Метод качественного анализа относится к группе. Химические методы химического анализа

Качественный анализ

Глава 10. КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ВЕЩЕСТВ

Аналитическая химия наука о методах определœения химического состава и структуры веществ.

Химический анализ лежит в базе современного химико-технологического контроля и установления государственных стандартов на выпускаемую продукцию.

Задача качественного анализа – определœение химического состава исследуемого соединœения.

Качественный анализ проводят химическими, физическими и физико-химическими методами. Физические и физико-химические методы анализа основаны на измерении какого-либо параметра системы, который является функцией состава. Так, в спектральном анализе исследуют спектры излучения, возникающие при внесении вещества в пламя горелки.

Химические методы качественного анализа основаны на превращении анализируемого вещества в новые соединœения, обладающие определœенными свойствами. По образованию характерных соединœений элементов и устанавливается элементарный состав вещества. Так, ионы Cu 2+ можно обнаружить по образованию комплексного иона 2+ лазурно-синœего цвета. Катион NH 4 + обнаруживают по выделœению газообразного аммиака NH 3 ­ действие раствора щелочи при нагревании.

Качественные аналитические реакции по способу их выполнения делятся на реакции ʼʼмокрымʼʼ и ʼʼсухимʼʼ путем. Наибольшее значение имеют реакции ʼʼмокрымʼʼ путем. Для проведения их исследуемое вещество должно быть предварительно растворено. В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными внешними эффектами: изменением окраски раствора, выпадением или растворением осадка, выделœением газов с характерным запахом или цветом и т.п. Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями ʼʼоткрытияʼʼ, т.к. с их помощью обнаруживаются присутствующие в растворе ионы. Для отделœения одной группы ионов от другой или одного иона от другого применяются реакции осаждения.

Учитывая зависимость отколичества анализируемого вещества, объёма раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро- (1-10 г или 10-100 мл исследуемого вещества), полумикро- (0,05-0,5 г или 1-10 мл), микро- (0,001-10 –6 г или 0,1-10 –4 мл), и ультрамикроанализ и др.

Анализ ʼʼсухимʼʼ путем проводится с твердыми веществами. Он делиться на анализ методом растирания и пиротехнический анализ. Последний основан на утем проводится с твердыми веществами. тдельных операций химические методы качественного анализа делятся на макро-, микро-, полнагревании исследуемого вещества в пламени горелки. Рассмотрим реакции окрашивания пламени – летучие соли многих металлов при внесении их в несветящуюся часть пламени горелки окрашивают пламя в различные цвета͵ характерные для этих металлов: Li и Sr – карминово-красная окраска пламени, Na – интенсивно-желтая, K – фиолетовая, Rb и Сs – розово-фиолетовая, Ca – оранжево-красная, Ba – зелœеная, Cu и B – желто-зелœеная, Pb и As – бледно-голубая и т.д.

Чувствительность аналитических реакций – то наименьшее количество вещества (иона), ĸᴏᴛᴏᴩᴏᴇ можно открыть с помощью данного реагента. Количественно чувствительность реакций характеризуется тремя показателями: открываемым минимумом, пре­дельной концентрацией, пределом разбавления.

В аналитической практике определяемый ион обычно приходится открывать в присутствии других ионов. Реакции и реагенты, дающие возможность открывать данный ион в присутствии других, называются специфичными.

Качественный анализ - понятие и виды. Классификация и особенности категории "Качественный анализ" 2017, 2018.

  • - Качественный анализ

    Устройство ИК спектрометра Как правило, Ик-спектрометр работает по 2-х лучевой схеме: 2 параллельных световых потока пропускают через кювету с анализируемым образцом и кювету сравнения – это позволяет уменьшить погрешности, связанные с рассеянием, отражением и... .


  • - КАЧЕСТВЕННЫЙ АНАЛИЗ КАТИОНОВ

    КАЧЕСТВЕННЫЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ Способы выполнения аналитических реакций Аналитические реакции могут выполняться «сухим» и «мокрым» путем. В первом случае исследуемое вещество и реагенты берут в твердом состоянии и обычно осуществляют... .


  • - Качественный анализ в ТСХ

    Основные элементы установок ТСХ Тонкослойная хроматография Метод тонкослойной хроматографии (ТСХ), получивший в настоящее время широкое распространение, был разработан Н.А. Измайловым и М.С. Шрайбер в 1938 г. В методе ТСХ неподвижная твердая фаза тонким слоем... .


  • - Качественный анализ

    Электрохимические ячейки В вольтамперометрии используются ячейки, состоящие из поляризуемого рабочего и неполяризуемого электрода сравнения. Требования к рабочему электроду: § площадь рабочего электрода должна быть небольшой; § электрод должен быть поляризован... .


  • - Качественный анализ неорганических соединений

    Качественный анализ – это идентификация (обнаружение) компонентов анализируемых веществ и приблизительная количественная оценка их содержания в веществах и материалах. В качестве компонентов могут быть атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы,...

  • Лекция 3

    Качественный анализ

    1. Васильев В.П. Аналитическая химия: В 2 кн. : Кн. 1: Титриметрические и гравиметрические методы анализа: учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М. : Дрофа, 2004. – 368 с. (С. 33 – 35, 263, 309 – 311).

    2. Лебедева М.И. Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. – 216 с. – http://window.edu.ru/window_catalog/files/r38085/tstu2005-134.pdf

    Качественный анализ – это анализ, целью которого является установление содержащихся в пробе химических элементов, ионов, веществ.

    Методы качественного анализа

    Методы качественного анализа различны: химические, физические, физико-химические.

    Методы качественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементным анализом ;функциональных групп – функциональным анализом ; индивидуальных химических соединений, характеризующихся определенной молекулярной массой, – молекулярным анализом .

    Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом .

    Химические методы основаны на том, что открываемый элемент или ион переводят в какое-либо соединение, обладающее определенными свойствами. Происходящее при этом химическое превращение называется аналитической реакцией . Вещество, которое вызывает это превращение, называется реактивом (реагентом ).

    Аналитические реакции можно классифицировать следующим образом:

    1. Групповые реакции : один и тот же реактив реагирует с группой ионов, давая одинаковый сигнал. Например , для отделения группы ионов (Ag + , Pb 2 + , Hg 2 2+) используют реакцию их с Cl − -ионами, при этом образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2).

    2. Избирательные (селективные) реакции .

    Например : йодокрахмальная реакция. Впервые ее описал в 1815 г немецкий химик Ф. Штромейер . Для этих целей используют органические реагенты.

    Например: диметилглиоксим + Ni 2 + → образование ало-красного осадка диметилглиоксимата никеля.

    Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать избирательными.

    Например: если реакции Ag + , Pb 2 + , Hg 2 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он хорошо растворим в горячей воде.

    3. Реакции комплексообразования используются для целей маскирования мешающих ионов.

    Например: для обнаружения Со 2 + в присутствии Fe 3 + -ионов с помощью KSCN , реакцию проводят в присутствии F − -ионов. При этом Fe 3 + + 4F − → − , K н = 10 − 16 , поэтому Fe 3 + -ионы закомплексованы и не мешают определению Co 2 + -ионов.

    В аналитической химии используются следующие реакции :

    1. Гидролиз (по катиону, по аниону, по катиону и аниону):

    Al 3 + + HOH ↔ Al(OH) 2 + + H + ;

    CO 3 2 − + HOH ↔ HCO 3 − + OH − ;

    Fe 3 + + (NH 4) 2 S + HOH → Fe(OH) 3 + ...

    2. Реакции окисления-восстановления :

    2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4

    3. Реакции комплексообразования :

    СuSO 4 + 4NH 4 OH → SO 4 + 4H 2 O

    4. Реакции осаждения :

    Ba 2 + + SO 4 2 − → BaSO 4 ↓

    В качественном анализе используются только те реакции , которые сопровождаются какими-либо хорошо заметными внешними эффектами :

    1. Образование или растворение осадка :

    Hg 2 + + 2I − → HgI 2 ↓;

    HgI 2 + 2KI − → K 2 HgI 4

    бесцветный

    2. Появление, изменение, исчезновение окраски раствора (цветные реакции):

    Mn 2 + → MnO 4 − → MnO 4 2 −

    бесцветный фиолетовый зеленый

    3. Выделение газа :

    SO 3 2 − + 2H + → SO 2 + H 2 O.

    4. Реакции образования кристаллов строго определенной формы (микрокристаллоскопические реакции).

    5. Реакции окрашивания пламени .

    Аналитические реакции можно проводить «сухим» и «мокрым» путем.

    Примеры реакций, проводимых «сухим» путем :

    – реакции окрашивания пламени (Na + – желтый; Sr 2 + – красный; Ba 2 + – зеленый; Са 2+ – кирпично-красный, K + – фиолетовый; Li + – малиновый, Tl 3 + – зеленый, In + – синий и др.);

    – при сплавлении Na 2 B 4 O 7 и Co 2 + , Na 2 B 4 O 7 и Ni 2 + , Na 2 B 4 O 7 и Cr 3 + образуются «перлы » буры различной окраски. Например , соединения Co 2 + дадут интенсивно-синюю окраску, Cr 3 + – изумрудно-зеленую.

    Окраска перла зависит от того, в каком конусе (зоне) пламени происходи нагревание – окислительном или восстановительном. В центре пламени у основания фитиля температура достигает 320 0 С – это зона восстановления , выше находится зона окисления , температура в верхней части доходит до 1550 0 С.

    Методика получения перлов проста. Берут платиновую проволоку , один конец сгибают в ушко , а другой впаивают в стеклянную трубочку . Платиновое ушко нагревают в пламени горелки и горячее погружают в соль . Приставшую соль сначала держат под пламенем горелки, чтобы не слишком интенсивно выделялась вода, а затем сплавляют в бесцветный перл (соль буры Na 2 B 4 O 7 · 7Н 2 О). После этого еще горячим перлом прикасаются к исследуемому веществу и затем вновь вносят в окислительную часть пламени, получая цветной перл. Наблюдают полученный цвет в холодном и горячем состоянии.

    Чаще всего аналитические реакции проводят в растворах («мокрый» путь ). Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газообразном). Объект для анализа называется образцом, или пробой . Один и тот же элемент в образце может находиться в различных химических формах . Например: S 0 , S 2 − , SO 4 2 − , SO 3 2 − и т.д. В зависимости от цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах).

    В зависимости от того, с какими количествами вещества проводят операции при выполнении аналитической реакции, различают :

    макроанализ – 1 – 10 г, 10 – 100 мл;

    полумикроанализ – 0,05 – 0,5 г, до 10 мл;

    микроанализ – 0,001 – 10 -6 г, 0,1 – 10-4 мл;

    ультрамикроанализ – 10 -6 – 10 -9 г, 10-4 – 10 -6 мл;

    субмикроанализ – 10 -9 – 10 -12 г, 10-7 – 10 -10 мл.

    Существует капельный метод анализа , введенный в аналитическую практику Н.А. Тананаевым (1920) . Реакции проводят на фарфоровой пластинке, предметном стекле, но чаще всего на полоске фильтровальном бумаги.

    Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные условия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения . Например , осадки, растворимость которых повышается с увеличением температуры, необходимо получать только на холоду. В тоже время некоторые осадки получают только при нагревании.

    Очень важное условие – достаточно большая концентрация открываемого иона в растворе. Наименьшее количество вещества (иона), которое можно открыть с помощью данного реагента в капле исследуемого раствора объемом в 1 микролитр (10 -6 л) называется чувствительностью реакции .

    Количественно чувствительность характеризуется следующими показателями:

    открываемый минимум (m ) – это наименьшее количество вещества или иона, которое может быть открыто посредством данной реакции при определенных условиях.

    m = с пред. ·V min · 10 6 мкг

    m = V min · 10 6 / V пред мкг

    где с пред – предельная концентрация; V min – минимальный объем предельно разбавленного раствора; V пред – предельное разбавление.

    Предельная концентрация (с пред ) – это отношение единицы массы определенного иона к массе наибольшего количества растворителя.

    , [мкг/мл ]

    Предельное разбавление (V пред ) – это величина, обратная предельной концентрации и показывающая, в каком количестве водного раствора (в мл) содержится 1 г определяемого иона.

    ;

    Минимальный объем (V min ) – это объем раствора, содержащий открываемый минимум определенного иона.

    , [мл ]

    Чувствительность реакции , служащая для открытия одного и того же иона, может очень сильно различаться . Например , чувствительность реакции на Cu 2+ :

    – если используется HCl, то m = 1 мкг, образуется комплекс 2- желто-зеленого цвета;

    – если используется NH 3 , то m = 0,2 мкг, образуется комплекс 2+ синего цвета;

    – если используется K 4 , то m = 0,02 мкг, образуется комплекс Cu 2 красно-бурого цвета.

    Для повышения чувствительности реакции можно использовать следующие приемы :

    увеличить продолжительность реакции, что особенно эффективно, если в ней принимают участие неэлектролиты или слабые электролиты .

    добавить к раствору этиловый спирт , понижающий растворимость неорганических соединений, если в реакции наблюдается образование осадка;

    взболтать водную реакционную смесь с какой-либо несмешивающейся с водой органической жидкостью .

    В исследуемом растворе может присутствовать не один ион , а несколько . Применяя специфические реакции, можно открывать соответствующий ион дробным методом , т.е. непосредственно в отдельных порциях исследуемого раствора, не обращая внимания на те ионы, которые соединяются с данным. Дробный анализ был открыт Тананаевым в 1950 г .

    Достоинством дробного анализа является быстрота его выполнения. Большую роль он играет тогда, когда анализу подвергается смесь с ограниченным количеством ионов и состав смеси приблизительно известен .

    Недостатком дробного метода является в некоторых случаях отсутствие надежных специфических реакций для определенных ионов.

    Поэтому для таких ионов необходимо разработать определенную последовательность проведения реакций открытия отдельных ионов, представляющую собой систематический ход анализа . Он состоит в том, что к открытию каждого иона приступают лишь тогда , когда все другие ионы , мешающие его открытию, будут предварительно открыты и удалены . Например , анализ смеси, содержащей Ba 2+ и Са 2+ , открывают оксалат-ионом С 2 О 4 2- :

    Ва 2+ + С 2 О 4 2- → ВаС 2 О 4 ↓ (желтый)

    фильтрат-Са 2+ + С 2 О 4 2- → СаС 2 О 4 ↓ (белый)

    При систематическом ходе анализа ионы выделяются из сложных смесей не по одному, а целыми группами с помощью специальных реактивов, дающих одинаковую реакцию. Эти реактивы называются групповыми реагентами (групповыми реактивами ). Такие реактивы значительно упрощают проведение анализа .

    Анализ вещества может проводиться с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

    Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

    Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение» обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т. п. Химическое превращение, происходящее при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

    Например, для открытия в растворе -ионов анализируемый раствор сначала подкисляют хлористоводородной кислотой, а затем прибавляют раствор гексацианоферрата (II) калия . В присутствии выпадает синий осадок гексацианоферрата (II) железа (берлинская лазурь):

    Другим примером качественного химического анализа может служить обнаружение солей аммония путем нагревания анализируемого вещества с водным раствором едкого натра. Ионы аммония в присутствии -ионов образуют аммиак, который узнают по запаху или по посинению влажной красной лакмусовой бумаги:

    В приведенных примерах растворы гексацианоферрата (II) калия и едкого натра являются соответственно реактивами на и -ионы.

    При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

    Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

    Методы качественного и количественного анализа, позволяющие определять в анализируемом веществе содержание отдельных элементов, называют элементным анализом; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

    Совокупность разнообразных химических, физических и физикохимических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных! систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

    Классификация методов качественного анализа.

    Предмет и задачи аналитической химии.

    Аналитической химией называют науку о методах качественного и количественного исследования состава веществ (или их смесей). Задачей аналитической химии является развитие теории химических и физико-химических методов анализа и операций в научных исследованиях.

    Аналитическая химия состоит из двух основных разделов: качественный анализ состоит в “открытии “, т.е. обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество. Количественный анализ заключается в определении количественного содержания отдельных составных частей сложного вещества.

    Практическое значение аналитической химии велико. С помощью методов хим. анализа открыты законы: постоянства состава, кратных отношений, определены атомные массы элементов, химические эквиваленты, установлены формулы многих соединений.

    Аналитическая химия способствует развитию естественных наук - геохимии, геологии, минералогии, физики, биологии, технологических дисциплин, медицины. Химический анализ - основа современного химико-технологического контроля всех производств, в которых производится анализ сырья, продукции и отходов производства. По результатам анализа судят о течении технологического процесса и о качестве продукции. Химические и физико-химические методы анализа лежат в основе установления госстандарта на всю выпускаемую продукцию.

    Велика роль аналитической химии в организации мониторинга окружающей среды. Это мониторинг загрязнения поверхностных вод, почв ТМ, пестицидами, нефтепродуктами, радионуклидами. Одной из задач мониторинга является создание критериев, устанавливающих пределы возможного экологического ущерба. Например ПДК - предельно-допустимая концентрация - это такая концентрация, при воздействии которой на организм человека, периодически или в течении всей жизни, прямо или косвенно через экологические системы, не возникает заболеваний или изменений состояния здоровья, обнаруживаемые современными методами сразу же или в отдаленные сроки жизни. Для каждого хим. вещества имеется свое значение ПДК.

    Классификация методов качественного анализа.

    Исследуя новое соединение, прежде всего определяют, из каких элементов (или ионов) оно состоит, а затем уже количественные отношения, в которых они находятся. Поэтому качественный анализ, как правило, предшествует количественному анализу.

    Все аналитические методы основаны на получении и измерении аналитического сигнала, т.е. любого проявления химических или физических свойств вещества, которое можно использовать для установления качественного состава анализируемого объекта или для количественной оценки содержащихся в нем компонентов. Анализируемым объектом может быть индивидуальное соединение в любом агрегатном состоянии. смесь соединений, природный объект (почва, руда, минерал, воздух, вода), продукты промышленного производства и продукты питания. Перед анализом проводят отбор пробы, измельчение, просеивание, усреднение и т.д. Подготовленный для анализа объект называют образцом или пробой.

    В зависимости от поставленной задачи выбирают метод. Аналитические методы качественного анализа по способу выполнения делятся на: 1) анализ “сухим” и 2) анализ “мокрым” путем.

    Анализ “сухим” путем проводится с твердыми веществами. Он делится на пирохимический и метод растирания.

    Пирохимический (греч. - огонь) вид анализа проводится нагреванием исследуемого образца в пламени газовой или спиртовой горелки, выполняется двумя путями: получение окрашенных “перлов” или окрашивание пламени горелки.

    1.“Перлы” (франц. - жемчуг) образуются при растворении в расплаве солей NaNH 4 PO 4 ∙ 4 H 2 O, Na 2 B 4 O 7 ∙ 10 H 2 O - бура) или оксидов металлов. Наблюдая окраску полученных перлов “стекол” устанавливают присутствие тех или иных элементов в образце. Так, например, соединения хрома делают зеленую окраску перла, кобальта - синюю, марганца - фиолетово-аметистовую и т.д.

    2. Окрашивание пламени - летучие соли многих металлов при внесении их в несветящуюся часть пламени окрашивают его в разные цвета, например, натрий - интенсивно желтый, калий - фиолетовый, барий - зеленый, кальций - красный и т.д. Эти виды анализа используются в предварительных испытаниях и в качестве “экспресс” - метода.

    Анализ методом растирания. (1898г. Флавицкий). Исследуемый образец растирают в фарфоровой ступке с равным количеством твердого реагента. По окраске полученного соединения судят о наличии определяемого иона. Метод используется в предварительных испытаниях и проведения “экспресс” анализа в полевых условиях для анализа руд и минералов.

    2.Анализ “мокрым” путем - это анализ образца, растворенного в каком - либо растворителе. В качестве растворителя чаще всего используют воду, кислоты или щелочи.

    По способу проведения методы качественного анализа делятся на дробный и систематический. Метод дробного анализа - это определение ионов с помощью специфических реакций в любой последовательности. Применяется в агрохимических, заводских и пищевых лабораториях, когда состав исследуемого образца известен и требуется только проверить отсутствие примесей или в проведении предварительных испытаний. Систематический анализ - это анализ в строго определенной последовательности, в которой каждый ион обнаруживается только после того, как будут обнаружены и удалены мешающие определению ионы.

    В зависимости от взятого количества вещества для анализа, а также от техники выполнения операций методы подразделяются на:

    - макроанализ - проводится в сравнительно больших количествах вещества(1- 10 г). Анализ выполняется в водных растворов и в пробирках.

    -микроанализ - исследует очень малые количества вещества (0,05 - 0,5 г). Выполняется либо на полоске бумаги, часовом стекле с каплей раствора (капельный анализ) или на предметном стекле в капле раствора получают кристаллы, по форме которых под микроскопом устанавливают вещество (микрокристаллоскопический).

    Основные понятия аналитической химии.

    Аналитические реакции - это реакции, сопровождающиеся хорошо заметным внешним эффектом:

    1) выпадением или растворением осадка;

    2) изменением окраски раствора;

    3) выделение газа.

    Кроме того, к аналитическим реакциям предъявляются еще два требования: необратимость и достаточная скорость реакции.

    Вещества, под действием которых происходят аналитические реакции, называются реагентами или реактивами. Все хим. реагенты делятся на группы:



    1) по химическому составу (карбонаты, гидроксиды, сульфиды и т.д.)

    2) по степени очистки основного компонента.

    Условия выполнения хим. анализа:

    1. Среда реакции

    2. Температура

    3. Концентрация определяемого иона.

    Среда. Кислая, щелочная, нейтральная.

    Температура. Большинство хим. реакций выполняются при комнатных условиях “на холоду”, или иногда требуется охладить под краном. Многие реакции идут при нагревании.

    Концентрация - это количество вещества, содержащееся в определенном весовом или объемном количестве раствора. Реакция и реактив, способный вызвать в заметной степени свойственный ему внешний эффект даже при ничтожно малой концентрации определяемого вещества, называются чувствительными .

    Чувствительность аналитических реакций характеризуется:

    1) предельным разбавлением;

    2) предельной концентрацией;

    3) минимальным объемом предельно разбавленного раствора;

    4) пределом обнаружения (открываемым минимумом);

    5) показателем чувствительности.

    Предельное разбавление Vlim – максимальный объем раствора, в котором может быть (больше чем в 50 опытах из 100 опытов) обнаружен один грамм данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

    Например, при реакции ионов меди с аммиаком в водном растворе

    Cu 2+ + 4NH 3 = 2+ ¯ярко-синий комплекс

    Предельное разбавление иона меди равно (Vlim = 2,5 · 10 5 мг/л), т.е. ионы меди можно открыть с помощью этой реакции в растворе, содержащем 1 г меди в 250 000 мл воды. В растворе, в котором содержится менее 1 г меди (II) в 250 000 мл воды, обнаружить эти катионы вышеприведенной реакцией невозможно.

    Предельная концентрация Сlim (Cmin) – наименьшая концентрация, при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией. Выражается в г/мл.

    Предельная концентрация и предельное разбавление связаны соотношением: Сlim = 1 / V lim

    Например, ионы калия в водном растворе открывают с помощью гексанитрокобальтатом (III) натрия

    2K + + Na 3 [ Co(NO 2) 6 ] ® NaK 2 [ Co(NO 2) 6 ] ¯ + 2Na +

    Предельная концентрация ионов К + при этой аналитической реакции равна С lim = 10 -5 г/мл, т.е. ион калия нельзя открыть указанной реакцией, если его содержание составляет меньше 10 -5 г в 1 мл анализируемого раствора.

    Минимальный объем предельно разбавленного раствора Vmin – наименьший объем анализируемого раствора, необходимый для обнаружения открываемого вещества данной аналитической реакцией. Выражается в мл.

    Предел обнаружения (открываемый минимум) m – наименьшая масса определяемого вещества, однозначно открываемого данной ан. реакциейв минимальном объеме предельно разбавленного раствора. Выражается в мкг (1 мкг = 10 -6 г).

    m = C lim · V min × 10 6 = V min × 10 6 / V lim

    Показатель чувствительности аналитической реакции определяется

    pС lim = - lg C lim = - lg(1/Vlim) = lg V lim

    Ан. реакция тем чувствительнее, чем меньше ее открываемый минимум, минимальный объем предельно разбавленного раствора и чем больше предельное разбавление.

    Величина предела обнаружения зависит от:

    1. Концентрации исследуемого раствора и реагента.

    2. Продолжительности протекания ан. реакции.

    3. Способа наблюдения внешнего эффекта (визуально или с помощью прибора)

    4. Соблюдения условий выполнения ан. Реакций (t, рН, количество реагента, его чистота)

    5. Присутствии и удаления примесей, посторонних ионов

    6. Индивидуальные особенности химика-аналитика (аккуратность, острота зрения, умение различать цвета).

    Типы аналитических реакций (реактивов):

    Специфические - реакции, позволяющие определять данный ион или вещества в присутствии любых других ионов или веществ.

    Например: NH4 + + OH - = NH 3 ­ (запах) + H 2 O

    Fe 3+ + CNS - = Fe(CNS) 3 ¯

    кроваво-красный

    Селективные - реакции позволяют избирательно открывать сразу несколько ионов с одинаковым внешним эффектом. Чем меньше ионов открывает данный реактив, тем выше его избирательность.

    Например:

    NH 4 + + Na 3 = NH 4 Na

    K + + Na 3 = NaК 2

    Групповые реакции (реагенты) позволяют обнаруживать целую группу ионов или каких-то соединений.

    Например: катионы II группы - групповой реагент (NH4)2CO3

    СaCI 2 + (NH 4) 2 CO 3 = CaCO 3 + 2 NH 4 CI

    BaCI 2 + (NH 4) 2 CO 3 = BaCO 3 + 2 NH 4 CI

    SrCI 2 + (NH 4) 2 CO 3 = SrCO 3 + 2 NH 4 CI

    Анализ вещества может проводиться с целью установление качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

    Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

    Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое - нибудь новое соединение, обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т.п. Химическое превращение, происходит при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

    При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

    Количественный анализ позволяет установить количественные соотношения частей данного соединения или смеси веществ. В отличии от качественного анализа количественный анализ дает возможность определить содержание отдельный компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

    Методы качественного и количественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементами анализа; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

    Совокупность разнообразных химических, физических и физико - химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

    Методы качественного анализа

    В качественном анализе для установления состава исследуемого вещества используют характерные химические или физические свойства этого вещества. Совершенно нет необходимости выделять открываемые элементы в чистом виде, что бы обнаружить их присутствие в анализируемом веществе. Однако выделение в чистом виде металлов, неметаллов и их соединений иногда используется в качественном анализе для их идентификации, хотя такой путь анализа весьма труден. Для обнаружения отдельных элементов пользуются более простыми и удобными методами анализа, основанными на химических реакциях, характерных для ионов данных элементов и протекающих при строго определенных условиях.

    Аналитическим признаком присутствия в анализируемом соединении искомого элемента является выделение газа, отличающегося специфическим запахом; в другом - выпадении осадка, характеризующегося определенным цветом.

    Реакции, протекающее между твердыми веществами и газами. Аналитические реакции могут протекать не только в растворах, но имежду твердыми, а также и газообразными веществами.

    Примером реакции между твердыми веществами является реакция выделение металлической ртути при нагревании сухих солей ее с карбонатом натрия. Образование белого дыма при взаимодействии газообразного аммиака с хлористым водородом может служить примером аналитической реакции с участием газообразных веществ.

    Реакции, применяемые в качественном анализе можно подразделить на следующие группы.

    1. Реакции осаждения, сопровождающиеся образованием осадков различных цвета. Например:

    CaC2O4 - белого цвета

    Fe43 - синий,

    CuS - коричнево - желтый

    HgI2 - красный

    MnS - телесно - розовый

    PbI2 - золотистый

    Образующиеся осадки могут отличаться определенной кристаллической структурой, растворимостью в кислотах, щелочах, аммиака и т.п.

    2. Реакции, сопровождающиеся образованием газов, обладающих известным запахом, растворимостью и т.д.

    3. Реакции, сопровождающиеся образованием слабых электролитов. К числу таких реакций, в результате который образуются:CH3COOH, H2F2, NH4OH, HgCl2, Hg(CN)2, Fe(SCN)3 и т.п. Реакциями этого же типа можно считать реакции кислотно - основного взаимодействия, сопровождающиеся образованием нейтральных молекул воды, реакции образования газов и малорастворимых в воде осадков и реакции комплексообразования.

    4. Реакции кислотно- основного взаимодействия, сопровождающиеся переходом протонов.

    5. Реакции комплексообразования, сопровождающиеся присоединения к атомам комплексообразователя различных легандов - ионов и молекул.

    6. Реакции комплексообразования, связанные с кислотно - основным взаимодействием

    7. Реакции окисления - восстановления, сопровождающиеся переходом электронов.

    8. Реакции окисления - восстановления, связанные с кислотно - основным взаимодействием.

    9. Реакции окисления - восстановления, вязанные с комплексообразованием.

    10. Реакции окисления - восстановления, сопровождающиеся образованием осадков.

    11. Реакции ионного обмена, протекающие на катионитах или анионитах.

    12. Каталитические реакции, используемые в кинетических методах анализа

    Анализ мокрым и сухим путем

    Реакции, применяемые в качественном химическом анализе, чаще всего проводят в растворах. Анализируемое вещество сначала растворяют, а затем действуют на полученный раствор соответствующими реактивами.

    Для растворения анализируемого вещества применяют дистиллированную воду, уксусную и минеральные кислоты, царскую водку, водный раствор аммиака, органические растворители и т.п. Чистота применимых растворителей является важным условием для получения правильных результатов.

    Переведенное в раствор вещество подвергают систематическому химическому анализу. Систематический анализ состоит из ряд предварительных испытаний и последовательно выполняемых реакций.

    Химический анализ исследуемых веществ в растворах называют анализо мокрым путем.

    В некоторых случаях вещества анализируют сухим путем, без перевода их в раствор. Чаще всего такой анализ сводиться к испытанию способности вещества окрашивать бесцветное пламя горелки в характерный цвет или придавать определенную окраску плаву (так называемую перлу), полученному при нагревании вещества с тетраборатом натрия (бурой) или фосфатом натрия ("фосфорной солью") в ушке из платиновой проволоки.

    Химический и физический метод качественного анализа.

    Химические методы анализа. Методы определения состава веществ, основанные на использовании их химических свойств, называют химическими методами анализа.

    Химические методы анализа широко применяют в практике. Однако они имеют ряд недостатков. Так, для определения состава данного вещества иногда необходимо предварительно отделить определяемую составную часть от посторонних примесей и выделить ее в чистом виде. Выделение веществ в чистом виде часто составляет очень трудную, а иногда и невыполнимую задачу. Кроме того, для определения малых количеств примесей (менее 10"4%), содержащихся в анализируемом веществе, приходится иногда брать большие пробы.

    Физические методы анализа. Присутствие того или иного химического элемента в образце можно обнаружить и не прибегая к химическим реакциям, основываясь непосредственно на изучении физических свойств исследуемого вещества, например окрашивании бесцветного пламени горелки в характерные цвета летучими соединениями некоторых химических элементов.

    Методы анализа, при помощи которых можно определить состав исследуемого вещества, не прибегая к использованию химических реакций, называют физическими методами анализа. К физическим методам анализа относятся методы, основанные на изучении оптических, электрических, магнитных, тепловых и других физических свойств анализируемых веществ.

    К числу наиболее широко применяемых физических методов анализа относятся следующие.

    Спектральный качественный анализ. Спектральный анализ основан на наблюдении эмиссионных спектров (спектров испускания, или излучения) элементов, входящих в состав анализируемого вещества.

    Люминесцентный (флуоресцентный) качественный анализ. Люминесцентный анализ основан на наблюдении люминесценции (излучение света) анализируемых веществ, вызываемой действием ультрафиолетовых лучей. Метод применяется для анализа природных органических соединений, минералов, медицинских препаратов, ряда элементов и др.

    Для возбуждения свечения исследуемое вещество или его раствор облучают ультрафиолетовыми лучами. При этом атомы вещества, поглотив определенное количество энергии, переходят в возбужденное состояние. Это состояние характеризуется большим запасом энергии, чем нормальное состояние вещества. При переходе вещества от возбужденного к нормальному состоянию возникает люминесценция за счет избыточной энергии.

    Люминесценцию, очень быстро затухающую после прекращения облучения, называют флуоресценцией.

    Наблюдая характер люминесцентного свечения и измеряя интенсивность, или яркость люминесценции соединения или его растворов, можно судить о составе исследуемого вещества.

    В ряде случаев определения ведут на основании изучения флуоресценции, возникающей в результате взаимодействия определяемого вещества с некоторыми реактивами. Известны также люминесцентные индикаторы, применяемые для определения реакции среды по изменению флуоресценции раствора. Люминесцентные индикаторы применяют при исследовании окрашенных сред.

    Рентгеноструктурный анализ. С помощью рентгеновских лучей можно установить размеры атомов (или ионов) и их взаимное расположение в молекулах исследуемого образца, т. е. оказывается возможным определить структуру кристаллической решетки, состав вещества и иногда наличие в нем примесей. Метод не требует химической обработки вещества и больших его количеств.

    Масс-спектрометрический анализ. Метод основан на определении отдельных ионизированных частиц, отклоняемых электромагнитным полем в большей или меньшей степени в зависимости от отношения их массы к заряду (подробнее см. книга 2).

    Физические методы анализа, имея ряд преимуществ перед химическими, в некоторых случаях дают возможность решать вопросы, которые не удается разрешить методами химического анализа; пользуясь физическими методами, можно разделить элементы, трудно разделяемые химическими методами, а также вести непрерывную и автоматическую регистрацию показаний. Очень часто физические методы анализа применяют наряду с химическими, что позволяет использовать преимущества тех и других методов. Сочетание методов имеет особенно важное значение при определении в анализируемых объектах ничтожных количеств (следов) примесей.

    Макро-, полумикро- и микрометоды

    Анализ больших и малых количеств исследуемого вещества. В прежнее время химики пользовались для анализа большими количествами исследуемого вещества. Для того чтобы определить состав какого-либо вещества, брали пробы в несколько десятков граммов и растворяли их в большом объеме жидкости. Для этого требовалась и химическая посуда соответстэующей емкости.

    В настоящее время химики обходятся в аналитической практике малыми количествами веществ. В зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, и главным образом от применяемой техники выполнения эксперимента, методы анализа делят на макро-, полумикро- и микрометоды.

    При выполнении анализа макрометодом для проведения реакции берут несколько миллилитров раствора, содержащего не менее 0,1 г вещества, и к испытуемому раствору добавляют не менее 1 мл раствора реактива. Реакции проводят в пробирках. При осаждении получают объемистые осадки, которые отделяют фильтрованием через воронки с бумажными фильтрами.

    Капельный анализ

    Техника проведения реакций в капельном анализе. Большое значение в аналитической химии приобрел так называемый капельный анализ, введенный в аналитическую практику Н. А. Тананаевым.

    При работе этим методом большое значение имеют явления капиллярности и адсорбции, при помощи которых можно открывать и разделять различные ионы при их совместном присутствии. При капельном анализе отдельныеи реакции проводят на фарфоровых или стеклянных пластинках или на фильтровальной бумаге. При этом на пластинку или бумагу наносят каплю испытуемого раствора и каплю реактива, вызывающего характерное окрашивание или образование кристаллов.

    При выполнении реакции на фильтровальной бумаге используют капиллярно-адсорбционные свойства бумаги. Жидкость всасывается бумагой, а образующееся окрашенное соединение адсорбцируется на небольшом участке бумаги, вследствие чего повышается чувствительность реакции.

    Микрокристаллоскопический анализ

    Микрокристаллоскопический метод анализа основан на обнаружении катионов и анионов при помощи реакции, в результате которых образуется соединение, обладающие характерной формой кристаллов.

    Раньше этот метод применялся в качественном микрохимическом анализе. В настоящее время он используется также и в капельном анализе.

    Для рассмотрения образующихся кристаллов в микрокристаллоскопическом анализе пользуются микроскопом.

    Кристаллы характерной формы пользуются при работе с чистыми веществами путем внесения капли раствора или кристаллика реактива в каплю исследуемого вещества, помещенную на предметном стекле. Через некоторое время появляются ясно различимые кристаллы определенной формы и цвета.

    Метод растирания порошка

    Для обнаружения некоторых элементов иногда применяют метод растирания в фарфоровой пластинке порошкообразного анализируемого вещества с твердым реагентом. Открываемый элемент обнаруживается по образованию характерных соединений, отличающихся по цвету или запаху.

    Методы анализа, основанные на нагревании и сплавлении вещества

    Пирохимический анализ. Для анализа веществ применяют также методы, основанные на нагревании испытуемого твердого вещества или его сплавлении с соответствующими реагентами. Одни вещества при нагревании плавятся при определенной температуре, другие возгоняются, причем на холодных стенках прибора появляются характерные для каждого вещества осадки; некоторые соединения при нагревании разлагаются с выделением газообразных продуктов и т. д.

    При нагревании анализируемого вещества в смеси с соответствующими реагентами происходят реакции, сопровождающиеся изменением цвета, выделением газообразных продуктов, образованием металлов.

    Спектральный качественный анализ

    Помимо описанного выше способа наблюдения невооруженным глазом за окрашиванием бесцветного пламени при внесении в него платиновой проволоки с анализируемым веществом в настоящее время широко используются другие способы исследования света, излучаемого раскаленными парами или газами. Эти способы основаны на применении специальных оптических приборов, описание которых дается в курсе физики. В такого рода спектральных приборах происходит разложение в спектр света с различными длинами волн, испускаемого образцом накаленного в пламени вещества.

    В зависимости от способа наблюдения спектра спектральные приборы называют спектроскопами, с помощью которых ведут визуальное наблюдение спектра, или спектрографами, в которых спектры фотографируются.

    Хроматографический метод анализ

    Метод основан на избирательном поглощении (адсорбции) отдельных компонентов анализируемой смеси различными адсорбентами. Адсорбентами называют твердые тела, на поверхности которых происходит поглощение адсорбируемого вещества.

    Сущность хроматографического метода анализа кратко заключается в следующем. Раствор смеси веществ, подлежащих разделению, пропускают через стеклянную трубку (адсорбционную колонку), заполненную адсорбентом.

    Кинетические методы анализа

    Методы анализа, основанные на измерении скорости реакции и использовании ее величины для определения концентрации, объединяются под общим названием кинетических методов анализа (К. Б. Яцимирский).

    Качественное обнаружение катионов и анионов кинетическими методами выполняется довольно быстро и сравнительно просто, без применения сложных приборов.