Степень с целым показателем и ее.  Алгебра: Степень с целым показателем. Степенная функция iv

Муниципальное казенное образовательное учреждение

«Теляковская средняя общеобразовательная школа»

Ясногорского района Тульской области

Урок по теме

«Свойства степени с целым показателем»

8 класс

Учитель математики

первой квалификационной категории

Кучабо Ю.Б.

2015 г.

Свойства степени с целым показателем

Тип урока: урок изучения и первичного закрепления новых знаний.

Цель: организовать деятельность обучающихся по изучению свойств степени с целым показателем и применению их при вычислениях и преобразованиях.

Задачи: - формировать потребность приобретения новых знаний, развивать

познавательные процессы, мышление, память, воображение, самостоятельность;

создать ситуацию успеха для каждого с помощью разноуровневой

самостоятельной работы;

Развивать навыки самоконтроля и самооценки;

Воспитывать уважение друг к другу, уверенность в себе, честность,

корректировать самооценку; развивать математическую речь.

Структура урока:

1) Мотивационная беседа, самоопределение к деятельности.

2) Актуализация знаний и фиксация затруднений в деятельности.

3) Постановка учебной задачи. Практическая работа с доказательством свойств степени с целым показателем.

4) Первичное закрепление. Эстафета.

5) Диагностика усвоения. (Разноуровневая самостоятельная работа).

6) Домашнее задание.

7) Итог. Рефлексия

Ход урока:

    Мотивационная беседа. Самоопределение к деятельности. (2 минуты)

Здравствуйте. Сегодня на уроке мы изучаем тему «Свойства степени с целым показателем». Подумайте, что нужно знать для ее изучения? Что необходимо вспомнить, повторить, к чему мы должны прийти в конце урока, каких целей достичь? Правильно. Итак, цель нашего урока: изучить свойства степени с целым показателем и научиться применять эти свойства. Для этого мы должны выполнить следующие задачи: вы вспомните свойства степени с натуральным показателем и докажите справедливость этих свойств для степени с целым показателем. Вы призовете на помощь свое воображение, внимание, сообразительность и станете еще умнее. В ходе урока вы ведете листки «Самоконтроля» и, как обычно, отмечаете степень своего участия в общей деятельности. На прошлом уроке мы познакомились с определением степени с целым показателем. Давайте вспомним теорию. Ответьте на вопросы:

1). Сформулируйте определение степени числа с натуральным показателем.

Определение. Степенью числа а с натуральным показателем п, большим 1, называется произведение п множителей, каждый из которых равен а.

2). Каким числом (положительным или отрицательным) является:

Степень положительного числа? (положительным)

Степень отрицательного числа с четным показателем? (положительным)

Степень отрицательного числа с нечетным показателем? (отрицательным)

3). Сформулируйте определение степени с целым отрицательным показателем. Определение. Если a 0 и n – целое отрицательное число, то .

    Актуализация знаний и фиксация затруднений в деятельности. (5 минут)

Теперь вспомните, пожалуйста, свойства степени с натуральным показателем. Чтобы вы быстрее вспомнили, смотрите на доску и работайте по подсказкам.

1) Сформулируйте правило умножения степеней с одинаковыми основаниями.

1 свойство : (на доске)

При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.

2) Сформулируйте правило деления степеней с одинаковыми основаниями.

2 свойство: (на доске)

При делении степеней с одинаковыми основаниями основание оставляют тем же, а из показателя степени делимого вычитают показатель степени делителя.

3) Сформулируйте правило возведения степени в степень.

3 свойство : (на доске)

При возведении степени в степень основание оставляют прежним, а показатели перемножают.

4) Сформулируйте правило возведения в степень произведения.

4 свойство : (на доске)

При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.

5) Сформулируйте правило возведения в степень дроби.

5 свойство : , где в 0. (на доске)

При возведении дроби в степень возводят в эту степень отдельно числитель и отдельно знаменатель и записывают в виде дроби.

6) Чему равна степень с нулевым показателем?

6 свойство: а 0 =1, где а ≠ 0. (на доске)

Степень числа а, не равного нулю, с нулевым показателем равна единице.

Вычислительные задания.

1. Вычислить: -3+2; -7-3; -8-(-4); 3∙(-6); -2∙(-8)

2. Упростить выражения:

а) 3 2 · 3; б) 2 10 : 2 6 ; в) (2 2 ) 3 ; г) (5а 2 ) 2

Не забывайте оценивать свою деятельность в листах самооценки.

3) Постановка учебной задачи. Практическая работа с доказательством свойств степени с целым показателем (5 минут)

Объяснение нового материала.

Мы повторили понятие степени с натуральным показателем, а теперь давайте докажем что рассмотренные свойства справедливы и для степени с любым целым показателем, нужно только предполагать что основание степени не равно нулю.

Итак, для любого ≠0 и любых целых m и n

= (1)

: = (2)

= (3)

И для любых ≠0 и ≠0 и целого m

(4)

(5)

Эти свойства можно доказать исходя из определения степени с отрицательным показателем, и свойства степени с натуральным показателем. Докажем справедливость свойства (1) (основного свойства степени).

Где ≠0 , k и p - натуральные числа.

Сейчас проведем небольшую практическую работу. Доказательство свойства (4) проведите сами, заменяя степени дробями, воспользовавшись определением степени с целым отрицательным показателем. Затем проверьте правильность практической работы, сверившись с доской, и оцените свою деятельность.

    Первичное закрепление. (10 минут)

а) Из свойств степени вытекает, что действия над степенями с целым показателем выполняются по тем же правилам, что и действия над степенями с натуральным показателем.

Рассмотрим примеры. Решите их сами, сверьтесь с доской, исправьте ошибки (если они есть) и оцените свою деятельность.

1). 5а -15 · 0,4а 23

2). 7,5 с 7 : 3 с -5

3). (3а 2 с -3 ) -2

4). 16 2 : (2 3 ) 2

Если у многих учащихся есть ошибки, учитель разъясняет материал еще раз на других аналогичных примерах (возможно, из учебника).

б) Эстафета. Обучающиеся выполняют первое задание, его ответ – одновременно номер следующего примера, и т.д. Ответ последнего задания сообщается учителю. Затем следует проверка.

1). ·

2). ·

3). : 16

4). ·

5). :

Решение:

1). · = = 5

5). : = = 2

2). · = = 3

3). : 16 = = 4

4). · = = =1

Физ. минутка.

Если вы устали, чувствуете упадок сил, не выспались надо подзарядиться энергией. Сядьте прямо, не горбитесь, сомкните вместе колени и ступни ног, замкните руки в замок, закройте глаза и дышите носом глубоко и равномерно. Сосредоточьтесь на звуке биения своего сердца – ощутите эту вибрацию во всем теле. Вскоре вы почувствуете, что ритм вашего дыхания почти совпадает с ритмом биения сердца. Наслаждайтесь этой вибрацией, дышите глубоко и спокойно, слушайте мелодию, которую поют ваше сердце и дыхание. Теперь откройте глаза, встаньте, распрямите плечи и глубоко вдохните. Чувствуете? Все тело налилось такой силой, что сегодня никакие препятствия не смогут стать помехой в ваших делах! Вы полны энергии и здоровья!

5) Диагностика усвоения. (15 минут)

Помним важное правило обучения. Люди сохраняют в памяти:

    10% того, что читали;

    20% того, что слышали;

    30%, того, что видели;

    50% того, что слышали и видели;

    70% того, что слышали, видели и обсуждали;

    80% того, что говорили сами;

    90% того, что делали сами.

Поэтому, используя изученные свойства степени, выполняем самостоятельную работу. Работаем по вариантам с последующей взаимопроверкой и самопроверкой. Юля выполняет задания I варианта, затем закрывает свою тетрадь и смотрит на решение этих заданий на доске. Запоминает правильное решение, открывает тетрадь, исправляет свои возможные ошибки и оценивает свою деятельность. (Правильное решение на доске уже закрыто). Кристина, Сережа и Валера решают II вариант. Затем обмениваются тетрадями, проверяют работы друг друга и выставляют оценки карандашом в тетради и ручкой в листки самоконтроля. Кристина проверяет работу Валеры, Валера – Сережи, Сережа – Кристины.

I вариант II вариант

1 Вычислите: № 1 Вычислите:

а) 5 -15 · 5 12 а) 3 -4 · 3 6

б) 9 -5 · 27 3 б) 10 8 · 10 -5

в) 10 0 : 10 -5 в) 4 -8 : 4 -9

г) 8 -2 : 4 -4 г) 6 -3 : 6 -3

д) (3 2 ) -3 · 27 2 д) (5 2 ) -2 · 5 3

2 Упростите выражение: № 2 Упростите выражение:

а) (0,5х -4 у -3 ) 2 · 4 х -2 у 3 а) 1,5 ас -3 · 4 а -2 с

б) (5а 3 с 2 ) -2 · 10 а 5 с -3 б) 0,6 х -2 у 4 · 0,5 х 3 у -2

в) (х -7 у 2 ) -2 · (х 2 у -3 ) -3 в) (0,5х -4 у -3 ) 2 · 4 х -2 у 3

г) г)

д) д)

6) Домашнее задание . (4 минуты)

Сдайте, пожалуйста, самостоятельную работу и листки самоконтроля. Откройте учебники на стр. 118. Еще раз прочитайте свойства степени с целым показателем и примеры их применения в тексте пункта 40. Теперь запишите домашнее задание: п. 40, № 986, № 999. Посмотрите на № 986. Как вы будете его выполнять? Какие свойства степени примените? А при выполнении № 999? Внимательно посмотрите, если что-то непонятно, задавайте вопросы.

7) Рефлексия. Итог урока. (4 минуты)

Подумайте, что нового вы узнали на уроке? Достигли ли цели урока? Каковы причины затруднений и ошибок? Какую цель поставим себе на следующий урок?

Всем спасибо за работу на уроке, вы сегодня молодцы. Урок окончен, до свидания.

Необходимый материал к уроку:

презентация,

карточки с заданиями для самостоятельной работы,

листки самоконтроля.

Пример листка самоконтроля.

Инструкция: в ходе урока отмечайте степень вашего участия в деятельности по шкале 1) – списал, но не понял (слушал, но не отвечал) – 2 балла, 2) – списал и разобрался – 3 балла, 3) – решал сам, но ошибся (ответил на устный вопрос) – 4 балла, 4) – решил сам без ошибок – 5 баллов. Самостоятельная работа оценивается так: из 10 заданий правильно выполнены 9 или 10 – отметка 5, 7 или 8 – 4, 5 или 6 – 3, меньше 5 – 2 балла.

Виды деятельности

Баллы

Ответы на устные вопросы

Практическая работа

Закрепление

Самостоятельная работа

Итог урока

Решение (для презентации)

Вычислительные задания.

    Вычислить: -3+2; -7-3; -8-(-4); 3∙(-6); -2∙(-8).

2. Упростить выражения:

а) 3 2 · 3; б) 2 10 : 2 6 ; в) (2 2 ) 3 ; г) (5а 2 ) 2

Решение: а) 3 2 · 3 = 3 3 =27; б) 2 10 : 2 6 = 2 4 = 16 ; в) (2 2 ) 3 = 2 6 = 64 ; г) (5а 2 ) 2 = 5 2 а 2·2 =25а 4

Первичное закрепление :

1). 5а -15 · 0,4а 23 = 2а -15+23 = 2а 8

2). 7,5с 7 : 3с -5 = 2,5с 7-(-5) =2,5 с 12

3). (3а 2 с -3 ) -2 = 3 -2 · (а 2 ) -2 · (с -3 ) -2 = а -4 с 6

4). 16 2 : (2 3 ) 2 = (2 4 ) 2 : 2 3·2 = 2 8 : 2 6 = 2 2 = 4

Эстафета:

1). ·

2). ·

3). : 16

4). ·

5). :

Решение:

1). · = = 5

5). : = = 2

2). · = = 3

3). : 16 = = 4

4). · = = =1

Самостоятельная работа:

I вариант

1 Вычислите:

а) 5 -15 · 5 12 = 5 -3 =

б) 9 -5 · 27 3 = (3 2 ) -5 · (3 3 ) 3 = 3 -10 · 3 9 =3 -1 =

a n и определяемое по правилу:

Например:

Определение . Степенью числа a (a ≠ 0) с целым показателем m называется число, записываемое как a m и определяемое по правилу:

Выражения «нуль в нулевой степени» и «нуль в отрицательной степени» не определены.

Если основанием степени является обыкновенная дробь, то удобно использовать правило, которое следует непосредственно из определения:

Например:

.

Свойства степени с целым показателем

m, n - целые числа, p ≠ 0

Примеры заданий с комментариями

Задание 1

Какое из следующих выражений равно дроби: ?

Чтобы ответить на данный вопрос, воспользуемся свойством степени с целым показателем. При делении показатели степеней с одинаковым основанием вычитаются. Таким образом, если 8 представить как 2 3 , получим, что:

.

Задание 2

Микропроцессор за секунду совершает 250 тыс. операций. Как эта величина записывается в стандартном виде?

Воспользуемся правилом записи чисел с использованием степеней числа 10. Если положительное число a представлено в виде a 1 ∙ 10 n , где 1 ≤ a 1 < 10, n - целое число, то говорят, что число a записано в стандартном виде.

В нашем примере, чтобы число 250000 представить в стандартном виде, необходимо, чтобы запятая стояла после числа 2, что будет удовлетворять условию, что 1 ≤ a 1 < 10. Тогда получим число 2,5. И, чтобы данное число соответствовало исходному, его необходимо умножить на 10 5 . То есть если запятую перенести на пять знаков вправо (так как степень положительная, поэтому вправо), получим 250000.

Ответ : 2,5 ∙ 10 5 .

Задание 3

Запишите числа в стандартном виде:

    Чтобы представить число 0,0069 в стандартном виде, необходимо записать его в виде a 1 ∙ 10 n , где 1 ≤ a 1 ≤ 10. Перенесем запятую в числе 0,0069 на три знака вправо, только тогда получим 1 ≤ 6,9 ≤ 10. После переноса запятой получим число 6,9, которое больше числа 0,0069 в 10 3 раз. Чтобы число не изменилось, результат нужно умножить на 10 -3 . Получаем: 0,0069 = 6,9 ∙ 10 -3 .

    Чтобы представить число 98000 в стандартном виде, необходимо записать его в виде a 1 ∙ 10 n , где 1 ≤ a 1 ≤ 10. Перенесем запятую в числе 98000 на четыре знака влево, только тогда получим 1 ≤ 9,8 ≤ 10 . После переноса запятой получим число 9,8, которое меньше числа 98000 в 10 -4 раз. Чтобы число не изменилось, результат нужно умножить на 10 4 . Получаем: 98000 = 9,8 ∙ 10 4 .

Примечание .

Если преобразование числа происходит с переносом запятой слева направо, то осуществляется действие деление на 10 n . Записываем как 0,0069 = 6,9 ∙ 10 -3 , выражение при преобразовании равняется .

Если преобразование числа происходит с переносом запятой справа налево, то осуществляется произведение на 10 n (записываем как 98000 = 9,8 ∙ 10 4 , выражение при преобразовании равняется 9,8 ∙ 10000 = 98000).

Задание 4

Из чисел 1,130 ∙ 10 6 ; 5,713 ∙ 10 5 ; 4,011 ∙ 10 6 ; 2,315 ∙ 10 5 выберите наибольшее.

Данное задание предполагает оценку значений сначала по степени - наибольшая степень шестая. Таких значений два: первое и третье. Затем оцениваем первый множитель: 4,011 больше 1,130. Поэтому третье значение наибольшее.

СТЕПЕНЬ С РАЦИОНАЛЬНЫМ ПОКАЗАТЕЛЕМ,

СТЕПЕННАЯ ФУНКЦИЯ IV

§ 72. Свойства степеней с целыми показателями

В § 68 и 69 мы доказали следующие свойства степеней с натуральными показателями;

Все эти свойства оказываются справедливыми и для степеней с любыми целыми (положительными, отрицательными и нулевыми) показателями, если только числа а и b не равны нулю.

Докажем, например, что при а =/= 0

а m а n = а m+n , (1)

где т и п - любые целые числа.

Поскольку для натуральных чисел т и п формула (1) уже доказана, то нам остается рассмотреть лишь следующие три случая: 1) числа т и п отрицательны; 2) одно из чисел т и п положительно, а другое - отрицательно; 3) хотя бы одно из чисел т и п равно нулю.

Случай 1. Пусть т и п - отрицательные числа. Тогда по определению степени с отрицательным показателем

Так как т и п отрицательны, то - m и - п положительны. Поэтому

а - m а - n = а - m - n = а -( m+ n)

Значит, . Используя определение степени с отрицательным показателем, запишем:

Следовательно,

а m а n = а m+n

Случай 2. Один из показателей т и п положителен, а другой - отрицателен. Пусть, например, т > 0, а п < 0. По определению степени с отрицательным показателем

Число - п положительно; значит, по доказанному в § 71

Случай 3. Хотя бы один из показателей т и п равен нулю. Пусть, например, т = 0. Тогда по определению нулевой степени

а m а n = а 0 а n = = 1 а n = а n ,

но а m+n = а 0+n = а n . Значит, формула

а m а n = а m+n

верна и в этом случае.

Таким образом, при а =/= 0 формула

а m а n = а m+n

верна для любых целых чисел т и п .

Аналогично могут быть доказаны и остальные четыре свойства степеней с целыми показателями, упомянутые в начале этого параграфа.

Примеры, 1) 4 - 5 4 8 = 4 3 = 64;

2) (3 2) - 4 = 3 - 8 = 1 / 6561

3) [(1 / 5) - 2 ] 3 = (5 - 1) - 2 ] 3 = 3 = 5 6 = 15 625.

В заключение отметим еще два свойства степеней с целыми показателями (заучивать эти свойства не нужно).

6) Если a > b > 0 и п отрицательно, то а n < b n , то есть из двух степеней с положительными основаниями и одинаковыми отрицательными показателями больше та, основание которой меньше .

Например,

5 - 3 < 4 - 3 (1 / 125 < 1 / 64); (1 / 3) - 2 > (1 / 2) - 2 (9 > 4)

7) Если 0 < а < 1, то из двух степеней а m и а n больше та, показатель которой меньше .

Если а >1, то из двух степеней а m и а n больше та, показатель которой больше .

Под т и п здесь подразумеваются любые целые числа, а не только натуральные.

Например,

(1 / 2) - 5 > (1 / 2) - 4 или 32 > 16

2 - 5 <2 - 4 , или 1 / 32 < 1 / 16 и т. д.

Предлагаем учащимся доказать эти свойства самостоятельно.

Упражнения

532. Вычислить:

533. Какое число больше:

а) 5 - 63 или 5 - 64 ; в) 5 - 63 или (1 / 5) - 63

б) 5 - 63 или 6 - 63 ; г) (1 / 5) 63 или 5 - 63 ?

534. Упростить выражение

и найти его числовое значение при

a = - 4, b = - 1 / 2

535. При каком показателе п степень а n не зависит от основания а ?

Степень с натуральным показателем

Произведение нескольких одинаковых множителей можно записать в виде выражения, называемого степенью .
Например, 4 . 4 . 4 . 4 . 4 . 4 = 4 6
Повторяющийся множитель называют основанием степени , а число повторяющихся множителей – показателем степени . Так, в выражении 4 6 число 4 – основание степени, а число 6 – показатель степени.

Определение . Степенью числа а с натуральным показателем п, большим 1, называется произведение п множителей, каждый из которых равен а.

Определение . Степень числа а, не равного нулю, с нулевым показателем равна единице. Степенью числа а с показателем 1 называется само число. Нахождение значения степени называют возведением в степень.

Примеры: 7 5 = 7 . 7 . 7 . 7 . 7. = 16 807, (– 8) 3 = (– 8) . (– 8) . (8) = – 512 .

Степень с целым отрицательным показателем

Определение. Если a =/= 0 и n – целое отрицательное число, то .

Примеры :

(–3) –4 = = ; = = – 8

Свойства степени с целым показателем

Свойства степени с натуральным показателем справедливы и для степени с любым целым показателем (нужно только предполагать, что основание степени не равно нулю).

1 свойство :

При умножении степеней с одинаковыми основаниями основание оставляют тем же, а показатели степеней складывают.

Пример:

2 свойство:

При делении степеней с одинаковыми основаниями основание оставляют тем же, а из показателя степени делимого вычитают показатель степени делителя.

Пример: = =

3 свойство :

При возведении степени в степень основание оставляют прежним, а показатели перемножают.

Пример:

4 свойство :

При возведении в степень произведения возводят в эту степень каждый множитель и результаты перемножают.

Пример: = 2 –2 . (a 3) –2 (b –5) –2 = a –6 b 10 .

5 свойство : , где в =/= 0.

Пример:

Стандартный вид числа

В науке и технике встречаются как очень большие, так и очень малые положительные числа. Например, объем Земли равен 1 083 000 000 000 км 3 , а диаметр молекулы воды – 0,0000000003 м. В обычном десятичном виде такие числа неудобно читать и записывать, а также выполнять над ними какие-либо действия, поэтому полезно их записывать в стандартном виде.

Определение. Стандартным видим числа a называют его запись в виде a . 10 n , где 1 < a < 10 и n – целое число. Число n называется порядком числа a .

Например, порядок числа, выражающего объем Земли в кубических километрах, равен 12, а порядок выражающего диаметр молекулы воды в метрах, равен – 10.

Пример 1 . Представить в стандартном виде число р = 42 350 000.
В этом числе поставим запятую так, чтобы в целой части оказалась одна цифра. В результате получим 4,2350000 = 4,235. Отделив запятой 7 цифр справа, мы уменьшили число р в 10 7 раз, поэтому р больше числа 4,235 в 10 7 раз. Значит, р = 42 350 000 = 4,235 . 10 7 .

Пример 2. Представить в стандартном виде число р = 0,00000257.
В этом числе переставим запятую так, чтобы в целой части оказалась одна отличная от нуля цифра. В результате получится 2,57. Переставив запятую на 6 знаков вправо, мы увеличили число р в 10 6 раз, поэтому число р меньше числа 2,57 в 10 6 раз. Отсюда р = 2,57: 10 6 = 2,57 , т.е. 0,00000257 = 2,57 . 10 –6 .

Тесты составлены в программе M Excel. Для работы с ними необходимо наличие на ПК прикладной программы M Excel. Последовательность работы:

1. Запустить нужный тест.

2. В поле «нумерации листов» выбрать нужный вариант.

3. Для выбора ответа необходимо:

а) выделить мышкой область, окрашенную голубым цветом;
б) на экране появится указатель ответов
в) после нажатия напоявится «раскрывающийся список»;
г) среди предложенных ответов выбрать свой ответ;
д) перейти к следующему заданию теста.

3. При окончании работы над тестом на экране ПК будет указано количество верных ответов.

4. Для вывода оценки на экран необходимо обратиться к гиперссылке «Оценка».

Ранее мы уже говорили о том, что такое степень числа. Она имеет определенные свойства, полезные в решении задач: именно их и все возможные показатели степени мы разберем в этой статье. Также мы наглядно покажем на примерах, как их можно доказать и правильно применить на практике.

Yandex.RTB R-A-339285-1

Вспомним уже сформулированное нами ранее понятие степени с натуральным показателем: это произведение n -ного количества множителей, каждый из которых равен а. Также нам понадобится вспомнить, как правильно умножать действительные числа. Все это поможет нам сформулировать для степени с натуральным показателем следующие свойства:

Определение 1

1. Главное свойство степени: a m · a n = a m + n

Можно обобщить до: a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

2. Свойство частного для степеней, имеющих одинаковые основания: a m: a n = a m − n

3. Свойство степени произведения: (a · b) n = a n · b n

Равенство можно расширить до: (a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

4. Свойство частного в натуральной степени: (a: b) n = a n: b n

5. Возводим степень в степень: (a m) n = a m · n ,

Можно обобщить до: (((a n 1) n 2) …) n k = a n 1 · n 2 · … · n k

6. Сравниваем степень с нулем:

  • если a > 0 , то при любом натуральном n, a n будет больше нуля;
  • при a , равном 0 , a n также будет равна нулю;
  • при a < 0 и таком показателе степени, который будет четным числом 2 · m , a 2 · m будет больше нуля;
  • при a < 0 и таком показателе степени, который будет нечетным числом 2 · m − 1 , a 2 · m − 1 будет меньше нуля.

7. Равенство a n < b n будет справедливо для любого натурального n при условии, что a и b больше нуля и не равны друг другу.

8. Неравенство a m > a n будет верным при условии, что m и n – натуральные числа, m больше n и а больше нуля и меньше единицы.

В итоге мы получили несколько равенств; если соблюсти все условия, указанные выше, то они будут тождественными. Для каждого из равенств, например, для основного свойства, можно поменять местами правую и левую часть: a m · a n = a m + n - то же самое, что и a m + n = a m · a n . В таком виде оно часто используется при упрощении выражений.

1. Начнем с основного свойства степени: равенство a m · a n = a m + n будет верным при любых натуральных m и n и действительном a . Как доказать это утверждение?

Основное определение степеней с натуральными показателями позволит нам преобразовать равенство в произведение множителей. Мы получим запись такого вида:

Это можно сократить до (вспомним основные свойства умножения). В итоге мы получили степень числа a с натуральным показателем m + n . Таким образом, a m + n , значит, основное свойство степени доказано.

Разберем конкретный пример, подтверждающий это.

Пример 1

Итак, у нас есть две степени с основанием 2 . Их натуральные показатели - 2 и 3 соответственно. У нас получилось равенство: 2 2 · 2 3 = 2 2 + 3 = 2 5 Вычислим значения, чтобы проверить верность этого равенства.

Выполним необходимые математические действия: 2 2 · 2 3 = (2 · 2) · (2 · 2 · 2) = 4 · 8 = 32 и 2 5 = 2 · 2 · 2 · 2 · 2 = 32

В итоге у нас вышло: 2 2 · 2 3 = 2 5 . Свойство доказано.

В силу свойств умножения мы можем выполнить обобщение свойства, сформулировав его в виде трех и большего числа степеней, у которых показатели являются натуральными числами, а основания одинаковы. Если обозначить количество натуральных чисел n 1 , n 2 и др. буквой k , мы получим верное равенство:

a n 1 · a n 2 · … · a n k = a n 1 + n 2 + … + n k .

Пример 2

2. Далее нам необходимо доказать следующее свойство, которое называется свойством частного и присуще степеням с одинаковыми основаниями: это равенство a m: a n = a m − n , которое справедливо при любых натуральным m и n (причем m больше n)) и любом отличном от нуля действительном a .

Для начала поясним, каков именно смысл условий, которые упомянуты в формулировке. Если мы возьмем a, равное нулю, то в итоге у нас получится деление на нуль, чего делать нельзя (ведь 0 n = 0). Условие, чтобы число m обязательно было больше n , нужно для того, чтобы мы могли удержаться в рамках натуральных показателей степени: вычтя n из m , мы получим натуральное число. Если условие не будет соблюдено, у нас получится отрицательное число или ноль, и опять же мы выйдем за пределы изучения степеней с натуральными показателями.

Теперь мы можем перейти к доказательству. Из ранее изученного вспомним основные свойства дробей и сформулируем равенство так:

a m − n · a n = a (m − n) + n = a m

Из него можно вывести: a m − n · a n = a m

Вспомним про связь деления и умножения. Из него следует, что a m − n – частное степеней a m и a n . Это и есть доказательство второго свойства степени.

Пример 3

Подставим конкретные числа для наглядности в показатели, а основание степени обозначим π : π 5: π 2 = π 5 − 3 = π 3

3. Следующим мы разберем свойство степени произведения: (a · b) n = a n · b n при любых действительных a и b и натуральном n .

Согласно базовому определению степени с натуральным показателем мы можем переформулировать равенство так:

Вспомнив свойства умножения, запишем: . Это значит то же самое, что и a n · b n .

Пример 4

2 3 · - 4 2 5 4 = 2 3 4 · - 4 2 5 4

Если множителей у нас три и больше, то это свойство также распространяется и на этот случай. Введем для числа множителей обозначение k и запишем:

(a 1 · a 2 · … · a k) n = a 1 n · a 2 n · … · a k n

Пример 5

С конкретными числами получим следующее верное равенство: (2 · (- 2 , 3) · a) 7 = 2 7 · (- 2 , 3) 7 · a

4. После этого мы попробуем доказать свойство частного: (a: b) n = a n: b n при любых действительных a и b , если b не равно 0 , а n – натуральное число.

Для доказательства можно использовать предыдущее свойство степени. Если (a: b) n · b n = ((a: b) · b) n = a n , а (a: b) n · b n = a n , то из этого выходит, что (a: b) n есть частное от деления a n на b n .

Пример 6

Подсчитаем пример: 3 1 2: - 0 . 5 3 = 3 1 2 3: (- 0 , 5) 3

Пример 7

Начнем сразу с примера: (5 2) 3 = 5 2 · 3 = 5 6

А теперь сформулируем цепочку равенств, которая докажет нам верность равенства:

Если у нас в примере есть степени степеней, то это свойство справедливо для них также. Если у нас есть любые натуральные числа p , q , r , s , то верно будет:

a p q y s = a p · q · y · s

Пример 8

Добавим конкретики: (((5 , 2) 3) 2) 5 = (5 , 2) 3 + 2 + 5 = (5 , 2) 10

6. Еще одно свойство степеней с натуральным показателем, которое нам нужно доказать, – свойство сравнения.

Для начала сравним степень с нулем. Почему a n > 0 при условии, что а больше 0 ?

Если умножить одно положительное число на другое, то мы получим также положительное число. Зная этот факт, мы можем сказать, что от числа множителей это не зависит – результат умножения любого числа положительных чисел есть число положительное. А что же такое степень, как не результат умножения чисел? Тогда для любой степени a n с положительным основанием и натуральным показателем это будет верно.

Пример 9

3 5 > 0 , (0 , 00201) 2 > 0 и 34 9 13 51 > 0

Также очевидно, что степень с основанием, равным нулю, сама есть ноль. В какую бы степень мы не возводили ноль, он останется им.

Пример 10

0 3 = 0 и 0 762 = 0

Если основание степени – отрицательное число, тот тут доказательство немного сложнее, поскольку важным становится понятие четности/нечетности показателя. Возьмем для начала случай, когда показатель степени четный, и обозначим его 2 · m , где m – натуральное число.

Вспомним, как правильно умножать отрицательные числа: произведение a · a равно произведению модулей, а, следовательно, оно будет положительным числом. Тогда и степень a 2 · m также положительны.

Пример 11

Например, (− 6) 4 > 0 , (− 2 , 2) 12 > 0 и - 2 9 6 > 0

А если показатель степени с отрицательным основаниемнечетное число? Обозначим его 2 · m − 1 .

Тогда

Все произведения a · a , согласно свойствам умножения, положительны, их произведение тоже. Но если мы его умножим на единственное оставшееся число a , то конечный результат будет отрицателен.

Тогда получим: (− 5) 3 < 0 , (− 0 , 003) 17 < 0 и - 1 1 102 9 < 0

Как это доказать?

a n < b n – неравенство, представляющее собой произведение левых и правых частей nверных неравенств a < b . Вспомним основные свойства неравенств справедливо и a n < b n .

Пример 12

Например, верны неравенства: 3 7 < (2 , 2) 7 и 3 5 11 124 > (0 , 75) 124

8. Нам осталось доказать последнее свойство: если у нас есть две степени, основания которых одинаковы и положительны, а показатели являются натуральными числами, то та из них больше, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше.

Докажем эти утверждения.

Для начала нам нужно убедиться, что a m < a n при условии, что m больше, чем n , и а больше 0 , но меньше 1 .Теперь сравним с нулем разность a m − a n

Вынесем a n за скобки, после чего наша разность примет вид a n · (a m − n − 1) . Ее результат будет отрицателен (поскольку отрицателен результат умножения положительного числа на отрицательное). Ведь согласно начальным условиям, m − n > 0 , тогда a m − n − 1 –отрицательно, а первый множитель положителен, как и любая натуральная степень с положительным основанием.

У нас вышло, что a m − a n < 0 и a m < a n . Свойство доказано.

Осталось привести доказательство второй части утверждения, сформулированного выше: a m > a справедливо при m > n и a > 1 . Укажем разность и вынесем a n за скобки: (a m − n − 1) .Степень a n при а, большем единицы, даст положительный результат; а сама разность также окажется положительна в силу изначальных условий, и при a > 1 степень a m − n больше единицы. Выходит, a m − a n > 0 и a m > a n , что нам и требовалось доказать.

Пример 13

Пример с конкретными числами: 3 7 > 3 2

Основные свойства степеней с целыми показателями

Для степеней с целыми положительными показателями свойства будут аналогичны, потому что целые положительные числа являются натуральными, а значит, все равенства, доказанные выше, справедливы и для них. Также они подходят и для случаев, когда показатели отрицательны или равны нулю (при условии, что само основание степени ненулевое).

Таким образом, свойства степеней такие же для любых оснований a и b (при условии, что эти числа действительны и не равны 0) и любых показателей m и n (при условии, что они являются целыми числами). Запишем их кратко в виде формул:

Определение 2

1. a m · a n = a m + n

2. a m: a n = a m − n

3. (a · b) n = a n · b n

4. (a: b) n = a n: b n

5. (a m) n = a m · n

6. a n < b n и a − n > b − n при условии целого положительного n , положительных a и b , a < b

7. a m < a n , при условии целых m и n , m > n и 0 < a < 1 , при a > 1 a m > a n .

Если основание степени равно нулю, то записи a m и a n имеют смысл только лишь в случае натуральных и положительных m и n . В итоге получим, что формулировки выше подходят и для случаев со степенью с нулевым основанием, если соблюдаются все остальные условия.

Доказательства этих свойств в данном случае несложные. Нам потребуется вспомнить, что такое степень с натуральным и целым показателем, а также свойства действий с действительными числами.

Разберем свойство степени в степени и докажем, что оно верно и для целых положительных, и для целых неположительных чисел. Начнем с доказательства равенств (a p) q = a p · q , (a − p) q = a (− p) · q , (a p) − q = a p · (− q) и (a − p) − q = a (− p) · (− q)

Условия: p = 0 или натуральное число; q – аналогично.

Если значения p и q больше 0 , то у нас получится (a p) q = a p · q . Схожее равенство мы уже доказывали раньше. Если p = 0 , то:

(a 0) q = 1 q = 1 a 0 · q = a 0 = 1

Следовательно, (a 0) q = a 0 · q

Для q = 0 все точно так же:

(a p) 0 = 1 a p · 0 = a 0 = 1

Итог: (a p) 0 = a p · 0 .

Если же оба показателя нулевые, то (a 0) 0 = 1 0 = 1 и a 0 · 0 = a 0 = 1 , значит, (a 0) 0 = a 0 · 0 .

Вспомним доказанное выше свойство частного в степени и запишем:

1 a p q = 1 q a p q

Если 1 p = 1 · 1 · … · 1 = 1 и a p q = a p · q , то 1 q a p q = 1 a p · q

Эту запись мы можем преобразовать в силу основных правил умножения в a (− p) · q .

Так же: a p - q = 1 (a p) q = 1 a p · q = a - (p · q) = a p · (- q) .

И (a - p) - q = 1 a p - q = (a p) q = a p · q = a (- p) · (- q)

Остальные свойства степени можно доказать аналогичным образом, преобразовав имеющиеся неравенства. Подробно останавливаться мы на этом не будем, укажем только сложные моменты.

Доказательство предпоследнего свойства: вспомним, a − n > b − n верно для любых целых отрицательных значений nи любых положительных a и b при условии, что a меньше b .

Тогда неравенство можно преобразовать следующим образом:

1 a n > 1 b n

Запишем правую и левую части в виде разности и выполним необходимые преобразования:

1 a n - 1 b n = b n - a n a n · b n

Вспомним, что в условии a меньше b , тогда, согласно определению степени с натуральным показателем: - a n < b n , в итоге: b n − a n > 0 .

a n · b n в итоге дает положительное число, поскольку его множители положительны. В итоге мы имеем дробь b n - a n a n · b n , которая в итоге также дает положительный результат. Отсюда 1 a n > 1 b n откуда a − n > b − n , что нам и нужно было доказать.

Последнее свойство степеней с целыми показателями доказывается аналогично свойству степеней с показателями натуральными.

Основные свойства степеней с рациональными показателями

В предыдущих статьях мы разбирали, что такое степень с рациональным (дробным) показателем. Их свойства такие же, что и у степеней с целыми показателями. Запишем:

Определение 3

1. a m 1 n 1 · a m 2 n 2 = a m 1 n 1 + m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство произведения степеней с одинаковыми основаниями).

2. a m 1 n 1: b m 2 n 2 = a m 1 n 1 - m 2 n 2 , если a > 0 (свойство частного).

3. a · b m n = a m n · b m n при a > 0 и b > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 и (или) b ≥ 0 (свойство произведения в дробной степени).

4. a: b m n = a m n: b m n при a > 0 и b > 0 , а если m n > 0 , то при a ≥ 0 и b > 0 (свойство частного в дробной степени).

5. a m 1 n 1 m 2 n 2 = a m 1 n 1 · m 2 n 2 при a > 0 , а если m 1 n 1 > 0 и m 2 n 2 > 0 , то при a ≥ 0 (свойство степени в степени).

6. a p < b p при условии любых положительных a и b , a < b и рациональном p при p > 0 ; если p < 0 - a p > b p (свойство сравнения степеней с равными рациональными показателями).

7. a p < a q при условии рациональных чисел p и q , p > q при 0 < a < 1 ; если a > 0 – a p > a q

Для доказательства указанных положений нам понадобится вспомнить, что такое степень с дробным показателем, каковы свойства арифметического корня n -ной степени и каковы свойства степени с целыми показателем. Разберем каждое свойство.

Согласно тому, что из себя представляет степень с дробным показателем, получим:

a m 1 n 1 = a m 1 n 1 и a m 2 n 2 = a m 2 n 2 , следовательно, a m 1 n 1 · a m 2 n 2 = a m 1 n 1 · a m 2 n 2

Свойства корня позволят нам вывести равенства:

a m 1 · m 2 n 1 · n 2 · a m 2 · m 1 n 2 · n 1 = a m 1 · n 2 · a m 2 · n 1 n 1 · n 2

Из этого получаем: a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Преобразуем:

a m 1 · n 2 · a m 2 · n 1 n 1 · n 2 = a m 1 · n 2 + m 2 · n 1 n 1 · n 2

Показатель степени можно записать в виде:

m 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 · n 2 n 1 · n 2 + m 2 · n 1 n 1 · n 2 = m 1 n 1 + m 2 n 2

Это и есть доказательство. Второе свойство доказывается абсолютно так же. Запишем цепочку равенств:

a m 1 n 1: a m 2 n 2 = a m 1 n 1: a m 2 n 2 = a m 1 · n 2: a m 2 · n 1 n 1 · n 2 = = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 · n 2 n 1 · n 2 - m 2 · n 1 n 1 · n 2 = a m 1 n 1 - m 2 n 2

Доказательства остальных равенств:

a · b m n = (a · b) m n = a m · b m n = a m n · b m n = a m n · b m n ; (a: b) m n = (a: b) m n = a m: b m n = = a m n: b m n = a m n: b m n ; a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = a m 1 n 1 m 2 n 2 = = a m 1 m 2 n 1 n 2 = a m 1 · m 2 n 1 n 2 = = a m 1 · m 2 n 2 · n 1 = a m 1 · m 2 n 2 · n 1 = a m 1 n 1 · m 2 n 2

Следующее свойство: докажем, что для любых значений a и b больше 0 , если а меньше b , будет выполняться a p < b p , а для p больше 0 - a p > b p

Представим рациональное число p как m n . При этом m –целое число, n –натуральное. Тогда условия p < 0 и p > 0 будут распространяться на m < 0 и m > 0 . При m > 0 и a < b имеем (согласно свойству степени с целым положительным показателем), что должно выполняться неравенство a m < b m .

Используем свойство корней и выведем: a m n < b m n

Учитывая положительность значений a и b , перепишем неравенство как a m n < b m n . Оно эквивалентно a p < b p .

Таким же образом при m < 0 имеем a a m > b m , получаем a m n > b m n значит, a m n > b m n и a p > b p .

Нам осталось привести доказательство последнего свойства. Докажем, что для рациональных чисел p и q , p > q при 0 < a < 1 a p < a q , а при a > 0 будет верно a p > a q .

Рациональные числа p и q можно привести к общему знаменателю и получить дроби m 1 n и m 2 n

Здесь m 1 и m 2 – целые числа, а n – натуральное. Если p > q , то m 1 > m 2 (учитывая правило сравнения дробей). Тогда при 0 < a < 1 будет верно a m 1 < a m 2 , а при a > 1 – неравенство a 1 m > a 2 m .

Их можно переписать в следующем виде:

a m 1 n < a m 2 n a m 1 n > a m 2 n

Тогда можно сделать преобразования и получить в итоге:

a m 1 n < a m 2 n a m 1 n > a m 2 n

Подводим итог: при p > q и 0 < a < 1 верно a p < a q , а при a > 0 – a p > a q .

Основные свойства степеней с иррациональными показателями

На такую степень можно распространить все описанные выше свойства, которыми обладает степень с рациональными показателями. Это следует из самого ее определения, которое мы давали в одной из предыдущих статей. Сформулируем кратко эти свойства (условия: a > 0 , b > 0 , показатели p и q – иррациональные числа):

Определение 4

1. a p · a q = a p + q

2. a p: a q = a p − q

3. (a · b) p = a p · b p

4. (a: b) p = a p: b p

5. (a p) q = a p · q

6. a p < b p верно при любых положительных a и b , если a < b и p – иррациональное число больше 0 ; если p меньше 0 , то a p > b p

7. a p < a q верно, если p и q – иррациональные числа, p < q , 0 < a < 1 ; если a > 0 , то a p > a q .

Таким образом, все степени, показатели которых p и q являются действительными числами, при условии a > 0 обладают теми же свойствами.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter