Законы сложения перемещений. Сложение скоростей. Кинематика - это просто

Давайте в нескольких статьях рассмотрим подробно и внимательно закон сложения скоростей и решения задач, с использованием этого закона.

Для начала, вспомним, что часто мы наблюдаем довольно сложные типы движения, когда тело движется относительно системы отсчёта, которая в тоже время движется относительно Земли. И первая трудность здесь заключается в выборе подвижной и неподвижной систем отсчёта. Сегодня мы это и разберём. Если брать за неподвижную систему отсчета дерево, растущее на Земле (а чаще всего именно землю берут за неподвижную систему отсчёта), то довольно легко ввести другие системы отсчёта.

Попытаемся это сделать на следующих примерах:

1. Пассажир движется в движущемся автобусе (или по движущемуся эскалатору).

Здесь неподвижная система отсчета – Дерево , а подвижная система отсчета – автобус (эскалатор). И тогда

  • скорость пассажира относительно автобуса (эскалатора) – скорость пассажира (Т ела) О тносительно П одвижной системы отсчета (автобуса; эскалатора) (ϑ ТоП),
  • скорость пассажира относительно Земли (дерева) – скорость пассажира (Т ела) О З емли) (ϑ ТоЗ),
  • скорость автобуса (эскалатора) – скорость П одвижной системы отсчета (автобуса; эскалатора) О тносительно неподвижной (З емли) (ϑ ПоЗ).

2. Легковая машина и грузовик движутся по шоссе (даже не важно, в каком направлении).

В качестве неподвижной системы отсчета оставляем дерево, растущее на Земле, за подвижную систему отсчета возьмём грузовую машину. Тогда,

  • скорость легковой машины относительно грузовой – скорость легковой машины (Т ела) О тносительно П одвижной системы отсчета (грузовой машины) (ϑ ТоП),
  • скорость легковой машины относительно Земли (Дерева) скорость легковой машины (Т ела) О тносительно неподвижной системы отсчета (З емли) (ϑ ТоЗ). Эту скорость показывает спидометр – прибор, для измерения скорости, который есть в каждой машине.
  • с корость грузовой машины скорость П одвижной системы отсчета (грузовой машины) О тносительно неподвижной (З емли) (ϑ ПоЗ). Эту скорость показывает спидометр грузового автомобиля.

3. Лодка движется по реке.

Опять, в качестве неподвижной системы отсчета дерево , растущее на Земле. За неподвижную систему отсчета возьмём течение реки (чтобы это течение визуализировать, представьте опавший лист на поверхности воды). Тогда,

  • скорость лодки относительно листка скорость лодки (Т ела) О тносительно П одвижной системы отсчета (течения реки) (ϑ ТоП), т.е скорость лодки в стоячей воде ,
  • скорость лодки относительно Земли (дерева) скорость лодки (Т ела) О тносительно неподвижной системы отсчета (З емли) (ϑ ТоЗ),
  • скорость течения (листка) скорость П одвижной системы отсчета (течения реки) О тносительно неподвижной (З емли) (ϑ ПоЗ).

4. Падает капля дождя.

Опять, в качестве неподвижной системы отсчета дерево, растущее на Земле, подвижной системы отсчета ветер (чтобы это визуализировать, представьте летящий оторвавшийся листок). Тогда,

  • скорость капли относительно ветра скорость капли (Т ела) О тносительно П одвижной системы отсчета (ветра) (ϑ ТоП),
  • скорость капли относительно Земли (дерева) скорость капли (Т ела) О тносительно неподвижной системы отсчета (З емли) (ϑ ТоЗ),
  • скорость ветра скорость П одвижной системы отсчета (ветра) О тносительно неподвижной (З емли) (ϑ ПоЗ).

Разобравшись, с выбором систем отсчёта, введём и выучим закон сложения скоростей:

Скорость тела относительно неподвижной системы отсчета (ϑ ТоЗ ) равна векторной сумме скорости тела относительно подвижной системы отсчета (ϑ ТоП ) и скорости подвижной системы отсчета относительно неподвижной (ϑ ПоЗ ).

При решении задач исходное выражение всегда будет в таком векторном виде. А вот как решать, приведённые выше задачи, это мы обсудим в следующих статьях.

Остались вопросы? Не знаете, как решать задачи на закон сложения скоростей?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени.

В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета – совокупность системы координат и часов, связанных с телом, относительно которого изучается движение.

Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона

Преобразование координат и времени

Закон сложения скоростей является следствием преобразований координат и времени.

Пусть частица в момент времени t’ находится в точке (x’, y’, z’) , а через малое время Δt’ в точке (x’ + Δx’, y’ + Δy’, z’ + Δz’) системы отсчета K’ . Это два события в истории дви-жущейся частицы. Имеем:

Δx’ = v x ’ Δt’,

где
v x ’ x -я компонента скорости частицы в системе K’.

Аналогичные соотношения имеют место для остальных компонент.

Разности координат и промежутки времени (Δx, Δy, Δz, Δt) преобразуются так же, как координаты:

Δx = Δx’ + VΔt’,

Δy = Δу’ ,

Δz = Δz’,

Δt = Δt’.

Отсюда следует, что скорость той же частицы в системе K будет иметь компоненты:

v x = Δx / Δt = (Δx’ + VΔt’) / Δt = v x ’ + V,

v y = v y ’,

v z = v z ’.

Это закон сложения скоростей . Его можно выразить в векторной форме:

v̅ = v̅’ + V

(координатные оси в системах K и K’ параллельны).

Закон сложения скоростей

Если тело движется относительно системы отсчета К 1 со скоростью V 1 , а сама система отсчета К 1 движется относительно другой системы отсчета К 2 со скоростью V , то скорость тела (V 2 ) относительно второй системы отсчета К 2 равна геометрической сумме векторов V 1 и V .

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета.

\(\vec{V_2} = \vec{V_1} + \vec{V} \)

где всегда
К 2 - неподвижная система отсчета
V 2 - скорость тела относительно неподвижной системы отсчета (К 2 )

К 1 - подвижная система отсчета
V 1 - скорость тела относительно подвижной системы отсчета (К 1 )

V - скорость подвижной системы отсчета (К 1 ) относительно неподвижной системы отсчета (К 2 )

Закон сложения ускорений для поступательного движения

При поступательном движении тела относительно подвижной системы отсчёта и подвижной системы отсчёта относительно неподвижной, вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта $\overrightarrow{a}=\frac{d\overrightarrow{v}}{dt}=\ {\overrightarrow{a}}_{АБС}$ (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета ${\overrightarrow{a}}_r=\frac{d{\overrightarrow{v}}_r}{dt}={\overrightarrow{a}}_{ОТН}$ (относительного ускорения) и вектора ускорения подвижной системы отсчёта относительно неподвижной ${\overrightarrow{a}}_е=\frac{d{\overrightarrow{v}}_е}{dt}={\overrightarrow{a}}_{ПЕР}$ (переносного ускорения):

\[{\overrightarrow{a}}_{АБС}={\overrightarrow{a}}_{ОТН}+{\overrightarrow{a}}_{ПЕР}\]

В общем случае, когда движение материальной точки (тела) является криволинейным, его в каждый момент времени можно представить как комбинацию поступательного движения материальной точки (тела) относительно подвижной системы отсчёта со скоростью \({\overrightarrow{v}}_r \) , и вращательного движения подвижной системы отсчёта относительно неподвижной с угловой скоростью \({\overrightarrow{\omega }}_e \) . В этом случае, при сложении ускорений, наряду с относительным и переносным ускорением необходимо учитывать и ускорение Кориолиса \(a_c=2{\overrightarrow{\omega }}_e\times {\overrightarrow{v}}_r \) , которое характеризует изменение относительной скорости, вызванное переносным движением, и изменение переносной скорости, вызванное относительным движением.

Теорема Кориолиса

Вектор ускорения материальной точки (тела) относительно неподвижной системы отсчёта \(\overrightarrow{a}=\frac{d\overrightarrow{v}}{dt}=\ {\overrightarrow{a}}_{АБС} \) (абсолютное ускорение) является суммой вектора ускорения тела относительно подвижной системы отсчета \({\overrightarrow{a}}_r=\frac{d{\overrightarrow{v}}_r}{dt}={\overrightarrow{a}}_{ОТН} \) (относительного ускорения), вектора ускорения подвижной системы отсчёта относительно неподвижной \({\overrightarrow{a}}_е=\frac{d{\overrightarrow{v}}_е}{dt}={\overrightarrow{a}}_{ПЕР} \) (переносного ускорения), и кориолисова ускорения \(a_c=2{\overrightarrow{{\mathbf \omega }}}_e\times {\overrightarrow{v}}_r={\overrightarrow{a}}_{КОР} \) :

\[{\overrightarrow{a}}_{АБС}={\overrightarrow{a}}_{ОТН}+{\overrightarrow{a}}_{ПЕР}+{\overrightarrow{a}}_{КОР}\]

Абсолютное перемещение равно сумме относительного и переносного перемещений.

Перемещение тела в неподвижной системе отсчета равно сумме перемещений: тела в подвижной системе отсчета и самой подвижной системы отсчета относительно неподвижной.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

«Физика - 10 класс»

Изменится ли движение, если мы будем его описывать в разных системах координат?
В любой ли системе координат удобно описывать движение?

Пусть по реке плывёт моторная лодка и нам известна её скорость 1 относительно воды, точнее, относительно системы координат K 1 , движущейся вместе с водой (рис. 1.19).

Такую систему координат можно связать, например, с мячом, выпавшим из лодки и плывущим по течению. Если известна ещё и скорость течения реки относительно системы координат К 2 , связанной с берегом, т. е. скорость системы координат Кх относительно системы координат К 2 , то можно определить скорость лодки 2 относительно берега.

За промежуток времени Δt перемещения лодки и мяча относительно берега равны Δ 2 и Δ (рис. 1.20), а перемещение лодки относительно мяча равно Δ 1 . Из рисунка 1.20 видно, что

Δ 2 = Δ 1 + Δ. (1.7)

Разделив левую и правую части уравнения (1.7) на Δt, получим

Учтём также что отношения перемещений к интервалу времени равны скоростям. Поэтому

Скорости складываются геометрически, как и все другие векторы. Уравнение (1.8) называют законом сложения скоростей .


Закон сложения скоростей

Если тело движется относительно некоторой системы координат К 1 со скоростью и сама система К 1 движется относительно другой системы координат К 2 со скоростью 1 , то скорость тела относительно второй системы равна геометрической сумме скоростей 1 и .


Как запишется классический закон сложения скоростей, если (1.9) неподвижной считать систему, связанную с мячом, а подвижной - с берегом?

Как и любое векторное уравнение, уравнение (1.8) представляет собой компактную запись скалярных уравнений, в данном случае - для сложения проекций скоростей движения на плоскости:

υ 2x = υ 1x + υ x ,
υ 2y = υ 1y + υ y . (1.9)

Проекции скоростей складываются алгебраически.

Закон сложения скоростей позволяет определять скорость тела относительно разных систем отсчёта, движущихся относительно друг друга.

Классический закон сложения скоростей справедлив для тел, движущихся со скоростями, много меньшими скорости света.

Часто скорость тела относительно неподвижной системы координат называют абсолютной скоростью , относительно подвижной системы координат - относительной, а скорость тела отсчёта, связанного с подвижной системой, относительно неподвижной - переносной скоростью .

Тогда закон сложения скоростей имеет вид a = отн + пер.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Кинематика - Физика, учебник для 10 класса - Класс!ная физика

Физика и познание мира --- Что такое механика ---

1.4. Относительность движения

1.4.1. Закон сложения перемещений и закон сложения скоростей

Механическое движение одного и того же тела выглядит по-разному для разных систем отсчета.

Для определенности будем использовать две системы отсчета (рис. 1.33):

  • K - неподвижную систему отсчета;
  • K ′ - подвижную систему отсчета.

Рис. 1.33

Система K ′ движется относительно системы отсчета K в положительном направлении оси Ox со скоростью u → .

Пусть в системе отсчета K материальная точка (тело) движется со скоростью v → и за интервал времени ∆t совершает перемещение Δ r → . Относительно системы отсчета K ′ эта материальная точка имеет скорость v → ′ и за указанный интервал времени ∆t совершает перемещение Δ r ′ → .

Закон сложения перемещений

Перемещения материальной точки в неподвижной (K ) и движущейся (K ′) системах отсчета (Δ r → и Δ r ′ → соответственно) различаются между собой и связаны законом сложения перемещений :

Δ r → = Δ r ′ → + u → Δ t ,

где Δ r → - перемещение материальной точки (тела) за интервал времени ∆t в неподвижной системе отсчета K ; Δ r ′ → - перемещение материальной точки (тела) за интервал времени ∆t в движущейся системе отсчета K ′; u → - скорость системы отсчета K ′, движущейся относительно системы отсчета K .

Закону сложения перемещений соответствует «треугольник перемещений » (рис. 1.34).

Закон сложения перемещений при решении задач иногда целесообразно записывать в координатной форме :

Δ x = Δ x ′ + u x Δ t , Δ y = Δ y ′ + u y Δ t , }

где ∆x и ∆y - изменение координат x и y материальной точки (тела) за интервал времени ∆t в системе отсчета K ; ∆x ′ и ∆y ′ - изменение соответствующих координат материальной точки (тела) за интервал времени ∆t в системе отсчета K ′; u x и u y - проекции скорости u → системы отсчета K ′, движущейся относительно системы отсчета K , на координатные оси.

Закон сложения скоростей

Скорости материальной точки в неподвижной (K ) и движущейся (K ′) системах отсчета (v → и v → ′ соответственно) также различаются между собой и связаны законом сложения скоростей :

v → = v → ′ + u → ,

где u → - скорость системы отсчета K ′, движущейся относительно системы отсчета K .

Закону сложения скоростей соответствует «треугольник скоростей » (рис. 1.35).

Рис. 1.35

Закон сложения скоростей при решении задач иногда целесообразно записывать в проекциях на координатные оси :

v x = v ′ x + u x , v y = v ′ y + u y , }

Относительная скорость движения двух тел

Для определения относительной скорости движения двух тел удобно пользоваться следующим алгоритмом:

4) векторы v → , v → ′ и u → изобразить в системе координат xOy ;

5) записать закон сложения скоростей в виде

v → = v → ′ + u → или v x = v ′ x + u x , v y = v ′ y + u y ; }

6) выразить v → ′:

v → ′ = v → − u →


или v ′ x и v ′ y:

v ′ x = v x − u x , v ′ y = v y − u y ; }

7) найти модуль вектора относительной скорости v → ′ по формуле

v ′ = v ′ x 2 + v ′ y 2 ,

где v x и v y - проекции вектора скорости v → материальной точки (тела) в системе отсчета K на координатные оси; v ′ x и v ′ y - проекции вектора скорости v → ′ материальной точки (тела) в системе отсчета K ′ на координатные оси; u x и u y - проекции скорости u → системы отсчета K ′, движущейся относительно системы отсчета K , на координатные оси.

Для определения относительной скорости движения двух тел, движущихся вдоль одной координатной оси , удобно пользоваться следующим алгоритмом:

1) выяснить, какое из тел считается системой отсчета; скорость этого тела обозначить как u → ;

2) скорость второго тела обозначить как v → ;

3) относительную скорость тел обозначить как v → ′ ;

4) векторы v → , v → ′ и u → изобразить на координатной оси Ox ;

5) записать закон сложения скоростей в виде:

v x = v ′ x + u x ;

6) выразить v ′ x:

v ′ x = v x − u x ;

7) найти модуль вектора относительной скорости v ′ → по формуле

v ′ = | v ′ x | ,

где v x и v y - проекции вектора скорости v → материальной точки (тела) в системе отсчета K на координатные оси; v ′ x и v ′ y - проекции вектора скорости v → ′ материальной точки (тела) в системе отсчета K ′ на координатные оси; u x и u y - проекции скорости u → системы отсчета K ′, движущейся относительно системы отсчета K , на координатные оси.

Пример 26. Первое тело движется со скоростью 6,0 м/с в положительном направлении оси Ox , а второе - со скоростью 8,0 м/с в ее отрицательном направлении. Определить модуль скорости первого тела в системе отсчета, связанной со вторым телом.

Решение. Подвижной системой отсчета является второе тело; проекция скорости u → подвижной системы отсчета на ось Ox равна:

u x = −8,0 м/с,


так как движение второго тела происходит в отрицательном направлении указанной оси.

Первое тело относительно неподвижной системы отсчета имеет скорость v → ; ее проекция на ось Ox равна:

v x = 6,0 м/с,


так как движение первого тела происходит в положительном направлении указанной оси.

Закон сложения скоростей для решения данной задачи целесообразно записать в проекции на координатную ось, т.е. в следующем виде:

v x = v ′ x + u x ,

где v ′ x - проекция скорости первого тела относительно подвижной системы отсчета (второго тела).

Величина v ′ x является искомой; ее значение определяется формулой

v ′ x = v x − u x .

Произведем вычисление:

v ′ x = 6,0 − (− 8,0) = 14 м/с.

Пример 29. Спортсмены бегут друг за другом цепочкой длиной 46 м с одинаковой скоростью. Навстречу им бежит тренер со скоростью, втрое меньшей скорости спортсменов. Каждый спортсмен, поравнявшись с тренером, поворачивает и бежит назад с прежней скоростью. Какова станет длина цепочки, когда все спортсмены будут бежать в обратном направлении?

Решение. Пусть движение спортсменов и тренера происходит вдоль оси Ox , начало которой совпадает с положением последнего спортсмена. Тогда уравнения движения относительно Земли имеют следующий вид:

  • последнего спортсмена -

    x 1 (t ) = vt ;

  • тренера -

    x 2 (t) = L − 1 3 v t ;

  • первого спортсмена -

    x 3 (t ) = L − vt ,

    где v - модуль скорости каждого спортсмена; 1 3 v - модуль скорости тренера; L - первоначальная длина цепочки; t - время.

Свяжем подвижную систему отсчета с тренером.

Уравнение движения последнего спортсмена относительно подвижной системы отсчета (тренера) обозначим x ′(t ) и найдем из закона сложения перемещений, записанного в координатной форме:

x (t ) = x ′(t ) + X (t ), т.е. x ′(t ) = x (t ) − X (t ),

X (t) = x 2 (t) = L − 1 3 v t -

уравнение движения тренера (подвижной системы отсчета) относительно Земли;

x (t ) = x 1 (t ) = vt ;


уравнение движения последнего спортсмена относительно Земли.

Подстановка выражений x (t ), X (t ) в записанное уравнение дает:

x ′ (t) = x 1 (t) − x 2 (t) = v t − (L − 1 3 v t) = 4 3 v t − L .

Данное уравнение представляет собой уравнение движения последнего спортсмена относительно тренера. В момент встречи последнего спортсмена и тренера (t = t 0) их относительная координата x ′(t 0) обращается в ноль:

4 3 v t 0 − L = 0 .

Уравнение позволяет найти указанный момент времени:

В этот момент времени все спортсмены начинают бежать в противоположном направлении. Длина цепочки спортсменов определяется разностью координат первого x 3 (t 0) и последнего x 1 (t 0) спортсмена в указанный момент времени:

l = | x 3 (t 0) − x 1 (t 0) | ,


или в явном виде:

l = | (L − v t 0) − v t 0 | = | L − 2 v t 0 | = | L − 2 v 3 L 4 v | = 0,5 L = 0,5 ⋅ 46 = 23 м.

2.СКОРОСТЬ ТЕЛА.ПРЯМОЛИНЕЙНОЕ РАВНОМЕРНОЕ ДВИЖЕНИЕ.

Скорость – это количественная характеристика движения тела.

Средняя скорость – это физическая величина, равная отношению вектора перемещения точки к промежутку времени Δt, за который произошло это перемещение. Направление вектора средней скорости совпадает с направлением вектора перемещения . Средняя скорость определяется по формуле:

Мгновенная скорость , то есть скорость в данный момент времени – это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Иными словами, мгновенная скорость в данный момент времени – это отношение очень малого перемещения к очень малому промежутку времени, за который это перемещение произошло.

Вектор мгновенной скорости направлен по касательной к траектории движения тела (рис. 1.6).

Рис. 1.6. Вектор мгновенной скорости.

В системе СИ скорость измеряется в метрах в секунду, то есть единицей скорости принято считать скорость такого равномерного прямолинейного движения, при котором за одну секунду тело проходит путь в один метр. Единица измерения скорости обозначается м/с . Часто скорость измеряют в других единицах. Например, при измерении скорости автомобиля, поезда и т.п. обычно используется единица измерения километр в час:

1 км/ч = 1000 м / 3600 с = 1 м / 3,6 с

1 м/с = 3600 км / 1000 ч = 3,6 км/ч

Сложение скоростей(возможно не обязательно тот же вопрос будет и в 5).

Скорости движения тела в различных системах отсчёта связывает между собой классический закон сложения скоростей .

Скорость тела относительно неподвижной системы отсчёта равна сумме скоростей тела в подвижной системе отсчёта и самой подвижной системы отсчёта относительно неподвижной.

Например, пассажирский поезд движется по железной дороге со скоростью 60 км/ч. По вагону этого поезда идет человек со скоростью 5 км/ч. Если считать железную дорогу неподвижной и принять её за систему отсчёта, то скорость человека относительно системы отсчёта (то есть относительно железной дороги), будет равна сложению скоростей поезда и человека, то есть

60 + 5 = 65, если человек идёт в том же направлении, что и поезд

60 – 5 = 55, если человек и поезд движутся в разных направлениях

Однако это справедливо только в том случае, если человек и поезд движутся по одной линии. Если же человек будет двигаться под углом, то придётся учитывать этот угол, вспомнив о том, что скорость – это векторная величина .

Красным выделен пример + Закон сложения перемещения (думаю это не надо учить, но для общего развития можно и прочитать)

А теперь рассмотрим описанный выше пример более подробно – с деталями и картинками.

Итак, в нашем случае железная дорога – это неподвижная система отсчёта . Поезд, который движется по этой дороге – это подвижная система отсчёта . Вагон, по которому идёт человек, является частью поезда.

Скорость человека относительно вагона (относительно подвижной системы отсчёта) равна 5 км/ч. Обозначим её буквой Ч.

Скорость поезда (а значит и вагона) относительно неподвижной системы отсчёта (то есть относительно железной дороги) равна 60 км/ч. Обозначим её буквой В. Иначе говоря, скорость поезда – это скорость подвижной системы отсчёта относительно неподвижной системы отсчёта.

Скорость человека относительно железной дороги (относительно неподвижной системы отсчёта) нам пока неизвестна. Обозначим её буквой .

Свяжем с неподвижной системой отсчёта (рис. 1.7) систему координат ХОY, а с подвижной системой отсчёта – систему координат X П О П Y П. А теперь попробуем найти скорость человека относительно неподвижной системы отсчёта, то есть относительно железной дороги.

За малый промежуток времени Δt происходят следующие события:

Тогда за этот промежуток времени перемещение человека относительно железной дороги:

Это закон сложения перемещений . В нашем примере перемещение человека относительно железной дороги равно сумме перемещений человека относительно вагона и вагона относительно железной дороги.

Рис. 1.7. Закон сложения перемещений.

Закон сложения перемещений можно записать так:

= Δ Ч Δt + Δ B Δt

Скорость человека относительно железной дороги равна:

Скорость человека относительно вагона:

Δ Ч = Ч / Δt

Скорость вагона относительно железной дороги:

Поэтому скорость человека относительно железной дороги будет равна:

Это закон сложения скоростей :

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

v x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид.