Время расширения вселенной и постоянная хаббла. Нужна помощь по изучению какой-либы темы? К краю Вселенной

Устроился на работу в высокогорную астрономическую обсерваторию Маунт-Вилсон в Южной Калифорнии, которая в те годы была лучшей в мире по оснащенности. Используя ее новейший телескоп-рефлектор с диаметром главного зеркала 2,5 м, он провел серию любопытных измерений, навсегда перевернувших наши представления о Вселенной.

Вообще-то, Хаббл намеревался исследовать одну застаревшую астрономическую проблему - природу туманностей. Эти загадочные объекты, начиная с XVIII века, волновали ученых таинственностью своего происхождения. К XX веку некоторые из этих туманностей разродились звездами и рассосались, однако большинство облаков так и остались туманными - и по своей природе, в частности. Тут ученые и задались вопросом: а где, собственно, эти туманные образования находятся - в нашей Галактике? или часть из них представляют собой иные «островки Вселенной», если выражаться изощренным языком той эпохи? До ввода в действие телескопа на горе Уилсон в 1917 году этот вопрос стоял чисто теоретически, поскольку для измерения расстояний до этих туманностей технических средств не имелось.

Начал свои исследования Хаббл с самой, пожалуй, популярной с незапамятных времен туманности Андромеды. К 1923 году ему удалось рассмотреть, что окраины этой туманности представляют собой скопления отдельных звезд, некоторые из которых принадлежат к классу переменных цефеид (согласно астрономической классификации). Наблюдая за переменной цефеидой на протяжении достаточно длительного времени, астрономы измеряют период изменения ее светимости, а затем по зависимости период-светимость определяют и количество испускаемого ею света.

Чтобы лучше понять, в чем заключается следующий шаг, приведем такую аналогию. Представьте, что вы стоите в беспросветно темной ночи, и тут вдалеке кто-то включает электрическую лампу. Поскольку ничего, кроме этой далекой лампочки, вы вокруг себя не видите, определить расстояние до нее вам практически невозможно. Может, она очень яркая и светится далеко, а может, тусклая и светится неподалеку. Как это определить? А теперь представьте, что вам каким-то образом удалось узнать мощность лампы - скажем, 60, 100 или 150 ватт. Задача сразу упрощается, поскольку по видимой светимости вы уже сможете примерно оценить геометрическое расстояние до нее. Так вот: измеряя период изменения светимости цефеиды, астроном находится примерно в той же ситуации, как и вы, рассчитывая расстояние до удаленной лампы, зная ее светосилу (мощность излучения).

Первое, что сделал Хаббл, - рассчитал расстояние до цефеид на окраинах туманности Андромеды, а значит, и до самой туманности: 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние до галактики Андромеды, как ее теперь называют, составляет 2,3 миллиона световых лет. - Прим. автора) - то есть туманность находится далеко за пределами Млечного Пути - нашей галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к базовому выводу о структуре Вселенной: она состоит из набора огромных звездных скоплений - галактик. Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем. Одного этого открытия, вообще-то, хватило бы Хабблу для всемирного признания его заслуг перед наукой.

Ученый, однако, этим не ограничился и подметил еще один важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько ниже длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера, а это означает, что все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик (по наблюдениям переменных цефеид) с измерениями скоростей их удаления (по красному смещению). И Хаббл выяснил, что чем дальше от нас находится галактика, тем с большей скоростью она удаляется. Это самое явление центростремительного «разбегания» видимой Вселенной с нарастающей скоростью по мере удаления от локальной точки наблюдения и получило название закона Хаббла. Математически он формулируется очень просто:

v = Hr

Где v - скорость удаления галактики от нас, r - расстояние до нее, а H - так называемая постоянная Хаббла. Последняя определяется экспериментально, и на сегодняшний день оценивается как равная примерно 70 км/(с·Мпк) (километров в секунду на мегапарсек; 1 Мпк приблизительно равен 3,3 миллионам световых лет). А это означает, что галактика, удаленная от нас на расстояние 10 мегапарсек, убегает от нас со скоростью 700 км/с, галактика, удаленная на 100 Мпк, - со скоростью 7000 км/с, и т. д. И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, всё более удаленных от Млечного Пути галактик видимой Вселенной из-под действия этого закона не выпадает.

Итак, главное и - казалось бы - невероятное следствие закона Хаббла: Вселенная расширяется! Мне этот образ нагляднее всего представляется так: галактики - изюмины в быстро всходящем дрожжевом тесте. Представьте себя микроскопическим существом на одной из изюмин, тесто для которого представляется прозрачным: и что вы увидите? Поскольку тесто поднимается, все прочие изюмины от вас удаляются, причем чем дальше изюмина, тем быстрее она удаляется от вас (поскольку между вами и далекими изюминами больше расширяющегося теста, чем между вами и ближайшими изюминами). В то же время, вам будет представляться, что это именно вы находитесь в самом центре расширяющегося вселенского теста, и в этом нет ничего странного - если бы вы оказались на другой изюмине, вам всё представлялось бы в точности так же. Так и галактики разбегаются по одной простой причине: расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной. Лучше всего это сформулировал мыслитель XV века Николай Кузанский: «Любая точка есть центр безграничной Вселенной».

Однако закон Хаббла подсказывает нам и еще кое-что о природе Вселенной - и это «кое-что» является вещью просто-таки экстраординарной. У Вселенной было начало во времени. И это весьма несложное умозаключение: достаточно взять и мысленно «прокрутить назад» условную кинокартину наблюдаемого нами расширения Вселенной - и мы дойдем до точки, когда всё вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме. Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва, и более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется. Закон Хаббла, кстати, помогает также оценить возраст Вселенной (конечно, весьма упрощенно и приблизительно). Предположим, что все галактики с самого начала удалялись от нас с той же скоростью v , которую мы наблюдаем сегодня. Пусть t - время, прошедшее с начала их разлета. Это и будет возраст Вселенной, и определяется он соотношениями:

v x t = r , или t = r/V

Но ведь из закона Хаббла следует, что

r/v = 1/H

Где Н - постоянная Хаббла. Значит, измерив скорости удаления внешних галактик и экспериментально определив Н , мы тем самым получаем и оценку времени, в течение которого галактики разбегаются. Это и есть предполагаемое время существования Вселенной. Постарайтесь запомнить: по самым последним оценкам, возраст нашей Вселенной составляет около 15 миллиардов лет, плюс-минус несколько миллиардов лет. (Для сравнения: возраст Земли оценивается в 4,5 миллиардов лет, а жизнь на ней зародилась около 4 миллиардов лет назад.)

Комментарии: 0

    Дмитрий Вибе

    Вид ночного неба, усыпанного звездами, с давних пор вселяет в душу человека благоговение и восторг. Потому даже при некотором снижении общего интереса к науке астрономические новости иногда просачиваются в средства массовой информации, чтобы встряхнуть воображение читателя (или слушателя) сообщением о таинственном квазаре на самой окраине Вселенной, о взорвавшейся звезде или о черной дыре, затаившейся в недрах далекой галактики. Вполне естественно, что рано или поздно у заинтересованного человека возникает законный вопрос: «Да полно, уж не водят ли они меня за нос?» Действительно, по астрономии написано множество книг, снимаются научно-популярные фильмы, проводятся конференции, постоянно растут тиражи и объемы профессиональных астрономических журналов, и всё это - продукт простого разглядывания неба?

    Фил Плейт

    Вселенная немного старше, чем мы думали. Более того, состав ее компонентов слегка не такой, как мы предполагали. И более того, как они перемешаны - тоже немного отличается от нашего представления. И еще более того, есть намеки, слухи и перешептывания, что там есть еще кое-что, о чем мы до этого совсем ничего не знали.

    National Geographic

    Трое физиков-теоретиков из Онтарио опубликовали в Scientific American статью, где объясняют, что наш мир вполне может быть поверхностью четырехмерной черной дыры. Мы сочли необходимым опубликовать соответствующие разъяснения.

) со скоростью его удаления. Обычно обозначается буквой H . Имеет размерность, обратную времени (H = 2,3·10 −18 с −1), но выражается обычно в км/с на мегапарсек .

Наиболее надёжная оценка постоянной Хаббла на 2010 год составляет 70,4+1,3 -1,4 (км/с)/Мпк ; таким образом, в современную эпоху две галактики, разделённые расстоянием в 1 Мпк, в среднем разлетаются со скоростью ~70 км/с. В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова. Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для значения постоянной Хаббла, равной 70,4 (км/с)/Мпк (или 2,28·10 −18 c −1), время жизни Вселенной составляет около 4,38·10 17 с или 13,9·10 9 лет.

Примечания

См. также

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Постоянная Хаббла" в других словарях:

    - (обозначение Н0), показатель скорости удаления галактик (КРАСНОЕ СМЕЩЕНИЕ), который возрастает с увеличением расстояния от нас, согласно ЗАКОНУ ХАББЛА. Нулевой индекс означает, что эта величина определяет уровень расширения пространства в… … Научно-технический энциклопедический словарь

    Закон Хаббла (закон всеобщего разбегания галактик) правило физической космологии, согласно которому красное смещение удалённых объектов пропорционально их расстоянию от наблюдателя. Таким образом, чем дальше от нас галактика, тем быстрее она от… … Википедия

    Скорость v удаления астрономич. объекта пропорциональна расстоянию r до него, т.е. v = Hr, где Я постоянная Хаббла. Закон хорошо выполняется для галактик, не входящих в скопления, и скоплений галактик как целого. Открыт Э. Хабблом в 1929 при… …

    - (по имени амер. астронома Э. Хаббла (E. Hubble)) (Н), коэффициент пропорциональности между скоростями удаления внегалактич. объектов, вызванного космологич. расширением видимой Вселенной, и расстояниями r(t) =r0 R(t) до них (Л т. н. масштабный… … Физическая энциклопедия

    - (обозначается Н) коэффициент в законе Хаббла, выражающем линейную связь скорости v космологического разбегания (разлета) скоплений галактик в зависимости от расстояния r до них: v = Hr, где H ? 50 100 км/(с.Мпк) … Большой Энциклопедический словарь

    Пропорциональность скорости uудаления внегалактич. объекта расстоянию до него r: где Н Хаббла постоянная. X. з. хорошо выполняется для галактик, не входящих в скопления, и скоплений галактик как целого. Открыт Э. П. Хабблом (E. P. Hubble) в 1929… … Физическая энциклопедия

    - (обозначается Н), коэффициент в законе Хаббла, выражающем линейную связь скорости v космологического разбегания («разлёта») скоплений галактик в зависимости от расстояния r до них: v = Hr, где H; 50 100 км/(с·Мпк). * * * ХАББЛА ПОСТОЯННАЯ ХАББЛА… … Энциклопедический словарь

    - (обозначается Я), коэф. в законе Хаббла, выражающем линейную связь скорости v космологич. разбегания (разлёта) скоплений галактик с расстоянием r до них: v = Hr, где H 50 100 км/(с*Мпк). Назв. по имени Э. Хаббла … Естествознание. Энциклопедический словарь

    - (Н) коэффициент, выражающий линейную связь скорости v космологического разбегания скоплений галактик в зависимости от расстояния r до них: v = Нr (закон Xаббла), где H = 100 км/с·Мпк. Названа в честь американского астронома Э. П. Хаббла (1889… … Астрономический словарь

    Постоянная Хаббла коэффициент, входящий в закон Хаббла, который связывает расстояние до внегалактического объекта (галактики, квазара) со скоростью его удаления. Имеет размерность, обратную времени (H=2,3×10 18 с 1), но выражается обычно в км/с… … Википедия

В свое время закон Хаббла сделал переворот в профессиональной астрономии. В начале ХХ века американский астроном Эдвин Хаббл доказал, что наша Вселенная не статична, как казалось ранее, а постоянно расширяется.

Постоянная Хаббла: данные с различных космических аппаратов

Закон Хаббла – физико-математическая формула, доказывающая, что наша Вселенная постоянно . Причем расширение космического пространства, в котором находится и наша галактика Млечный путь, характеризуется однородностью и изотропией. То есть, наша Вселенная расширяется одинаково во всех направлениях. Формулировка закона Хаббла доказывает и описывает не только теорию расширение Вселенной, но и главную идею ее происхождения – теорию .

Наиболее часто в научной литературе закон Хаббла встречается под следующей формулировкой: v=H0*r. В этой формуле v означает скорость галактики, H0 – коэффициент пропорциональности, который связывает расстояние от Земли до космического объекта со скоростью его удаления (этот коэффициент еще называют «Постоянной Хаббла»), r – расстояние до галактики.

В некоторых источниках встречается другая формулировка закона Хаббла: cz=H0*r. Здесь c выступает, как скорость света, а z символизирует собой красное смещение – сдвиг спектральных линий химических элементов в длинноволновую красную сторону спектра по мере их удаления. В физико-теоретической литературе можно обнаружить и другие формулировки данного закона. Однако от разности формулировок суть закона Хаббла не меняется, а его суть заключается в описании того факта, что наша непрерывно расширяется во всех направлениях.

Открытие закона

Возраст и будущее Вселенной может быть определено путем измерения постоянной Хаббла

Предпосылкой к открытию закона Хаббла был целый ряд астрономических наблюдений. Так, в 1913 году американский астрофизик Вейл Слайдер обнаружил, что и несколько других огромных космических объектов движутся с большой скоростью, относительно Солнечной системы. Это дало ученому основание предположить, что туманность – это не формирующиеся в нашей галактике планетарные системы, а зарождающиеся звезды, которые находятся за пределами нашей галактики. Дальнейшее наблюдение за туманностями показало, что они не только являются другими галактическими мирами, но и постоянно удаляются от нас. Этот факт дал возможность астрономическому сообществу предположить, что Вселенная постоянно расширяется.

В 1927 году бельгийский ученый-астроном Жорж Леметр экспериментально установил, что галактики во Вселенной удаляются друг от друга в космическом пространстве. В 1929 году американский ученый Эдвин Хаббл при помощи 254-сантиметрового телескопа установил, что Вселенная расширяется и галактики в космическом пространстве удаляются друг от друга. Используя свои наблюдения, Эдвин Хаббл сформулировал математическую формулу, которая по сегодняшний день точно описывает принцип расширения Вселенной, и имеет огромное значение, как для теоретической, так и практической астрономии.

Закон Хаббла: применение и значение для астрономии

Закона Хаббла имеет огромное значение для астрономии. Его широко применяют современные ученые в рамках создания различных научных теорий, а также при наблюдении космических объектов.

Главное значение закона Хаббла для астрономии заключается в том, что он подтверждает постулат: Вселенная постоянно расширяется. Вместе с этим закон Хаббла служит дополнительным подтверждением теории Большого взрыва, ведь, как считают современные ученые, именно Большой взрыв послужил толчком для расширения «материи» Вселенной.

Закон Хаббла позволил выяснить также, что Вселенная расширяется во всех направлениях одинаково. В какой точке космического пространства не оказался бы наблюдатель, если он посмотрит вокруг себя, он заметит, что все объекты вокруг него одинаково от него удаляются. Наиболее удачно этот факт можно выразить цитатой философа Николая Кузанского, который еще в XV веке сказал: «Любая точка есть центр Безграничной Вселенной».

При помощи закона Хаббла современные астрономы могут с высокой долей вероятности просчитывать положение галактик и скоплений галактик в будущем. Точно так же с его помощью можно вычислить предположительное месторасположение любого объекта в космическом пространстве, спустя определенное количество времени.

  1. Величина, обратная постоянной Хаббла, равна примерно 13,78 миллиардам лет. Эта величина указывает на то, сколько времени прошло с момента начала расширения Вселенной, а значит, вполне вероятно указывает и на ее возраст.
  2. Наиболее часто закон Хаббла используют для определения точных расстояний до объектов в космическом пространстве.

3. Закон Хаббла определяет удаление от нас далеких галактик. Что касается ближайших к нам галактик, то здесь его действие не так ярко выражено. Связано это с тем, что эти галактики помимо скорости, связанной с расширением Вселенной, обладают еще и своей собственной скоростью. В связи с этим они могут, как удаляться от нас, так и приближаться к нам. Но, в общем и целом закон Хаббла актуален для всех космических объектов во Вселенной.

Великим физикам прошлого И. Ньютону и А. Эйнштейну Вселенная представлялась статичной. Советский физик А. Фридман в 1924 г. выступил с теорией «разбегающихся» галактик. Фридман предсказал расширение Вселенной. Это было революционным переворотом в физическом представлении о нашем мире.

Американский астроном Эдвин Хаббл исследовал туманность Андромеды. К 1923 году ему удалось рассмотреть, что ее окраины представляют собой скопления отдельных звезд. Хаббл рассчитал расстояние до туманности. У него оказалось – 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние составляет 2,3 миллиона световых лет). То есть туманность находится далеко за пределами Млечного Пути – Нашей Галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к выводу о структуре Вселенной.

Вселенная состоит из набора огромных звездных скоплений – галактик .

Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем.

Э. Хаббл подметил важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько больше длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера.

Все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик с измерениями скоростей их удаления (по красному смещению).

Математически закон формулируется очень просто:

где v – скорость удаления галактики от нас,

r – расстояние до нее,

H – постоянная Хаббла.

И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, все более удаленных от Млечного Пути галактик видимой Вселенной, из-под действия этого закона не выпадает.

Итак, главное следствие закона Хаббла:

Вселенная расширяется.

Расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной.

4. Теория Большого Взрыва

Из экспериментального факта разбегания галактик был оценен возраст Вселенной. Он оказался равным – около 15 миллиардов лет! Так началась эпоха современной космологии.

Естественно возникает вопрос: а что было в начале? Всего около 20 лет понадобилось ученым, чтобы вновь полностью перевернуть представления о Вселенной.

Ответ предложил выдающийся физик Г. Гамов (1904 – 1968) в 40-ые годы. История нашего мира началась с Большого взрыва. Именно так думает большинство астрофизиков и cегодня.

Большой взрыв – это стремительное падение изначально огромной плотности, температуры и давления вещества, сконцентрированного в очень малом объеме Вселенной. Все вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме.

Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва.

Более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется.

Согласно теории Большого взрыва, ранняя Вселенная состояла из фотонов, электронов и других частиц. Фотоны постоянно взаимодействовали с остальными частицами. По мере расширения Вселенной, она остывала, и на определенном этапе электроны стали соединяться с ядрами водорода и гелия и образовывать атомы. Это случилось при температуре около 3000 К и примерном возрасте Вселенной 400 000 лет. С этого момента фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Но нам остались «свидетели» той эпохи – это реликтовые фотоны. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно ее заполняет. В результате дальнейшего остывания излучения его температура снизилась и сейчас составляет около 3 К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Оно рассматривается как одно из главных подтверждений теории Большого взрыва.

Великим физикам прошлого И. Ньютону и А. Эйнштейну Вселенная представлялась статичной. Советский физик А. Фридман в 1924 г. выступил с теорией «разбегающихся» галактик. Фридман предсказал расширение Вселенной. Это было революционным переворотом в физическом представлении о нашем мире.

Американский астроном Эдвин Хаббл исследовал туманность Андромеды. К 1923 году ему удалось рассмотреть, что ее окраины представляют собой скопления отдельных звезд. Хаббл рассчитал расстояние до туманности. У него оказалось – 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние составляет 2,3 миллиона световых лет). То есть туманность находится далеко за пределами Млечного Пути – Нашей Галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к выводу о структуре Вселенной.

Вселенная состоит из набора огромных звездных скоплений – галактик .

Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем.

Э. Хаббл подметил важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько больше длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера.

Все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик с измерениями скоростей их удаления (по красному смещению).

Математически закон формулируется очень просто:

где v – скорость удаления галактики от нас,

r – расстояние до нее,

H – постоянная Хаббла.

И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, все более удаленных от Млечного Пути галактик видимой Вселенной, из-под действия этого закона не выпадает.

Итак, главное следствие закона Хаббла:

Вселенная расширяется.

Расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной.

4. Теория Большого Взрыва

Из экспериментального факта разбегания галактик был оценен возраст Вселенной. Он оказался равным – около 15 миллиардов лет! Так началась эпоха современной космологии.

Естественно возникает вопрос: а что было в начале? Всего около 20 лет понадобилось ученым, чтобы вновь полностью перевернуть представления о Вселенной.

Ответ предложил выдающийся физик Г. Гамов (1904 – 1968) в 40-ые годы. История нашего мира началась с Большого взрыва. Именно так думает большинство астрофизиков и cегодня.

Большой взрыв – это стремительное падение изначально огромной плотности, температуры и давления вещества, сконцентрированного в очень малом объеме Вселенной. Все вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме.

Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва.

Более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется.

Согласно теории Большого взрыва, ранняя Вселенная состояла из фотонов, электронов и других частиц. Фотоны постоянно взаимодействовали с остальными частицами. По мере расширения Вселенной, она остывала, и на определенном этапе электроны стали соединяться с ядрами водорода и гелия и образовывать атомы. Это случилось при температуре около 3000 К и примерном возрасте Вселенной 400 000 лет. С этого момента фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Но нам остались «свидетели» той эпохи – это реликтовые фотоны. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно ее заполняет. В результате дальнейшего остывания излучения его температура снизилась и сейчас составляет около 3 К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Оно рассматривается как одно из главных подтверждений теории Большого взрыва.