Критерий согласия пирсона онлайн. Критерий согласия Пирсона (критерий хи-квадрат). Смотреть что такое "Критерий Пирсона" в других словарях

Статистический критерий

Правило, по которому гипотеза Я 0 отвергается или принимается, называется статистическим критерием. В названии критерия, как правило, содержится буква, которой обозначается специально составленная характеристика из п. 2 алгоритма проверки статистической гипотезы (см. п. 4.1), рассчитываемая в критерии. В условиях данного алгоритма критерий назывался бы «в -критерий».

При проверке статистических гипотез возможны два типа ошибок:

  • - ошибка первого рода (можно отвергнуть гипотезу Я 0 , когда она на самом деле верна);
  • - ошибка второго рода (можно принять гипотезу Я 0 , когда она на самом деле не верна).

Вероятность а допустить ошибку первого рода называется уровнем значимости критерия.

Если за р обозначить вероятность допустить ошибку второго рода, то (l - р) - вероятность не допустить ошибку второго рода, которая называется мощностью критерия.

Критерий согласия х 2 Пирсона

Существует несколько типов статистических гипотез:

  • - о законе распределения;
  • - однородности выборок;
  • - численных значениях параметров распределения и т.д.

Мы будем рассматривать гипотезу о законе распределения на примере критерия согласия х 2 Пирсона.

Критерием согласия называют статистический критерий проверки нулевой гипотезы о предполагаемом законе неизвестного распределения.

В основе критерия согласия Пирсона лежит сравнение эмпирических (наблюдаемых) и теоретических частот наблюдений, вычисленных в предположении определенного закона распределения. Гипотеза # 0 здесь формулируется так: по исследуемому признаку генеральная совокупность распределена нормально.

Алгоритм проверки статистической гипотезы # 0 для критерия х 1 Пирсона:

  • 1) выдвигаем гипотезу Я 0 - по исследуемому признаку генеральная совокупность распределена нормально;
  • 2) вычисляем выборочную среднюю и выборочное среднее квадратическое отклонение о в;

3) по имеющейся выборке объема п рассчитываем специально составленную характеристику ,

где: я, - эмпирические частоты, - теоретические частоты,

п - объем выборки,

h - величина интервала (разность между двумя соседними вариантами),

Нормализованные значения наблюдаемого признака,

- табличная функция. Также теоретические частоты

могут быть вычислены с помощью стандартной функции MS Excel НОРМРАСП по формуле ;

4) по выборочному распределению определяем критическое значение специально составленной характеристики xl P

5) при гипотеза # 0 отвергается, при гипотеза # 0 принимается.

Пример. Рассмотрим признак X - величину показателей тестирования осужденных в одной из исправительных колоний по некоторой психологической характеристике, представленный в виде вариационного ряда:

На уровне значимости 0,05 проверить гипотезу о нормальном распределении генеральной совокупности.

1. На основе эмпирического распределения можно выдвинуть гипотезу Н 0 : по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осу-

жденных распределена нормально. Альтернативная гипотеза 1: по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных не распределена нормально.

2. Вычислим числовые выборочные характеристики:

Интервалы

х г щ

х} щ

3. Вычислим специально составленную характеристику j 2 . Для этого в предпоследнем столбце предыдущей таблицы найдем теоретические частоты по формуле , а в последнем столбце

проведем расчет характеристики % 2 . Получаем х 2 = 0,185.

Для наглядности построим полигон эмпирического распределения и нормальную кривую по теоретическим частотам (рис. 6).

Рис. 6.

4. Определим число степеней свободы s : к = 5, т = 2, s = 5-2-1 = 2.

По таблице или с помощью стандартной функции MS Excel «ХИ20БР» для числа степеней свободы 5 = 2 и уровня значимости а = 0,05 найдем критическое значение критерия xl P . =5,99. Для уровня значимости а = 0,01 критическое значение критерия х%. = 9,2.

5. Наблюдаемое значение критерия х =0,185 меньше всех найденных значений Хк Р.-> поэтому гипотеза Я 0 принимается на обоих уровнях значимости. Расхождение эмпирических и теоретических частот незначимое. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности. Таким образом, по исследуемому признаку «величина показателя тестирования по данной психологической характеристике» генеральная совокупность осужденных распределена нормально.

  • 1. Корячко А.В., Куличенко А.Г. Высшая математика и математические методы в психологии: руководство к практическим занятиям для слушателей психологического факультета. Рязань, 1994.
  • 2. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных: Учеб, пособие. СПб., 2008.
  • 3. Сидоренко Е.В. Методы математической обработки в психологии. СПб., 2010.
  • 4. Сошникова Л.А. и др. Многомерный статистический анализ в экономике: Учеб, пособие для вузов. М., 1999.
  • 5. Суходольский Е.В. Математические методы в психологии. Харьков, 2004.
  • 6. Шмойлова Р.А., Минашкин В.Е., Садовникова Н.А. Практикум по теории статистики: Учеб, пособие. М., 2009.
  • Гмурман В.Е. Теория вероятностей и математическая статистика. С. 465.

Критерий Пирсона

Критерий Пирсона , или критерий χ 2 - наиболее часто употребляемый критерий для проверки гипотезы о законе распределения . Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая требует статистической проверки.

Обозначим через X исследуемую случайную величину . Пусть требуется проверить гипотезу H 0 о том, что эта случайная величина подчиняется закону распределения F (x ) . Для проверки гипотезы произведём выборку, состоящую из n независимых наблюдений над случайной величиной X. По выборке можно построить эмпирическое распределение F * (x ) исследуемой случайной величины. Сравнение эмпирического F * (x ) и теоретического распределений производится с помощью специально подобранной случайной величины - критерия согласия . Одним из таких критериев и является критерий Пирсона.

Статистика критерия

Для проверки критерия вводится статистика:

где - предполагаемая вероятность попадения в i -й интервал, - соответствующее эмпирическое значение, n i - число элементов выборки из i -го интервала.

Эта величина в свою очередь является случайной (в силу случайности X) и должна подчиняться распределению χ 2 .

Правило критерия

Перед тем, как сформулировать правило принятия или отвержения гипотезы необходимо учесть, что критерий Пирсона обладает правосторонней критической областью .

Правило.
Если полученная статистика превосходит квантиль закона распределения заданного уровня значимости с или с степенями свободы , где k - число наблюдений или число интервалов (для случая интервального вариационного ряда), а p - число оцениваемых параметров закона распределения , то гипотеза отвергается. В противном случае гипотеза принимается на заданном уровне значимости .

Литература

  • Кендалл М., Стьюарт А. Статистические выводы и связи. - М.: Наука, 1973.

См. также

  • Критерий Пирсона на сайте Новосибирского государственного университета
  • Критерии типа хи-квадрат на сайте Новосибирского государственного технического университета (Рекомендации по стандартизации Р 50.1.033–2001)
  • О выборе числа интервалов на сайте Новосибирского государственного технического университета
  • О критерии Никулина на сайте Новосибирского государственного технического университета

Wikimedia Foundation . 2010 .

Смотреть что такое "Критерий Пирсона" в других словарях:

    Критерий Пирсона, или критерий χ² (Хи квадрат) наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая… … Википедия

    Или Критерий согласия Колмогорова Смирнова статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели.… … Википедия

    - (максиминный критерий) один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма. История Критерий Вальда был предложен Абрахамом Вальдом в 1955 году для выборок равного объема, а затем распространен на … Википедия

    Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия

    - (F критерий, φ* критерий, критерий наименьшей значимой разности) апостериорный статистический критерий, используемый для сравнения дисперсий двух вариационных рядов, то есть для определения значимых различий между групповыми средними в… … Википедия

    Критерий Кохрена используют при сравнении трёх и более выборок одинакового объёма. Расхождение между дисперсиями считается случайным при выбранном уровне значимости, если: где квантиль случайной величины при числе суммируемых… … Википедия

    Статистический критерий, названный по имени Хьюберта Лиллиефорса, профессора статистики Университета Джорджа Вашингтона, являющийся модификацией критерия Колмогорова–Смирнова. Используется для проверки нулевой гипотезы о том, что выборка… … Википедия

    Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Добавить иллюстрации. Т Крит … Википедия

    В статистике критерий согласия Колмогорова (также известный, как критерий согласия Колмогорова Смирнова) используется для того, чтобы определить, подчиняются ли два эмпирических распределения одному закону, либо определить, подчиняется ли… … Википедия

    критерий независимости - для таблиц сопряженности проверяет гипотезу о том, что переменные строки и столбца независимы. К таким критериям относится критерий независимости хи квадрат (Пирсона) и точный критерий Фишера … Словарь социологической статистики

Книги

  • Критерии проверки отклонения распределения от равномерного закона. Руководство по применению: монография , Лемешко Б.Ю.. Книга рассчитана на специалистов, в той или иной степени сталкивающихся в своей деятельности с вопросами статистического анализа данных с обработкой результатовэкспериментов, применением…

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

Ранее рассматривались гипотезы, в которых закон распределения генеральной совокупности предполагался известным. Теперь займемся проверкой гипотез о предполагаемом законе неизвестного распределения, то есть будем проверять нулевую гипотезу о том, что генеральная совокупность распределена по некоторому известному закону. Обычно статистические критерии для проверки таких гипотез называются критериями согласия.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения. Это численная мера расхождения между эмпирическим и теоретическим распределением.

Основная задача. Дано эмпирическое распределение (выборка). Сделать предположение (выдвинуть гипотезу) о виде теоретического распределения и проверить выдвинутую гипотезу на заданном уровне значимости α.

Решение основной задачи состоит из двух частей:

1. Выдвижение гипотезы.

2. Проверка гипотезы на заданном уровне значимости.

Рассмотрим подробно эти части.

1. Выбор гипотезы о виде теоретического распределения удобно делать с помощью полигонов или гистограмм частот. Сравнивают эмпирический полигон (или гистограмму) с известными законами распределения и выбирают наиболее подходящий.

Приведём графики важнейших законов распределения:

Примеры эмпирических законов распределения приведены на рисунках:



В случае (а) выдвигается гипотеза о нормальном распределении, в случае (б) - гипотеза о равномерном распределении, в случае (в) - гипотеза о распределении Пуассона.

Основанием для выдвижения гипотезы о теоретическом распределении могут быть теоретические предпосылки о характере изменения признака. Например, выполнение условий теоремы Ляпунова позволяет сделать гипотезу о нормальном распределении. Равенство средней и дисперсии наводит на гипотезу о распределении Пуассона.

На практике чаще всего приходится встречаться с нормальным распределением, поэтому в наших задачах требуется проверить только гипотезу о нормальном распределении.

Проверка гипотезы о теоретическом распределении отвечает на вопрос: можно ли считать расхождение между предполагаемыми теоретическим и эмпирическим распределениями случайным, несущественным, объясняемым случайностью попадания в выборку тех или иных объектов, или же это расхождение говорит о существенном расхождении между распределениями. Для проверки существуют различные методы (критерии согласия) - c 2 (хи-квадрат), Колмогорова, Романовского и др.

Критерий Пирсона.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении. Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты). По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (7)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (7) при стремится к закону распределения с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(8)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (7`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

Пример. Результаты исследования спроса на товар представлены в таблице:

Выдвинуть гипотезу о виде распределения и проверить её на уровне значимости a=0,01.

I. Выдвижение гипотезы.

Для указания вида эмпирического распределения построим гистограмму


120 160 180 200 220 280

По виду гистограммы можно сделать предположение о нормальном законе распределения изучаемого признака в генеральной совокупности.

II. Проверим выдвинутую гипотезу о нормальном распределении, используя критерий согласия Пирсона.

1. Вычисляем , s В.В качестве вариант возьмём среднее арифметическое концов интервалов:

2. Найдём интервалы (Z i ; Z i+1): ; .

За левый конец первого интервала примем (-¥), а за правый конец последнего интервала - (+¥). Результаты представлены в табл. 4.

3. Найдем теоретические вероятности Р i и теоретические частоты (см. табл. 4).

Таблица 4

i Граница интервалов Ф(Z i) Ф(Z i+1) P i = Ф(Z i+1)-Ф(Z i)
x i x i+1 Z i Z i+1
-1,14 -0,5 -0,3729 0,1271 6,36
-1,14 -0,52 -0,3729 -0,1985 0,1744 8,72
-0,52 0,11 -0,1985 0,0438 0,2423 12,12
0,11 0,73 0,0438 0,2673 0,2235 11,18
0,73 0,2673 0,5 0,2327 11,64

4. Сравним эмпирические и теоретические частоты. Для этого:

а) вычислим наблюдаемое значение критерия Пирсона.

Вычисления представлены в табл.5.

Таблица 5

i
6,36 -1,36 1,8496 0,291
8,72 1,28 1,6384 0,188
12,12 1,88 3,5344 0,292
11,18 0,82 0,6724 0,060
11,64 -2,64 6,9696 0,599
S

б) по таблице критических точек распределения c 2 при заданном уровне значимости a=0,01 и числе степеней свободы k=m–3=5–3=2 находим критическую точку ; имеем .

Сравниваем c . . Следовательно, нет оснований отвергать гипотезу о нормальном законе распределения изучаемого признака генеральной совокупности. Т.е. расхождение между эмпирическими и теоретическими частотами незначимо (случайно). ◄

Замечание. Интервалы, содержащие малочисленные эмпирические частоты (n i <5), следует объединить, а частоты этих интервалов сложить. Если производилось объединение интервалов, то при определении числа степеней свободы по формуле K=m-3 следует в качестве m принять число оставшихся после объединения интервалов.

Пример. По выборке из 24 вариант выдвинута гипотеза о нормальном распределении генеральной совокупности. Используя критерий Пирсона при уровне значимости среди заданных значений = {34, 35, 36, 37, 38} указать: а) наибольшее, для которого нет оснований отвергать гипотезу; б) наименьшее, начиная с которого гипотеза должна быть отвергнута.

Найдем число степеней свободы с помощью формулы:

где - число групп выборки (вариант), - число параметров распределения.

Так как нормальное распределение имеет 2 параметра ( и ), получаем

По таблице критических точек распределения , по заданному уровню значимости и числу степеней свободы определяем критическую точку .

В случае а) для значений , равных 34 и 35, нет оснований отвергать гипотезу о нормальном распределении, так как . А наибольшее среди этих значений .

В случае б) для значений 36, 37, 38 гипотезу отвергают, так как . Наименьшее среди них .◄

2. Проверка гипотезы о равномерном распределении . При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (9).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (7`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении. В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

Назначение критерия χ 2 - критерия Пирсона Критерий χ 2 применяется в двух целях: 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака. Описание критерия Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ 2 . Автоматический расчет χ 2 - критерия Пирсона Чтобы произвести автоматический расчет χ 2 - критерия Пирсона, необходимо выполнить действия в два шага: Шаг 1 . Указать количество эмпирических распределений (от 1 до 10); Шаг 2 . Занести в таблицу эмпирические частоты; Шаг 3 . Получить ответ.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты).



По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(20.2)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.