H 2 SO 4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO 4 ×nH 2 O и расходовали в большом количестве на получение Na 2 SO 4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура. Диоксид серы SO 2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.Затем SO 2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O 2 → SO 2 (ΔH 0 — 297 кДж/моль);

SO 2 + ½ O 2 → SO 3 (ΔH 0 — 9,8 кДж/моль);

SO 3 + H 2 O → H 2 SO 4 (ΔH 0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота - сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H 2 SO 4 ↔H + + HSO 4 — .

Диссоциация по второй ступени

HSO 4 — ↔H + + SO 4 2-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K 2 = 10 -2 .

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые - гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты. Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь - до CO 2 , серу - до SO 2 . Указанные реакции выражаются уравнениями:

8HI + H 2 SO 4 = 4I 2 + H 2 S + 4H 2 O;

2HBr + H 2 SO 4 = Br 2 + SO 2 + 2H 2 O;

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O;

S + 2H 2 SO 4 = 3SO 2 + 2H 2 O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO 4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO 2:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H 2 SO 4 = ZnSO 4 + SO 2 + 2H 2 O;

3Zn + 4H 2 SO 4 = 3ZnSO 4 + S↓ + 4H 2 O;

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H 2 SO 4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области). В Великобритании распределение потребления по отраслям иное: только 30% производимой H 2 SO 4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

ПРИМЕР 1

Задание Определите массу серной кислоты, которую можно получить из одной тонны пирита, если выход оксида серы (IV) в реакции обжига составляет 90%, а оксида серы (VI) в реакции каталитического окисления серы (IV) - 95% от теоретического.
Решение Запишем уравнение реакции обжига пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Рассчитаем количество вещества пирита:

n(FeS 2) = m(FeS 2) / M(FeS 2);

M(FeS 2) = Ar(Fe) + 2×Ar(S) = 56 + 2×32 = 120г/моль;

n(FeS 2) = 1000 кг / 120 = 8,33 кмоль.

Поскольку в уравнении реакции коэффициент при диоксиде серы в два раза больше, чем коэффициент при FeS 2 , то теоретически возможное количество вещества оксида серы (IV) равно:

n(SO 2) theor = 2 ×n(FeS 2) = 2 ×8,33 = 16,66 кмоль.

А практически полученное количество моль оксида серы (IV) составляет:

n(SO 2) pract = η × n(SO 2) theor = 0,9 × 16,66 = 15 кмоль.

Запишем уравнение реакции окисления оксида серы (IV) до оксида серы (VI):

2SO 2 + O 2 = 2SO 3 .

Теоретически возможное количество вещества оксида серы (VI) равно:

n(SO 3) theor = n(SO 2) pract = 15 кмоль.

А практически полученное количество моль оксида серы (VI) составляет:

n(SO 3) pract = η × n(SO 3) theor = 0,5 × 15 = 14,25 кмоль.

Запишем уравнение реакции получения серной кислоты:

SO 3 + H 2 O = H 2 SO 4 .

Найдем количество вещества серной кислоты:

n(H 2 SO 4) = n(SO 3) pract = 14,25 кмоль.

Выход реакции составляет 100%. Масса серной кислоты равна:

m(H 2 SO 4) = n(H 2 SO 4) × M(H 2 SO 4);

M(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O) = 2×1 + 32 + 4×16 = 98 г/моль;

m(H 2 SO 4) = 14,25 × 98 = 1397 кг.

Ответ Масса серной кислоты равна 1397 кг

Диоксид (двуокись) серы образуется при сжигании серы в воздухе или кислороде. Он получается также при прокаливании на воздухе («обжигании») сульфидов металлов, например железного колчедана:

По этой реакции диоксид серы получают обычно в промышленности (о других промышленных способах получения см, 9 § 131).

Диоксид серы - бесцветный газ («сернистый газ») с резким эапахом горячей серы. Он довольно легко конденсируется в бесцветную жидкость, кипящую при . При испарении жидкого происходит сильное понижение температуры (до ).

Диоксид серы хорошо растворяется в воде (около 40 объемов в 1 объеме воды при ); при этом частично происходит реакция с водой и образуется сернистая кислота:

Таким образом, диоксид серы является ангидридом сернистой кислоты. При нагревании растворимость уменьшается и равновесие смещается влево; постепенно весь диоксид серы снова выделяется из раствора.

Молекула построена аналогично молекуле озона. Ядра составляющих ее атомов образуют равнобедренный треугольник:

Здесь атом серы, как и центральный атом кислорода в молекуле озона, находится в состоянии -гибридизации и угол близок к . Ориентированная перпендикулярно к плоскости молекулы -орбиталь атома серы не участвует в гибридизации. За счет этой орбитали и аналогично ориентированных -орбиталей атомов кислорода образуется трехцентровая -связь; осуществляющая ее пара электронов принадлежит всем трем атомам молекулы.

Диоксид серы применяют для получения серной кислоты, а также (в значительно меньших количествах) для беления соломы, шерсти, шелка и как дезинфицирующее средство (для уничтожения плесневых грибков в подвалах, погребах, винных бочках, бродильных чанах).

Сернистая кислота - очень непрочное соединение. Она известна только в водных растворах. При попытках выделить сернистую кислоту она распадается на и воду. Например, при действии концентрированной серной кислоты на сульфит натрия вместо сернистой кислоты выделяется диоксид серы:

Раствор сернистой кислоты необходимо предохранять от доступа воздуха, иначе она, поглощая из воздуха кислород, медленно окисляется в серную кислоту:

Сернистая кислота - хороший восстановитель. Например, свободные галогены восстанавливаются ею в галогеноводороды:

Однако при взаимодействии с сильными восстановителями сернистая кислота может играть роль окислителя. Так, реакция ее с сероводородом в основном протекает согласно уравнению:

Будучи двухосновной , сернистая кислота образует два ряда солей. Средние ее соли называются сульфитами, кислые - гидросульфитами.

Как и кислота, сульфиты и гидросульфиты являются восстановителями. При их окислении получаются соли серной кислоты.

Сульфиты наиболее активных металлов при прокаливании разлагаются с образованием сульфидов и сульфатов (реакция самоокисления - самовосстановления):

Сульфиты калия и натрия применяются для отбеливания некоторых материалов, в текстильной промышленности при крашении тканей, в фотографии. Раствор (эта соль существует только в растворе) применяется для переработки древесины в так называемую сульфитную целлюлозу, из которой потом получают бумагу.

Оксид серы (IV) хорошо растворим в воде (в 1 объеме воды при 200С растворяется 40 объемов SО2). При этом образуется существующая только в водном растворе сернистая кислота:

SO2+ Н2О = Н2SO3

Реакция соединения SO2с водой обратимая. В водном растворе оксид серы (IV) и сернистая кислота находятся в химическом равновесии, которое можно смещать. При связыванииН2SO3щелочью (нейтрализация кислоты) реакция протекает в сторону образования сернистой кислоты; при удаленииSO2(продувание через раствор азота или нагревание) реакция протекает в сторону исходных веществ. В растворе сернистой кислоты всегда имеется оксид серы (IV), который придает ему резкий запах.

Сернистая кислота обладает всеми свойствами кислот. В растворе Н2SO3диссоциирует ступенчато:

Н2SО3 H+ + HSO4 –

HSO3 -H++ SO3 2-

Как двухосновная кислота она образует два ряда солей - сульфиты и гидросульфиты. Сульфиты образуются при полной нейтрализации кислоты щелочью:

Н2SO3 + 2NаОН =NаHSО4+ 2Н2О

Гидросульфиты получаются при недостатке щелочи (по сравнению с количеством, необходимым для полной нейтрализации кислоты):

Н2SO3+NаОН = NаНSO3+ Н2О

Как и оксид серы (IV), сернистая кислота и ее соли являются сильны­ми восстановителями. При этом степень окисления серы возрастает. Так, Н2SО3легко окисляется в серную кислоту даже кислородом воздуха:

2Н2SO3+O2= 2Н2SO4

Поэтому долго хранившиеся растворы сернистой кислоты всегда со­держат серную кислоту.

Еще легче протекает окисление сернистой кислоты бромом и перманганатом калия:

Н2SО3+ Вr2+ Н2О = Н2SO4 + 2НВr

5Н2S03+ 2КмnО4= 2Н2SO4+ 2МnSO4+ К2SО4+ 2Н2О

Оксид серы (IV) и сернистая кислота обесцвечивают многие краси­тели, образуя с ними бесцветные соединения. Последние могут снова разлагаться при нагревании или на свету, в результате чего окраска восстанавливается. Следовательно, белящее действиеSO2 иН2SO4отличается от белящего действия хлора. Обычно оксидом серы (IV) белят шерсть, шелк и солому (хлорной водой эти материалы разруша­ются).

Важное применение находит раствор гидросульфита кальция Ca(HSO3)2(сульфитный щелок), которым обрабатывают волокна древесины и бумажную массу.

Сероводород и сульфиды

Сероводород Н2S - бесцветный газ с запахом тухлых яиц. Он хоро­шо растворим в воде (при 20 °C в 1 объеме воды растворяется 2,5 объема сероводорода). Раствор сероводорода в воде называется сероводородной водой или сероводородной кислотой (она обнаруживает свойства слабой кислоты).

Сероводород - очень ядовитый газ, поражаю­щий нервную систему. Поэтому работать с ним надо в вытяжных шка­фах или с герметически закрывающимися приборами. Допустимое содержание Н2Sв производственных помещениях составляет 0,01 мг в 1 л воздуха.


Сероводород встречается в природе в вул­канических газах и в водах некоторых минеральных источников, на­пример Пятигорска; Мацесты. Он образуется при гниении серосодержащих органических веществ различных растительных и животных остатков. Этим объясняется характерный неприятный запах сточных вод, выгребных ям и свалок мусора.

Сероводород может быть получен непосредственным соединением серы с водородом при нагревании:

Но обычно его получают действием разбавленной соляной или серной кислоты на сульфид железа (II):

2НСl + FеS = FеСl2+ Н2S

Эту реакцию часто проводят в аппарате Киппа.

Н2S- менее прочное соединение, чем вода. Это обусловлено большим размером атома серы по сравнению с атомом кислорода. Поэтому связь Н-0 короче и прочнее связи Н-S. При сильном нагревании сероводород почти полностью разлагается на серу и водород:

Газообразный Н2Sгорит на воздухе голубым пламенем с образованием оксида серы (IV) и воды:

2Н2S+ 3O2= 2SO2+ 2Н2О

При недостатке кислорода образуются сера и вода:

2Н2S+O2= 2S+ 2Н2О

Этой реакцией пользуются для получения серы из сероводорода в промышленном масштабе.

Сероводород - довольно сильный восстановитель. Это его важное химическое свойство можно объяснить так. В растворе Н2Sсравнитель­но легко отдает электроны молекулам кислорода воздуха:

Н2S - 2е- = S + 2H + 2

O2 + 4е- = 2O 2- 1

В этом случае Н2Sокисляется кислородом воздуха до серы, которая делает сероводородную воду мутной. Суммарное уравнение реакции:

2Н2S + O2 = 2S + 2Н2O

Этим объясняется и тот факт, что сероводород не накапливается в очень больших количествах в природе при гниении органических веществ - кислород воздуха окисляет его в свободную серу.

Энергично реагирует сероводород с растворами галогенов. Напри­мер:

Н2S + I2 = 2HI + S

Происходит выделение серы и обесцвечивание раствора йода.

Сероводородная кислота как двухосновная образует два ряда солей - средние (сульфиды) и кислые (гидросульфиды). Например, Nа2S - сульфид натрия,NаНS- гидросульфид натрия. Гидросульфиды почти все хорошо растворимы в воде. Сульфиды щелочных и щелочно-земельных металлов также растворимы в воде, а остальных металлов практически нерастворимы или мало растворимы; некоторые из них не растворяются и в разбавленных кислотах. Поэтому такие сульфиды можно легко получить, пропуская сероводород через соли соответствующего металла, например:

СuSO4 + Н2S = CuS + H2SO4

Некоторые сульфиды имеют характерную окраску: CuSиРbS - черную,СdS- желтую,ZnS- белую,MnS- розовую,SnS- коричне­вую,Sb2S3- оранжевую и т. д. На различной растворимости сульфи­дов и различной окраске многих из них основан качественный анализ катионов.

БИЛЕТ №39

Серная кислота. Получение. Физические и химические свойства. Значение серной кислоты.

Се́рная кислота́ H2SO4 - сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота - тяжёлая маслянистая жидкость без цвета и запаха, с кислым «медным» вкусом. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

Серная кислота H 2 SO 4 - одна из сильных двухосновных кислот. В разбавленном состоянии она окисляет почти все металлы, кроме золота и платины. Интенсивно реагирует с неметаллами и органическими веществами, превращая некоторые из них в уголь. При приготовлении раствора серной кислоты всегда надо её приливать к воде, а не наоборот, во избежание разбрызгивания кислоты и вскипания воды. При 10 °С затвердевает, образуя прозрачную стекловидную массу. При нагревании 100-процентная серная кислота легко теряет серный ангидрид (триокись серы SO 3) до тех пор, пока её концентрация не составит 98 %. Именно в таком состоянии её обычно и используют в лабораториях. В концентрированном (безводном) состоянии серная кислота - бесцветная, дымящаяся на воздухе (из-за паров), маслянистая жидкость с характерным запахом (Т кипения=338 °С). Она является очень сильным окислителем. Это вещество обладает всеми свойствами кислот:

Химические свойства серной кислоты

H 2 SO 4 + Fe → FeSO 4 + H 2 ;

2H 2 SO 4 + Cu → CuSO 4 + SO 2 +2H 2 O - в этом случае кислота является концентрированной.

H 2 SO 4 + CuO → CuSO 4 + H 2 O

Получающийся раствор синего цвета - CuSO 4 - раствор медного купороса. Серную кислоту еще называют купоросным маслом , так как при реакциях с металлами и их оксидами образуются купоросы. Например, при химической реакции с железом (Fe) - образуется светло-зелёный раствор железного купороса.

Химическая реакция с основаниями и щелочами (или реакция нейтрализации)

H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O

Сернистая кислота (или правильнее сказать - раствор сернистого газа в воде) образует два вида солей: сульфиты и гидросульфиты . Эти соли являются восстановителями.

Н 2 SO 4 + NaOH → NaНSO 3 + Н 2 O - такая реакция протекает при избытке сернистой кислоты

Н 2 SO 4 + 2NaOH → Na 2 SO 3 + 2Н 2 O - а эта реакция протекает при избытке едкого натра

Сернистая кислота обладает отбеливающим действием. Всем известно, что подобным действием обладает и хлорная вода. Но отличие заключается в том, что в отличии от хлора сернистый газ не разрушает красители, а образует с ними неокрашенные химические соединения!

Кроме основных свойств кислот сернистая кислота способна обесцвечивать раствор марганцовки по следующему уравнению:

5Н 2 SO 3 +2KMnO 4 → 2 Н 2 SO 4 +2MnSO 4 +K 2 SO 4 +Н 2 O

В этой реакции образуется бледно-розовый раствор, состоящий из сульфатов калия, марганца. Окраска обусловлена именно сульфатом марганца.

Сернистая кислота способна обесцветить бром

Н 2 SO 3 + Br 2 + Н 2 O → Н 2 SO 4 + 2HBr

В этой реакции образуется раствор, состоящий сразу из 2-х сильных кислот: серной и бромной.

Если хранить сернистую кислоту при доступе воздуха, то этот раствор окисляется и превращается в серную кислоту

2Н 2 SO 3 + O 2 → 2Н 2 SO 2

Соединения серы(1У). Сернистая кислота

В тетрагалогенидах SHal 4 , оксогалогенидах SOI Ial 2 и диоксиде S0 2 , сернистой кислоте 1I 2 S0 3 сера проявляет степень окисления +4. Во всех этих соединениях, а также в соответствующих им анионных комплексах у атома серы имеется неноделенная пара электронов. Исходя из числа а-связываю- щих и несвязывающих электронных нар форма молекул этих соединений изменяется от искаженного тетраэдра (SHal 4) к угловой форме (S0 9) через форму тригональной пирамиды (SOHal 2 и SO3). Соединения S(IV) обладают кислотными свойствами, что проявляется в реакциях взаимодействия с водой:

Оксид серы(1У) S0 2 , или сернистый газ, образуется при сжигании серы в воздухе или кислороде, а также прокаливанием сульфидов, например пирита:

Окисление пирита лежит в основе промышленного способа получения S0 2 . Молекула S0 2 построена аналогично молекуле О э и имеет структуру равнобедренного треугольника с атомом серы в вершине. Длина связи S-О составляет 0,143 нм, а валентный угол равен 119,5°:

Атом серы находится в состоянии 5/? 2 -гибридизации. р-Орбиталь ориентирована перпендикулярно к плоскости молекулы и не участвует в гибридизации (рис. 25.2). За счет этой и других аналогично ориентированных р-орбиталей атомов кислорода образуется трехцентровая л-связь.

Рис. 25.2.

При обычных условиях оксид серы(1У) - бесцветный газ с характерным резким запахом. Хорошо растворим в воде. Водные растворы имеют кислую реакцию, так как S0 2 , взаимодействуя с водой, образует сернистую кислоту H 2 S0 3 . Реакция обратимая:

Характерная особенность S0 2 - его окислительно-восстановительная двойственность. Объясняется это тем, что в SO. ; сера имеет степень окисления +4, и поэтому она может, отдавая два электрона, окисляться до S(VI), а принимая четыре электрона, восстанавливаться до S. Проявление тех и других свойств зависит от характера реагирующего компонента. Так, с сильными окислителями S0 2 ведет себя как типичный восстановитель. Например, галогены восстанавливаются до соответствующих галогеноводородов, a S(IV) переходит, как правило, в S(VI):

В присутствии сильных восстановителей S0 2 ведет себя как окислитель:

Для него характерна и реакция диспропорционирования:

SQ, является кислотным оксидом, легко растворимым в воде (1 объем Н 2 0 растворяет 40 объемов S0 2). Водный раствор SO v имеет кислую реакцию и называется сернистой кислотой. Обычно основная масса растворенного в воде S0 2 находится в растворе в гидратированной форме S0 2 azH 2 0, и только незначительная часть S0 2 взаимодействует с водой по схеме

Сернистая кислота, как двухосновная, образует два типа солей: средние - сульфиты (Na 2 S0 3) и кислые - гидросульфиты (NaHS0 3). H 2 S0 3 существует в двух таутомерных формах (рис. 25.3).

Рис. 25.3. Структура таутомерных форм H 2 S0 3

Поскольку сера в сернистой кислоте имеет степень окисления +4, то она проявляет, как и S0 2 , свойства и окислителя, и восстановителя, о чем уже говорилось, поэтому сернистая кислота в реакциях окисления-восстановления полностью дублирует свойства S0 9 .

Соли H 2 S0 3 (сульфиты) обладают свойствами как окислителей, так и восстановителей. Так, ион SO 2 легко переходит в ион SO 2 , проявляя сильные восстановительные свойства, поэтому в растворах сульфиты постепенно окисляются молекулярным кислородом, переходя в соли серной кислоты:

В присутствии же сильных восстановителей сульфиты ведут себя как окислители. При сильном нагревании сульфиты наиболее активных металлов разлагаются при 600°С с образованием солей H 2 SO^ и H 2 S, т.е. происходит диспропорционирование:

Из солей сернистой кислоты растворяются лишь соли 5-элементов I группы, а также гидросульфиты типа Me 2+ (HS0 3) 2 .

Поскольку H 2 S0 3 является слабой кислотой, то при действии кислот па сульфиты и гидросульфиты происходит выделение S0 2 , чем обычно пользуются при получении S0 2 в лабораторных условиях:

Растворимые в воде сульфиты легко подвергаются гидролизу, вследствие чего в растворе увеличивается концентрация ионов ОН:

При пропускании S0 2 через водные растворы гидросульфитов образуются пиросульфиты:

Если же раствор Na 2 S0 3 кипятить с порошком серы, то образуется тиосульфат натрия. В тиосульфатах атомы серы находятся в двух разных степенях окисления - +6 и -2:

Образующемуся тиосульфат-иону соответствует кислота H 2 S 2 0 3 , называемая тиосерной кислотой. Свободная кислота при обычных условиях неустойчива и легко разлагается:

Свойства тиосульфатов обусловлены наличием в них и , причем

присутствие S определяет восстановительные свойства иона S 2 0 3 _ :

Более слабые окислители окисляют тиосульфат натрия до солей тетра- тионовой кислоты. Примером может служить взаимодействие с иодом:

Эта реакция находит широкое применение в аналитической химии, так как является основой одного из важнейших методов объемного анализа, называемого иодометрией.

Тиосульфаты щелочных металлов производятся в промышленности в широких масштабах. Среди них наибольшее значение имеет тиосульфат натрия Na 2 S 2 0 3 , который применяется в медицине в качестве противоядия при отравлении галогенами и цианидами. Действие этого препарата основано на его свойстве выделять серу, которая, например, с цианид-ионами CN образует менее токсичный роданид-ион SCN:

Препарат может использоваться также при отравлении соединениями As, Pb, Hg, поскольку при этом образуются неядовитые сульфиды. Na 2 S 2 0 3 применяется при аллергических заболеваниях, артритах, невралгии. Характерной для Na 2 S 2 0 3 реакцией является взаимодействие его с AgN0 3: образуется осадок белого цвета Ag. ; S. ; 0 3 , который с течением времени под влиянием света и влаги чернеет с выделением Ag 2 S:

Данные реакции применяют для качественного обнаружения тиосульфат-иона.

Тионилхлорид SOCl 2 получают взаимодействием S0 2 с РС1 5:

Молекула SOCl 2 имеет пирамидальное строение (рис. 25.4). Связи с серой образуются за счет набора орбиталей, которые очень приближенно можно рассматривать как $/? 3 -гибридные. Одна из них занята неподеленной парой электронов, поэтому SOCl 2 может проявлять свойства слабого основания Лыоиса.

Рис. 25.4.

S()C1 2 - бесцветная дымящаяся жидкость с резким запахом, гидролизуется в присутствии следов влаги:

Летучие соединения, образующиеся в процессе реакции, легко удаляются. Поэтому SOCl 2 часто применяют для получения безводных хлоридов:

SOCl 2 находит широкое применение как хлорирующий агент в органических синтезах.