Виды нейронов и их функции таблица. Структура и функции нейрона. Дендриты нервной клетки

Мозг состоит из миллиардов нервных клеток, или нейронов. Нейрон состоит из трех основных частей: тело нейрона (сома); дендриты - короткие отростки, которые получают сообщения от других нейронов; аксон - длинное отдельное волокно, которое передает сообщения от сомы к дендритам других нейронов или тканям тела, мышцам. Передача возбуждения от аксона одного нейрона к дендритам другого называется нейропередачей или нейротрансмиссией. Существует большое многообразие нейронов ЦНС. Чаще всего классификация нейронов осуществляется по трем признакам - морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество отростков у нейронов и подразделяет все нейроны на три типа - униполярные, биполярные и мультиполярные.

Униполярные нейроны имеют один отросток. В нервной системе человека и других млекопитающих нейроны этого типа встречаются редко. Биполярные нейроны имеют два отростка - аксон и дендрит, обычно отходящие от противоположных полюсов клетки. В нервной системе человека собственно биполярные нейроны встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Существует разновидность биполярных нейронов - так называемые псевдоуниполярные, или ложно-униполярные нейроны. У них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится на дендрит и аксон. Мультиполярные нейроны имеют один аксон и много (2 и более) дендритов. Они наиболее распространены в нервной системе человека. По форме описано до 60 - 80 разновидностей веретенообразных, звездчатых, корзинчатых, грушевидных и пирамидных клеток.

С точки зрения локализации нейронов, они делятся на центральные (в спинном и головном мозге) и периферические (находящиеся за пределами ЦНС, нейроны вегетативных ганглиев и метасимпатического отдела вегетативной нервной системы).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: афферентные (чувствительные), эфферентные (двигательные) и ассоциативные.

1. Афферентные нейроны (синонимы - чувствительные, рецепторные, центростремительные), как правило, являются ложноуниполярными нервными клетками. Тела этих нейронов располагаются не в ЦНС, а в спинномозговых или чувствительных узлах черепномозговых нервов. Один из отростков, отходящий от тела нервной клетки, следует на периферию, к тому пли иному органу и заканчивается там сенсорным рецептором, который способен трансформировать энергию внешнего стимула (раздражения) в нервный импульс. Второй отросток направляется в ЦНС (спинной мозг) в составе задних корешков спинномозговых нервов или соответствующих чувствительных волокон черепномозговых нервов. Как правило, афферентные нейроны имеют небольшие размеры и хорошо разветвленный на периферии дендрит. Функции афферентных нейронов тесно связаны с функциями сенсорных рецепторов. Таким образом, афферентные нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды

Часть нейронов, принимающих участие в обработке сенсорной информации, которые можно рассматривать как афферентные нейроны высших отделов мозга, принято делить в зависимости от чувствительности к действию раздражителей на моносенсорные, бисенсорные и полисенсорные.

Моносенсорные нейроны располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя на мономодальные, бимодальные и полимодальные.

Бисенсорные нейроны чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры больших полушарий головного мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны - это чаще всего нейроны ассоциативных зон мозга, они способны реагировать на раздражение разных сенсорных систем.

2. Эфферентные нейроны (двигательные, моторные, секреторные, центробежные, сердечные, сосудодвигательные и пр.) предназначены для передачи информации от ЦНС на периферию, к рабочим органам. По своему строению эфферентные нейроны - это мультиполярные нейроны, аксоны которых продолжаются в виде соматических или вегетативных нервных волокон (периферических нервов) к соответствующим рабочим органам, в том числе к скелетным и гладким мышцам, а также к многочисленным железам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

3. Вставочные нейроны (интернейроны, ассоциативные, осуществляют передачу нервного импульса афферентного (чувствительного) нейрона на эфферентный (двигательный) нейрон. Вставочные нейроны располагаются в пределах серого вещества ЦНС. По своему строению это мультиполярные нейроны. Считается, что в функциональном отношении это наиболее важные нейроны ЦНС, так как на их долю приходится 97 %, а по некоторым данным, - даже 99,98 % от общего числа нейронов ЦНС. Область влияния вставочных нейронов определяется их строением, в том числе длиной аксона и числом коллатералей. По своей функции они могут быть возбуждающими или тормозными. При этом возбуждающие нейроны могут не только передавать информацию с одного нейрона на другой, но и модифицировать передачу возбуждения, в частности, усиливать ее эффективность.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор - ацетилхолин), адренергические (медиатор - норадреналин), серотонинергические (медиатор - серотонин), дофаминергические (медиатор - дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота - ГАМК), пуринергические (медиатор - АТФ и его производные), пептидергические (медиаторы - субстанция Р, энкефалины, эндорфины и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора, а также нейромодуляторы.

Другие виды классификаций нейронов. Нервные клетки разных отделов нервной системы могут быть активными вне воздействия, т. е. обладают свойством автоматии. Их называют фоновоактивными нейронами. Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение, т. е. они не обладают фоновой активностью.

Некоторые нейроны, по причине их особой значимости в деятельности мозга, получили дополнительные названия по имени исследователя, впервые их описавшего. Среди них пирамидные клетки Беца, локализованные в новой коре большого мозга; грушевидные клетки Пуркинье, клетки Гольджи, клетки Лугано (в составе коры мозжечка); тормозные клетки Реншоу (спинной мозг) и ряд других нейронов.

Среди сенсорных нейронов выделяют особую группу, которые получили название нейронов-детекторов. Нейроны-детекторы - это высокоспециализированные нейроны коры и подкорковых образований, способные избирательно реагировать на определенный признак сенсорного сигнала, имеющий поведенческое значение. Такие клетки выделяют в сложном раздражителе его отдельные признаки, что является необходимым этапом для опознания образов. При этом информация об отдельных параметрах стимула кодируется нейроном-детектором в виде потенциалов действия.

В настоящее время нейроны-детекторы выявлены во многих сенсорных системах человека и животных. Начальные этапы их изучения относятся к 60-м годам, когда были впервые идентифицированы ориентационные и дирекционные нейроны в сетчатке лягушки, в зрительной коре кошки, а также в зрительной системе человека (за открытие феномена ориентационной избирательности нейронов зрительной коры кошки Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии). Явление ориентационной чувствительности заключается в том, что нейрон-детектор дает максимальный по частоте и числу импульсов разряд только при определенном положении в рецептивном поле световой полоски или решетки; при другой ориентации полоски, или решетки, клетка не реагирует или отвечает слабо. Это означает, что имеет место острая настройка нейрона-детектора на потенциалы действия, отражающие соответствующий признак предмета. Дирекционные нейроны реагируют только на определенное направление движения стимула (при определенной скорости движения). Помимо ориентационных и дирекционных нейронов в зрительной системе обнаружены детекторы сложных физических явлений, встречающихся в жизни (движущаяся тень человека, циклические движения рук), детекторы приближения-удаления объектов. В новой коре, в базальных ганглиях, в таламусе обнаружены нейроны особо чувствительные к стимулам, сходным с человеческим лицом или какими-то его частями. Ответы этих нейронов регистрируются при любом расположении, размере, цвете «лицевого раздражителя». В зрительной системе выявлены нейроны с возрастающей способностью к обобщению отдельных признаков объектов, а также полимодальные нейроны, обладающие способностью реагировать на стимулы разных сенсорных модальностей (зрительно-слуховые, зрительно-соматосенсорные и т. д.).

Человеческий организм представляет собой довольно сложную и сбалансированную систему, функционирующую в соответствии с четкими правилами. Причем внешне кажется, что все довольно просто, но на самом деле наш организм - это удивительное взаимодействие каждой клеточки и органа. Дирижирует всем этим "оркестром" нервная система, состоящая из нейронов. Сегодня мы расскажем, что такое нейроны и насколько важную роль они играют в теле человека. Ведь именно они отвечают за наше психическое и физическое здоровье.

Каждый школьник знает, что руководит нами мозг и нервная система. Эти два блока нашего организма представлены клетками, каждая из которых называется нервный нейрон. Данные клетки отвечают за принятие и передачу импульсов от нейрона к нейрону и другим клетками человеческих органов.

Чтобы лучше понять, что такое нейроны, их можно представить в виде самого важного элемента нервной системы, который выполняет не только проводящую роль, но и функциональную. Удивительно, но до сих пор нейрофизиологи продолжают изучать нейроны и их работу по передаче информации. Конечно, они добились больших успехов в своих научных изысканиях и сумели раскрыть множество тайн нашего организма, но до сих пор не могут раз и навсегда ответить на вопрос, что такое нейроны.

Нервные клетки: особенности

Нейроны являются клетками и во многом похожи на других своих "собратьев", из которых состоит наше тело. Но они имеют ряд особенностей. Благодаря своей структуре такие клетки в организме человека, соединяясь, создают нервный центр.

Нейрон имеет ядро и окружен защитной оболочкой. Это роднит его со всеми остальными клетками, но на этом сходство и заканчивается. Остальные характеристики нервной клетки делают ее действительно уникальной:

  • Нейроны не делятся

Нейроны мозга (головного и спинного) не делятся. Это удивительно, но они останавливаются в развитии практически сразу же после своего возникновения. Ученые считают, что некая клетка-предшественница заканчивает деление еще до полного развития нейрона. В дальнейшем он наращивает только связи, но не свое количество в организме. С этим фактом связывают множество болезней мозга и центральной нервной системы. С возрастом часть нейронов отмирает, а оставшиеся клетки, в связи с малой активностью самого человека, не могут наращивать связи и заменить своих "собратьев". Все это приводит к разбалансировке организма и в некоторых случаях - к смертельному исходу.

  • Нервные клетки передают информацию

Нейроны могут передавать и получать информацию с помощью отростков - дендритов и аксонов. Они способны воспринимать определенные данные с помощью химических реакций и преобразовывать ее в электрический импульс, который, в свою очередь, по синапсам (связям) переходит до нужных клеток организма.

Уникальность нервных клеток учеными доказана, но на самом деле они сейчас знают о нейронах всего лишь 20% из того, что те на самом деле скрывают. Потенциал нейронов еще не раскрыт, в научном мире бытует мнение о том, что раскрытие одной тайны функционирования нервных клеток становится началом другой тайны. И этот процесс в настоящий момент представляется бесконечным.

Сколько нейронов в организме?

Эта информация доподлинно неизвестна, но нейрофизиологи предполагают, что нервных клеток в теле человека более ста миллиардов. При этом одна клетка имеет возможность образовывать до десяти тысяч синапсов, позволяющих быстро и эффективно связываться с другими клетками и нейронами.

Строение нейронов

Каждая нервная клетка состоит из трех частей:

  • тело нейрона (сома);
  • дендриты;
  • аксоны.

До сих пор неизвестно, какие из отростков развиваются в теле клетки первыми, но распределение обязанностей между ними вполне очевидно. Отросток нейрона аксон обычно формируется в единственном экземпляре, а вот дендритов может быть очень много. Их количество иногда доходит до нескольких сотен, чем больше дендритов у нервной клетки, тем с большим количеством клеток она может быть связана. К тому же, разветвленная сеть отростков позволяет передавать массу информации в кратчайшие сроки.

Ученые считают, что до формирования отростков нейрон расселяется по телу, и с момента их появления находится уже на одном месте без изменения.

Передача информации нервными клетками

Чтобы понять, насколько важны нейроны, необходимо понять, каким образом они выполняют свою функцию по передаче информации. Импульсы нейронов способны передвигаться в химическом и электрическом виде. Отросток нейрона дендрит получает информацию в качестве раздражителя и передает ее в тело нейрона, аксон передает ее в качестве электронного импульса к другим клеткам. Дендриты другого нейрона воспринимают электронный импульс сразу же или с помощью нейромедиаторов (химических передатчиков). Нейромедиаторы захватываются нейронами и в дальнейшем используются как свои собственные.

Виды нейронов по количеству отростков

Ученые, наблюдая за работой нервных клеток, разработали несколько видов их классификации. Одна из них делит нейроны по количеству отростков:

  • униполярные;
  • псевдоуниполярные;
  • биполярные;
  • мультиполярные;
  • безаксонные.

Классическим считается нейрон мультиполярный, он имеет один короткий аксон и сеть дендритов. Самыми малоизученными являются безаксонные нервные клетки, ученые знают только их местоположение - спинной мозг.

Рефлекторная дуга: определение и краткая характеристика

В нейрофизике существует такой термин, как "нейроны рефлекторной дуги". Без него довольно сложно получить полное представление о работе и значении нервных клеток. Раздражители, влияющие на нервную систему, называются рефлексами. Это основная деятельность нашей ЦНС, осуществляется она с помощью рефлекторной дуги. Ее можно представить своеобразной дорогой, по которой проходит импульс от нейрона до осуществления действия (рефлекса).

Этот путь можно разделить на несколько этапов:

  • восприятие раздражения дендритами;
  • передача импульса в тело клетки;
  • трансформация информации в электрический импульс;
  • передача импульса в орган;
  • изменение деятельности органа (физическая реакция на раздражитель).

Рефлекторные дуги могут быть разными и состоять из нескольких нейронов. К примеру, простая рефлекторная дуга образуется из двух нервных клеток. Одна из них получает информацию, а другая заставляет органы человека совершать определенные действия. Обычно такие действия называют безусловным рефлексом. Он возникает, когда человека ударяют, например, по коленной чашечке, и в случае прикосновения к горячей поверхности.

В основном, простая рефлекторная дуга проводит импульсы через отростки спинного мозга, сложносоставная рефлекторная дуга проводит импульс непосредственно в головной мозг, который, в свою очередь, обрабатывает ее и может откладывать на хранение. В дальнейшем при получении схожего импульса мозг отправляет нужную команду к органам для совершения определенной совокупности действий.

Классификация нейронов по функционалу

Классифицировать нейроны можно по их непосредственному назначению, ведь каждая группа нервных клеток предназначена для определенных действий. Виды нейронов представлены следующим образом:

  1. Чувствительные

Данные нервные клетки предназначены для восприятия раздражения и трансформации его в импульс, перенаправляющийся в мозг.

Воспринимают информацию и передают импульс к мышцам, приводящим в движение части тела и органы человека.

3. Вставочные

Данные нейроны осуществляют сложную работу, они находятся в центре цепочки между чувствительными и двигательными нервными клетками. Подобные нейроны принимают информацию, проводят предварительную обработку и передают импульс-команду.

4. Секреторные

Секреторные нервные клетки синтезируют нейрогормоны и имеют особенное строение с большим количеством мембранных мешочков.

Двигательные нейроны: характеристика

Эфферентные нейроны (двигательные) имеют строение, идентичное другим нервным клеткам. Их сеть дендритов является наиболее разветвленной, а аксоны протягиваются к мышечным волокнам. Они заставляют мышцу сокращаться и распрямляться. Самым длинным в теле человека как раз является аксон двигательного нейрона, идущий до большого пальца ноги от поясничного отдела. В среднем его длина составляет около одного метра.

Практически все эфферентные нейроны располагаются в спинном мозге, ведь именно он отвечает за большинство наших бессознательных движений. Это касается не только безусловных рефлексов (к примеру, моргания), но и любых действий, о которых мы не задумываемся. Когда мы всматриваемся в какой-то предмет, то импульсы посылает к глазному нерву головной мозг. А вот передвижение глазного яблока влево и вправо осуществляется посредством команд спинного мозга, это бессознательные движения. Поэтому с течением возраста, когда увеличивается совокупность бессознательных привычных действий, важность двигательных нейронов представляется в новом свете.

Виды двигательных нейронов

В свою очередь, эфферентные клетки имеют определенную классификацию. Они делятся на два следующих вида:

  • а-мотонейроны;
  • у-мотонейроны.

Первый вид нейронов имеет более плотную структуру волокна и присоединяется к различным мышечным волокнам. Один такой нейрон может задействовать различное количество мышц.

У-мотонейроны немного слабее своих "собратьев", они не могут задействовать несколько мышечных волокон одновременно и отвечают за натяжение мышцы. Можно сказать, что оба вида нейронов являются контролирующим органом двигательной активности.

К каким мышцам присоединяются двигательные нейроны?

Аксоны нейронов связаны с несколькими видами мышц (они являются рабочими), которые классифицируются как:

  • анимальные;
  • вегетативные.

Первая группа мышц представлена скелетными, а вторая относится к категории гладких мышц. Разными являются и способы прикрепления к мышечному волокну. Скелетные мышцы в месте соприкосновения с нейронами образуют своеобразные бляшки. Вегетативные нейроны связываются с гладкими мышцами посредством небольших вздутий или пузырьков.

Заключение

Невозможно представить, как функционировал бы наш организм в отсутствие нервных клеток. Они ежесекундно выполняют невероятно сложную работу, отвечая за наше эмоциональное состояние, вкусовые пристрастия и физическую активность. Многие свои тайны нейроны еще не раскрывают. Ведь даже самая простая теория о невосстановлении нейронов у некоторых ученых вызывает множество споров и вопросов. Они готовы доказать, что в некоторых случаях нервные клетки способны не только образовывать новые связи, но и самовоспроизводиться. Конечно, пока это всего лишь теория, но она вполне может оказаться жизнеспособной.

Работа по изучению функционирования центральной нервной системы крайне важна. Ведь благодаря открытиям в этой области фармацевты смогут разрабатывать новые препараты для активации деятельности головного мозга, а психиатры будут лучше понимать природу многих заболеваний, которые сейчас кажутся неизлечимыми.

Нервная система контролирует, координирует и регулирует согласованную работу всех систем органов, поддержание постоянства состава его внутренней среды (благодаря этому организм человека функционирует как единое целое). При участии нервной системы осуществляется связь организма с внешней средой.

Нервная ткань

Нервная система образована нервной тканью , которая состоит из нервных клеток - нейронов и мелких клеток спутников (глиальных клеток ), которых примерно в 10 раз больше, чем нейронов.

Нейроны обеспечивают основные функции нервной системы: передачу, переработку и хранение информации. Нервные импульсы имеют электрическую природу и распространяются по отросткам нейронов.

Клетки спутники выполняют питательную, опорную и защитную функции, способствуя росту и развитию нервных клеток.

Строение нейрона

Нейрон - основная структурная и функциональная единица нервной системы.

Структурно-функциональной единицей нервной системы является нервная клетка – нейрон . Его основными свойствами являются возбудимость и проводимость.

Нейрон состоит из тела и отростков .

Короткие, сильно ветвящиеся отростки - дендриты , по ним нервные импульсы поступают к телу нервной клетки. Дендритов может быть один или несколько.

Каждая нервная клетка имеет один длинный отросток - аксон , по которому импульсы направляются от тела клетки . Длина аксона может достигать нескольких десятков сантиметров. Объединяясь в пучки, аксоны образуют нервы .

Длинные отростки нервной клетки (аксоны) покрыты миелиновой оболочкой . Скопления таких отростков, покрытых миелином (жироподобным веществом белого цвета), в центральной нервной системе образуют белое вещество головного и спинного мозга.

Короткие отростки (дендриты) и тела нейронов не имеют миелиновой оболочки, поэтому они серого цвета. Их скопления образуют серое вещество мозга.

Нейроны соединяются друг с другом таким образом: аксон одного нейрона присоединяется к телу, дендритам или аксону другого нейрона. Место контакта одного нейрона с другим называется синапсом . На теле одного нейрона насчитывается 1200–1800 синапсов.

Синапс - пространство между соседними клетками, в котором осуществляется химическая передача нервного импульса от одного нейрона к другому.

Каждый синапс состоит из трёх отделов :

  1. мембраны, образованной нервным окончанием (пресинаптическая мембрана );
  2. мембраны тела клетки (постсинаптическая мембрана );
  3. синаптической щели между этими мембранами

В пресинаптической части синапса содержится биологически активное вещество (медиатор ), которое обеспечивает передачу нервного импульса с одного нейрона на другой. Под влиянием нервного импульса медиатор выходит в синаптическую щель, действует на постсинаптическую мембрану и вызывает возбуждение в теле клетки следующего нейрона. Так через синапс передается возбуждение от одного нейрона к другому.

Распространение возбуждения связано с таким свойством нервной ткани, как проводимость .

Типы нейронов

Нейроны различаются по форме

В зависимости от выполняемой функции выделяют следующие типы нейронов:

  • Нейроны, передающие сигналы от органов чувств в ЦНС (спинной и головной мозг), называют чувствительными . Тела таких нейронов располагаются вне ЦНС, в нервных узлах (ганглиях). Нервный узел представляет собой скопление тел нервных клеток за пределами центральной нервной системы.
  • Нейроны, передающие импульсы от спинного и головного мозга к мышцам и внутренним органам называют двигательными . Они обеспечивают передачу импульсов от ЦНС к рабочим органам.
  • Связь между чувствительными и двигательными нейронами осуществляется с помощью вставочных нейронов через синаптические контакты в спинном и головном мозге. Вставочные нейроны лежат в пределах ЦНС (т.е. тела и отростки этих нейронов не выходят за пределы мозга).

Скопление нейронов в центральной нервной системе называется ядром (ядра головного, спинного мозга).

Спинной и головной мозг связаны со всеми органами нервами .

Нервы - покрытые оболочкой структуры, состоящие из пучков нервных волокон, образованных в основном аксонами нейронов и клетками нейроглии.

Нервы обеспечивают связь центральной нервной системы с органами, сосудами и кожным покровом.

Нейрон – структурно-функциональная единица нервной системы, представляет собой электрически возбудимую клетку, которая обрабатывает и передает информацию посредством электрических и химических сигналов.

Развитие нейрона.

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.



Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нервная клетка - нейрон - является структурной и функциональной единицей нервной системы. Нейрон - клетка, способная воспринимать раздражение, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их другим клеткам. Нейрон состоит из тела и отростков - коротких, ветвящихся (дендритов) и длинного (аксона). Импульсы всегда движутся по дендритам к клетке, а по аксону - от клетки.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными . Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточ­ными .

В зависимости от числа и рас­положения отростков нейроны делятся на униполярные, биполярные и мультиполярные .

Строение нейрона

Нервная клетка (нейрон) со­стоит из тела (перикариона ) с ядром и нескольких отростков (рис. 33).

Перикарион является метаболическим центром, в кото­ром протекает большинство син­тетических процессов, в частно­сти, синтез ацетилхолина. В теле клетки есть рибосомы, микротру­бочки (нейротрубочки) и другие органоиды. Нейроны формируют­ся из клеток-нейробластов, кото­рые еще не имеют выростов. От тела нервной клетки отходят ци­топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки , проводящие импульсы к телу клетки, называются дендритами . Тонкие и длинные отростки, прово­дящие импульсы от перикариона к другим клеткам или перифериче­ским органам, называются аксонами . Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо­собность нервных клеток делиться утрачивается.

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах - синапсах. Вздутые окончания содержат мел­кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и ми­тохондрии (рис. 34). Разветвлен­ные отростки нервных клеток пронизывают весь организм жи­вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней­рона к нейрону или к мышечным клеткам. Материал с сайтаhttp://doklad-referat.ru

Функции нейронов

Основная функция нейронов - обмен информации (нервными сигналами) между частями тела. Нейроны восприим­чивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру­гим клеткам (нервным, мышечным, железистым). По нейронам прохо­дят электрические импульсы, и это делает возможной коммуни­кацию между рецепторами (клетками или органами, воспринимаю­щими раздражение) и эффекторами (тканями или органами, отвечаю­щими на раздражение, например мышцами).

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза , где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.

Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.

Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – , а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга. Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга. Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток. В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».