Правила решения дробных уравнений. Как решить рациональное уравнение. Решение целых уравнений

§ 1 Целое и дробное рациональные уравнение

В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

Рациональные выражения бывают:

Дробные.

Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

Например:

В дробных выражениях есть деление на переменную или выражение с переменной. Например:

Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

Значит, рациональное уравнение может быть целым и дробным.

Целое рациональное уравнение - это рациональное уравнение, в котором левая и правая части - целые выражения.

Например:

Дробное рациональное уравнение - это рациональное уравнение, в котором или левая, или правая части - дробные выражения.

Например:

§ 2 Решение целого рационального уравнения

Рассмотрим решение целого рационального уравнения.

Например:

Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

Для этого:

1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

дополнительный множитель для дроби

дополнительный множитель для дроби

3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

которое равносильно данному уравнению

Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

Приведем подобные члены многочлена и получим

Видим, что уравнение линейное.

Решив его, найдем, что х = 0,5.

§ 3 Решение дробного рационального уравнения

Рассмотрим решение дробного рационального уравнения.

Например:

1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

Найдем общий знаменатель для знаменателей х + 7 и х - 1.

Он равен их произведению (х + 7)(х - 1).

2.Найдем дополнительный множитель для каждой рациональной дроби.

Для этого общий знаменатель (х + 7)(х - 1) делим на каждый знаменатель. Дополнительный множитель для дроби

равен х - 1,

дополнительный множитель для дроби

равен х+7.

3.Умножим числители дробей на соответствующие им дополнительные множители.

Получим уравнение (2х - 1)(х - 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

6.Приведем подобные члены многочлена:

7.Можно обе части разделить на -1. Получим квадратное уравнение:

8.Решив его, найдем корни

Так как в уравнении

левая и правая части - дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

При х = -27 общий знаменатель (х + 7)(х - 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

Следовательно, оба корня -27 и -1 являются корнями уравнения.

При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

Рассмотрим еще один пример решения дробного рационального уравнения.

Например, решим уравнение

Знаменатель дроби правой части уравнения разложим на множители

Получим уравнение

Найдем общий знаменатель для знаменателей (х - 5), х, х(х - 5).

Им будет выражение х(х - 5).

теперь найдем область допустимых значений уравнения

Для этого общий знаменатель приравняем к нулю х(х - 5) = 0.

Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

Теперь можно найти дополнительные множители.

Дополнительным множителем для рациональной дроби

дополнительным множителем для дроби

будет (х - 5),

а дополнительный множитель дроби

Числители умножим на соответствующие дополнительные множители.

Получим уравнение х(х - 3) + 1(х - 5) = 1(х + 5).

Раскроем скобки слева и справа, х2 - 3х + х - 5 = х + 5.

Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

Х2 - 3х + х - 5 - х - 5 = 0

И после приведения подобных членов получим квадратное уравнение х2 - 3х - 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

Но мы уже выяснили, что при х = 5 общий знаменатель х(х - 5) обращается в нуль. Следовательно, корнем нашего уравнения

будет х = -2.

§ 4 Краткие итоги урока

Важно запомнить:

При решении дробных рациональных уравнений надо поступить следующим образом:

1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

3.Решить получившееся целое уравнение.

4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

Список использованной литературы:

  1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
  3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений , которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

Итак, начнем.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой - число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

2 .

Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

2. Перемножаем каждую пару скобок.

3. Из каждого множителя выносим за скобку х.

4. Делим обе части уравнения на .

5. Вводим замену переменной.

В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

Получим уравнение:

Ответ:

3 .

Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

Разделим числитель и знаменатель каждой дроби на х:

Теперь можем ввести замену переменной:

Получим уравнение относительно переменной t:

4 .

Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

Чтобы его решить,

1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

2. Сгруппируем слагаемые таким образом:

3. В каждой группе вынесем за скобку общий множитель:

4. Введем замену:

5. Выразим через t выражение :

Отсюда

Получим уравнение относительно t:

Ответ:

5. Однородные уравнения.

Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

Однородные уравнения имеют такую структуру:

В этом равенстве А, В и С - числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степеньданном случае степень одночленов равна 2), и свободный член отсутствует.

Чтобы решить однородное уравнение, разделим обе части на

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Пойдем первым путем. Получим уравнение:

Теперь мы вводим замену переменной:

Упростим выражение и получим биквадратное уравнение относительно t:

Ответ: или

7 .

Это уравнение имеет такую структуру:

Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

Теперь прикинем, что нам удобнее иметь - квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

"Решение дробных рациональных уравнений"

Цели урока:

Обучающая:

    формирование понятия дробных рационального уравнения; рассмотреть различные способы решения дробных рациональных уравнений; рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю; обучить решению дробных рациональных уравнений по алгоритму; проверка уровня усвоения темы путем проведения тестовой работы.

Развивающая:

    развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие интеллектуальных умений и мыслительных операций - анализ, синтез, сравнение и обобщение; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; развитие критического мышления; развитие навыков исследовательской работы.

Воспитывающая:

Тип урока : урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

1. Что такое уравнение? (Равенство с переменной или переменными .)

2. Как называется уравнение №1? (Линейное .) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа - в правую. Привести подобные слагаемые. Найти неизвестный множитель ).

3. Как называется уравнение №3? (Квадратное. ) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия .)

4. Что такое пропорция? (Равенство двух отношений .) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов .)

5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному .)

6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю .)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Ответ : 10.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

(х-2)(х-4) = (х+2)(х+3)

х2-4х-2х+8 = х2+3х+2х+6

х2-6х-х2-5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Ответ : 1,5.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

D=1›0, х1=3, х2=4.

Ответ : 3;4.

Теперь попытайтесь решить уравнение №7 одним из способов.

(х2-2х-5)х(х-5)=х(х-5)(х+5)

(х2-2х-5)х(х-5)-х(х-5)(х+5)=0

х(х-5)(х2-2х-5-(х+5))=0

х2-2х-5-х-5=0

х(х-5)(х2-3х-10)=0

х=0 х-5=0 х2-3х-10=0

х1=0 х2=5 D=49

Ответ : 0;5;-2.

Ответ : 5;-2.

Объясните, почему так получилось? Почему в одном случае три корня, в другом – два? Какие же числа являются корнями данного дробно-рационального уравнения?

До сих пор учащиеся с понятием посторонний корень не встречались, им действительно очень трудно понять, почему так получилось. Если в классе никто не может дать четкого объяснения этой ситуации, тогда учитель задает наводящие вопросы.

    Чем отличаются уравнения № 2 и 4 от уравнений № 5,6,7? (В уравнениях № 2 и 4 в знаменателе числа, № 5-7 – выражения с переменной .) Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство .) Как выяснить является ли число корнем уравнения? (Сделать проверку .)

При выполнении проверки некоторые ученики замечают, что приходится делить на нуль. Они делают вывод, что числа 0 и 5 не являются корнями данного уравнения. Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

х2-3х-10=0 , D=49 , х1=5 , х2=-2.

Если х=5, то х(х-5)=0, значит 5- посторонний корень.

Если х=-2, то х(х-5)≠0.

Ответ : -2.

Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений данным способом. Дети сами формулируют алгоритм.

Алгоритм решения дробных рациональных уравнений:

1. Перенести все в левую часть.

2. Привести дроби к общему знаменателю.

3. Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

4. Решить уравнение.

5. Проверить неравенство, чтобы исключить посторонние корни.

6. Записать ответ.

Обсуждение: как оформить решение, если используется основное свойство пропорции и умножение обеих частей уравнения на общий знаменатель. (Дополнить решение: исключить из его корней те, которые обращают в нуль общий знаменатель).

4. Первичное осмысление нового материала.

Работа в парах. Учащиеся выбирают способ решения уравнения самостоятельно в зависимости от вида уравнения. Задания из учебника «Алгебра 8»,2007: № 000(б, в,и); № 000(а, д,ж). Учитель контролирует выполнение задания, отвечает на возникшие вопросы, оказывает помощь слабоуспевающим ученикам. Самопроверка: ответы записаны на доске.

б) 2 – посторонний корень. Ответ:3.

в) 2 – посторонний корень. Ответ: 1,5.

а) Ответ: -12,5.

ж) Ответ: 1;1,5.

5. Постановка домашнего задания.

2. Выучить алгоритм решения дробных рациональных уравнений.

3. Решить в тетрадях № 000(а, г,д); № 000(г, з).

4. Попробовать решить № 000(а)(по желанию).

6. Выполнение контролирующего задания по изученной теме.

Работа выполняется на листочках.

Пример задания:

А) Какие из уравнений являются дробными рациональными?

Б) Дробь равна нулю, когда числитель ______________________ , а знаменатель _______________________ .

В) Является ли число -3 корнем уравнения №6?

Г) Решить уравнение №7.

Критерии оценивания задания:

    «5» ставится, если ученик выполнил правильно более 90% задания. «4» - 75%-89% «3» - 50%-74% «2» ставится учащемуся, выполнившему менее 50% задания. Оценка 2 в журнал не ставится, 3 - по желанию.

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

    1 – если на уроке вам было интересно и понятно; 2 – интересно, но не понятно; 3 – не интересно, но понятно; 4 – не интересно, не понятно.

8. Подведение итогов урока.

Итак, сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами, проверили свои знания с помощью обучающей самостоятельной работы. Результаты самостоятельной работы вы узнаете на следующем уроке, дома у вас будет возможность закрепить полученные знания.

Какой метод решения дробных рациональных уравнений, по Вашему мнению, является более легким, доступным, рациональным? Не зависимо от метода решения дробных рациональных уравнений, о чем необходимо не забывать? В чем «коварство» дробных рациональных уравнений?

Всем спасибо, урок окончен.

Решение дробно-рациональных уравнений

Справочное пособие

Рациональные уравнения – это уравнения, в которых и левая, и правая части являются рациональными выражениями.

(Напомним: рациональными выражениями называют целые и дробные выражения без радикалов, включающие действия сложения, вычитания, умножения или деления - например: 6x; (m – n)2; x/3y и т.п.)

Дробно-рациональные уравнения, как правило, приводятся к виду:

Где P (x ) и Q (x ) – многочлены.

Для решения подобных уравнений умножить обе части уравнения на Q(x), что может привести к появлению посторонних корней. Поэтому, при решении дробно-рациональных уравнений необходима проверка найденных корней.

Рациональное уравнение называется целым, или алгебраическим, если в нем нет деления на выражение, содержащее переменную.

Примеры целого рационального уравнения:

5x – 10 = 3(10 – x)

3x
- = 2x – 10
4

Если в рациональном уравнении есть деление на выражение, содержащее переменную (x), то уравнение называется дробно-рациональным.

Пример дробного рационального уравнения:

15
x + - = 5x – 17
x

Дробные рациональные уравнения обычно решаются следующим образом:

1) находят общий знаменатель дробей и умножают на него обе части уравнения;

2) решают получившееся целое уравнение;

3) исключают из его корней те, которые обращают в ноль общий знаменатель дробей.

Примеры решения целых и дробных рациональных уравнений.

Пример 1. Решим целое уравнение

x – 1 2x 5x
-- + -- = --.
2 3 6

Решение:

Находим наименьший общий знаменатель. Это 6. Делим 6 на знаменатель и полученный результат умножаем на числитель каждой дроби. Получим уравнение, равносильное данному:

3(x – 1) + 4x 5х
------ = --
6 6

Поскольку в левой и правой частях одинаковый знаменатель, его можно опустить. Тогда у нас получится более простое уравнение:

3(x – 1) + 4x = 5х.

Решаем его, раскрыв скобки и сведя подобные члены:

3х – 3 + 4х = 5х

3х + 4х – 5х = 3

Пример решен.

Пример 2. Решим дробное рациональное уравнение

x – 3 1 x + 5
-- + - = ---.
x – 5 x x(x – 5)

Находим общий знаменатель. Это x(x – 5). Итак:

х 2 – 3х x – 5 x + 5
--- + --- = ---
x(x – 5) x(x – 5) x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

х 2 – 3x + x – 5 = x + 5

х 2 – 3x + x – 5 – x – 5 = 0

х 2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5.

Проверим, являются ли эти числа корнями исходного уравнения.

При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения.

При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

Ещё примеры

Пример 1.

x 1 =6, x 2 = - 2,2.

Ответ:-2,2;6.

Пример 2.

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.