Условия расположения корней квадратного трехчлена. Решение задач с параметрами. Квадратные уравнения с параметрами

Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Уравнения содержащие параметр.
Урок 2: Расположение корней квадратного уравнения в зависимости
от параметра.
Цель: Формировать умение распознавать положение параболы в
зависимости от ее коэффициентов.
I.
Объяснение нового материала.
Ход урока
Решение многих задач с параметрами, предлагаемых на экзаменах, в
частности, на ЕГЭ по математике, требует умения правильно
формулировать необходимые и достаточные условия, соответствующие
различным случаям расположения корней квадратного трёхчлена на
числовой оси.
Рассмотрим пример: найдите все значения параметра с, при которых оба

меньше, чем – 1.
1
2). Теперь нужно
Уравнение имеет два различных корня при D > 0 (с >
составить систему уравнений когда х1>−1 и х2>−1 . Ее будет
достаточно сложно решить.
Для решения заданий такого типа существует специальный метод.
Сначала рассмотрим квадратичную функцию f(x) = ax2+bx+c,a≠0.
Запишем ее в виде f(x)=a(x+ b
2a)
Вспомним основные характеристики параболы, позволяющие построить ее
график. При решении заданий с параметрами эти характеристики
применяются в другом контексте.
+ 4ac−b2
4a
2
.
1. Прямая x=−b
2a – ось параболы, которая является одновременно
осью ее симметрии. Вершиной параболы является точка (
−b
2a
;4ac−b2
4a).
2. Знак числа а показывает, куда направлены ветви параболы: если а >
0, то вверх, если а < 0, то вниз.

3. Дискриминант D=b2−4ac показывает, пересекается ли парабола с
осью абсцисс.
Объединим вышесказанное в таблице:
Расположение графика по отношению к оси абсцисс в зависимости от
знаков коэффициента а и дискриминанта.
а > 0
а < 0
D > 0
D = 0
D < 0
Утверждение 1: Оба корня меньше числа А, то есть х1 < А и х2 < А тогда
и только тогда, когда { D>0,
a>0,
x0f(A)>0
или { D>0,
a<0,
x0f(A)<0.
Утверждение 2: Корни лежат по разные стороны от числа А, то есть х1 <
А < х2 , тогда и только тогда, когда { a>0,
системы можно заменить формулой a⋅f(A)<0.
f(A)<0 или { a<0,
f(A)>0.
Эти две
Утверждение 3: Оба корня больше числа А, то есть х1 > А и х2 > А, тогда
и только тогда, когда { D>0,
a>0,
x0>A,
f(A)>0
или { D>0,
a<0,
x0>A,
f(A)<0.

Утверждение 4: Оба корня лежат между точками А и В, то есть А < х1 <
a<0,
А<х0<В,
f(A)<0,
f(В)<0.
a>0,
А<х0<В,
f(A)>0,
f(В)>0
В и А < х2 < В, тогда и только тогда, когда { D>0,
> х2 и А < х1 < В, тогда и только тогда, когда { a>0,
> х2 и А < х2 < В, тогда и только тогда, когда { a>0,
или { D>0,
f(В)>0 или { a<0,
или { a<0,
f(A)>0,
f(В)<0
f(A)>0,
f(В)<0.
f(A)<0,
f(В)>0.
f(A)<0,
Утверждение 5: Больший корень лежит между точками А и В, то есть х1
Утверждение 6: Меньший корень лежит между точками А и В, то есть х1
Утверждение 7: Корни лежат по разные стороны от отрезка
есть х1 < А < В < х2, тогда и только тогда, когда { a>0,
f(A)<0,
f(В)<0
или { a<0,
f(A)>0,
f(В)>0.
[А;В]
, то
Вернемся к примеру1: найдите все значения параметра с, при которых оба
корня квадратного уравнения х2+4сх+(1−2с+4с2)=0 различны и
меньше, чем – 1. (Для решения необходимо воспользоваться утверждением
1.)
Пример 2: При каких действительных значениях k оба корня (в том числе
кратных) уравнения (1 + k)х2 – 3kх + 4k = 0 больше 1? (Для решения
необходимо воспользоваться утверждением 3.)
II. Закрепление пройденного материала. Практическая работа в
группах.
1 группа:
1. При каких значениях k число 2 находится между корнями уравнения 2х2
1
2 х + (k – 3)(k + 5) = 0?

2. При каких значениях параметра а оба корня уравнения х2 – ах + 2 = 0
лежат в интервале (0; 3)?

2 группа:
1. При каких значениях k число 3 находится между корнями уравнения х2
+
х + (k – 1)(k + 7) = 0?
2. Существуют ли такие значения параметра а, что корни уравнения х2 +
2х + а = 0 лежат между – 1 и 1?
3 группа:
1. Найдите множество значений параметра k, при число 2 находится
между корнями уравнения 9х2 – 6х – (k – 2)(k + 2) = 3.
2. При каких значениях параметра а все решения уравнения (а – 1)х2 – (а +
1)х + а = 0 имеет единственное решение удовлетворяющее условию 0 <
x < 3?
III. Домашняя работа.
1. При каких значениях параметра а оба корня уравнения (а + 4)х2 – 2(а +
2)х + 3(а + 6) = 0 положительны?
2. При каких значениях параметра а оба корня уравнения (а – 3)х2 – 3(а –
4)х + 4а – 16 = 0 принадлежат интервалу (2; 5)?
3. При каких значениях параметра а один из корней уравнения 2ах2 – 2х –
3а – 2 = 0 больше 1, а другой меньше 1?

Министерство образования и молодежной политики Чувашской Республики

Автономное учреждение Чувашской Республики

«Цивильский аграрно-технологический техникум»

Направление – физико-математическое и информационно-технологическое

Исследовательская работа:

Расположение корней квадратного трехчлена

Работу выполнила:

студентка 1 курса гр.14 Б

специальности «Экономика

Руководитель:

Ешмейкина

Ирина Анатольевна,

преподаватель математики

Цивильск 2012

1. Введение.

2. Теоретическая часть

2.1. Расположение корней квадратного трехчлена.

2.2. Десять правил расположения корней квадратного трехчлена

3. Практическая часть

3.1. Примеры решения задач

3.2. Расположение корней относительно одной точки.

3.3. Расположение корней относительно двух и более точек.

4. Выводы.

5. Использованная литература.

6. Приложения

Введение

Актуальность: в заданиях ГИА (часть 2) и ЕГЭ по математике с развернутым ответом (часть С), встречаются задачи с параметрами, которые часто вызывают большие трудности у учащихся. Причем часто учащиеся испытывают психологические проблемы, бояться таких задач, т. к. в школе и техникуме мало решают задачи, содержащие параметры.

Трудности при решении задач с параметрами обусловлены тем, что наличие параметра заставляет решать задачу не по шаблону, а рассматривать различные случаи, при каждом из которых методы решения существенно отличаются друг от друга.

Многие задачи с параметрами сводятся к исследованию расположения корней квадратного трехчлена относительно заданной точки или заданного промежутка (отрезка, интервала, луча).

Цель работы: исследовать расположение корней квадратного трехчлена относительно заданной точки или заданного промежутка.

Собрать материал по данной теме Рассмотреть правила расположения корней квадратного трехчлена. Решить задачи используя правила расположения корней квадратного трехчлена.

Объект исследования: квадратный трехчлен и расположение его корней.

1. Поисково – собирательный.

Практическая значимость: данный материал поможет при подготовке к ЕГЭ студентам, желающим продолжить образование в ВУЗе.

Теоретическая часть

2.1. Расположение корней квадратного трехчлена

Многие задачи с параметрами сводят к исследованию расположения корней квадратного трехчлена относительно заданной точки или заданного промежутка:

При каких значениях параметра корни (или корень) квадратного уравнения больше (меньше, не больше, не меньше) заданного числа; расположены между двумя заданными числами; не принадлежат заданным промежуткам и т. д. и т. п.

График квадратичной функции у = ах²+вх+с имеет следующие расположения относительно оси абсцисс.

https://pandia.ru/text/78/376/images/image002_6.jpg" align="right hspace=12" width="196" height="202">Квадратное уравнение х²+pх+q=0 либо не имеет решение (парабола вида D), либо имеет один или два положительных корня (С), либо имеет один или два отрицательных корня (А), либо имеет корни разных знаков (В).

Разберем параболу С. Чтобы уравнение имело корни необходимо, чтобы дискриминант D ≥ 0. Так как оба корня уравнения по построению должны быть положительными, то и абсцисса вершины параболы, лежащая между корнями, положительна, хв > 0.

Ордината вершины f(xв) ≤ 0 в силу того, что мы потребовали существование корней.

Если потребовать выполнение условия f(0) > 0, то в силу непрерывности исследуемой функции найдется точка х1(0;хв) такая, что f(х1) = 0. Очевидно, что это меньший корень уравнения. Итак, собирая все условия вместе, получаем: Квадратное уравнение х² + pх + q = 0 имеет два может быть кратных корня х1,х2 >

Рассуждая аналогичным образом, выведем следующие правила расположения корней квадратного трехчлена.

2.2. Десять правил расположения корней квадратного трехчлена

Правило 1. Квадратное уравнение ах2 + bх + с = 0 (а ≠не имеет решений тогда

и только тогда, когда D < 0.

Правило 2.1. Квадратное уравнение (1) имеет два различных корня тогда и только тогда,

когда D > 0.

Правило 2.2. Квадратное уравнение (1) имеет два, может быть, кратных корня тогда и

только тогда, когда D ≥ 0.

Правило 3.1. Квадратное уравнение (1) имеет два корня х1 < М и х2 > М тогда и только

https://pandia.ru/text/78/376/images/image007_15.gif" align="left" width="74 height=42" height="42"> только тогда, когда

Правило 4.1. Квадратное уравнение х2 + pх +q = 0 при а ≠ 0) имеет два

разных корня х1, х2 > М тогда и только тогда, когда

где =

Правило 4.2. Квадратное уравнение имеет два может быть кратных корня

х1,х2 > М тогда и только тогда, когда

Правило 4.3. Квадратное уравнение имеет два разных корня х1,х2 ≥ М тогда и

только тогда, когда

https://pandia.ru/text/78/376/images/image018_3.gif" width="162" height="74 src=">

Правило 4.4. Квадратное уравнение имеет 2, может быть кратных корня

х1, х2 ≥ М тогда и только тогда, когда

https://pandia.ru/text/78/376/images/image020_2.gif" width="166" height="74 src=">

Правило 5.1. Квадратное уравнение имеет 2 разных корня х1, х2 < М тогда и

только тогда, когда

Правило 6.1. < N < M < х2 тогда и

только тогда, когда

https://pandia.ru/text/78/376/images/image026_1.gif" width="137 height=48" height="48">

Правило 6.2. Квадратное уравнение имеет корни х1 = N < М < х2

тогда и только тогда, когда

Правило 6.3. Квадратное уравнение имеет корни х1< N < M = х2

тогда и только тогда, когда

Правило 7.1. Квадратное уравнение имеет корни х1 < m < x2 < M тогда и только

тогда, когда

https://pandia.ru/text/78/376/images/image032_0.gif" width="128 height=48" height="48">

Правило 7.2. К вадратное уравнение имеет корни N < x1 < M < x2 тогда и только

тогда, когда

Правило 8.1. N < x1 < x2 < M (может быть

кратные корни N < x1 ≤ x2 < M) тогда и только тогда, когда

https://pandia.ru/text/78/376/images/image039_1.gif" width="142" height="98">

Правило 8.3. Квадратное уравнение (1) имеет разные корни N ≤ x1 < x2 ≤ M (может

быть кратные корни N < x1 ≤ x2 ≤ M) тогда и только тогда, когда

Правило 8.4. Квадратное уравнение (1) имеет разные корни N ≤ x1 < x2 ≤ M (может

быть кратные корни N ≤ x1 ≤ x2 ≤ M) тогда и только тогда, когда

https://pandia.ru/text/78/376/images/image044_1.gif" width="144" height="98">

Правило 9. Квадратное уравнение имеет один корень внутри интервала (N; M),

а другой расположен вне этого интервала тогда и только тогда, когда

f (N) f (M) < 0.

Правило 10. Квадратное уравнение (1) имеет единственное решение х1 = х2 > М

(х1 = х2 < М) тогда и только тогда, когда

Практическая часть

3.1. Примеры решения задач.

Пример 1. При каких значениях а уравнение х² - 2ах + а² + 2а – 3 = 0

а) не имеет корней; б) имеет корни разных знаков;

в) имеет положительные корни; г) имеет два разных отрицательных корня?

Решение: а) По правилу 1 решений нет, когда дискриминант D= - 4(2а-3) < 0, откуда а > 3/2.

б) По правилу 3.1 для М = 0 имеем f(0)=а² + 2а – 3 < 0, откуда а(-3;1).

в) По правилу 4.2 для М=0

Откуда .

г) По правилу 5.1 для М=0

Откуда а < - 3.

3.2. Расположение корней относительно одной точки.

Пример 2. При каких значениях параметра а корни уравнения х² + 2(а+1)х + а² + а + 1 = 0 лежат на луче (-2;+∞).

Сделаем графический анализ задачи. По условию задачи возможны лишь следующие два случая расположения графика функции f(х) = х² + 2(а+1)х + а² + а + 1 относительно точки х = -2.

хв = - а – 1

Эти оба случая аналитически описываются условиями

Отсюда следует, что 0 ≤ а < .

Пример 3. Найти все значения параметра а, при которых корни квадратного трехчлена х ² + х + а различны и не больше а. (Приложение 1)

3.3. Расположение корней относительно двух и более точек.

Пример 4. При каких значениях параметра m корни уравнения х² - 2 mх + m² -1= 0 заключены между числами -2 и 4.

Дискриминант уравнения D = 4m² - 4m² + 4 = 4 есть полный квадрат. Найдем корни уравнения: х1= m+1, х2= m - 1. Эти корни удовлетворяют заданному условию, если

Ответ: при m(-1;3).

Пример 5. При каких значениях параметра а уравнение 2х² + (а-4)х + а + 2 = 0 имеет различные корни, удовлетворяющие неравенству ‌│х-1│>2. (Приложение 2)

Решение квадратных уравнений с параметрами можно записать в виде схемы исследования задач, связанных с расположением корней квадратного трехчлена Ах²+Вх+С.

Исследование случая А = 0 (если зависит от параметров).

1. Нахождение дискриминанта D в случае А≠0.

2. Если D – полный квадрат некоторого выражения, то нахождение корней х1, х2 и подчинение их условиям задачи.

3. Если корень квадратный из D не извлекается, то графический анализ задачи.

4. Аналитическое описание подходящих случаев расположения параболы, для чего учитываются:

Ø знак (значение) коэффициента при х²;

Ø знак (значение) дискриминанта;

Ø знаки (значения) квадратичной функции в изучаемых точках;

Ø расположение вершины параболы относительно изучаемых точек.

4. Объединение некоторых неравенств (систем).

5. Решение полученных систем.

Я нашла 10 правил расположения корней квадратного трехчлена. Решила задачи на расположение корней относительно одной точки; расположение корней относительно двух и более точек.

Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов математики, уровня математического и логического мышления, математической культуры.

Использованная литература

1. Мочалов, и неравенства с параметрами/ , .-

Чебоксары: Изд-во Чуваш. Ун-та, 200с.

2. Кожухов, способы решения задач с параметрами/ // Математика в школе.- 1998. - № 6.

3. Еженедельное учебно – методическое приложение к газете «Первое сентября» «Математика» № 18, 2002г

Приложение 1

Пример 3. Найти все значения параметра а, при которых корни квадратного трехчлена х ² + х + а различны и не больше а.

хв= -1/2

Найдем дискриминант D = 1 - 4а. учитывая, что не извлекается, решим пример графически.

Сделаем графический анализ. Так как корни х1, х2 функции f(х) = х² + х + а различны и х1≤ а, х2 ≤ а, то ее график может иметь лишь следующие расположения.

Опишем эти графики аналитически.

https://pandia.ru/text/78/376/images/image062_1.gif" width="149" height="48">

Узнаем, при каких а корни уравнения различны, т. е. дискриминант D=а²-16а положителен, и либо оба меньше -1, либо оба больше 3, либо один из них меньше -1, а другой больше 3. График функции f(х)=2х²+(а-4)х+а+2 в этих случаях имеет следующие расположения:

Аналитически эти графики описываются условиями

Квадратный трехчлен - основная функция школьной математики - между прочим, не самая примитивная. Умение использовать предоставляемые им ресурсы для решения задач в большой степени характеризует уровень математического мышления изучающего школьную алгебру. В данной работе дается обоснование этого тезиса и приведены примеры конкретного применения свойств квадратичной функции. Стимулирующим фактором является то обстоятельство, что при решении какой бы то ни было задачи с параметрами рано или поздно приходится (и удается) задачу переформулировать в терминах квадратного трехчлена и решить ее с привлечением свойств этой универсальной функции.

Исследование квадратного трехчлена

Определение . Квадратным трехчленом относительно переменной x называется выражение вида f(x) = ax 2 + bx + c (1), где a, b, cR, a0.

Квадратный трехчлен - обычный многочлен степени 2. Спектр вопросов, формулируемых в терминах квадратного трехчлена, неожиданно оказывается чрезвычайно широким. Поскольку задачи, связанные с исследованием квадратного трехчлена, занимают традиционно почетное и видное место в письменных выпускных школьных и вступительных вузовских экзаменах, очень важно научить школьника (будущего абитуриента) неформальному (то есть творческому) владению разнообразными приемами и методами такого исследования. В данной методической разработке фиксируются основные утверждения о квадратном трехчлене (теорема Виета, расположение корней относительно заданных точек числовой оси, техника обращения с дискриминантом), решаются задачи различных типов и разных уровней сложности. Главный идеологический вывод заключается в том, что в школьной математике существуют насыщенные глубоким содержанием фрагменты, доступные учащемуся и не требующие привлечения средств математического анализа и иных разделов так называемой “высшей математики”.

Графиком трехчлена (1) является парабола; при a 0 - вверх. Расположение параболы относительно оси Ox зависит от значения дискриминанта D = b 2 - 4ac: при D>0 имеются две точки пересечения параболы с осью Ox (два различных действительных корня трехчлена); при D=0 - одна точка (двукратный действительный корень); при D 0 - выше оси Ox). Стандартным приемом является следующее представление трехчлена (с помощью выделения полного квадрата):

f(x) = ax 2 + bx + c = = . Это представление позволяет легко строить график посредством линейных преобразований графика функции y=x 2 ; координаты вершины параболы: .

Это же преобразование позволяет сразу решить простейшую задачу на экстремум: найти наибольшее (при a 0) значение функции (1); экстремальное значение достигается в точке и равно .

Одно из основных суждений о квадратном трехчлене –

Теорема 1 (Виета) . Если x 1 , x 2 - корни трехчлена (1), то

(формулы Виета).

С помощью теоремы Виета можно решать многие задачи, в частности, те, в которых требуется сформулировать условия, определяющие знаки корней. Две следующие теоремы являются непосредственными следствиями теоремы Виета.

Теорема 2 . Для того, чтобы корни квадратного трехчлена (1) были действительны и имели одинаковые знаки, необходимо и достаточно выполнение следующих условий:

D = b 2 - 4ac 0, x 1 x 2 = > 0,

при этом оба корня положительны при x 1 + x 2 = > 0,

и оба корня отрицательны при x 1 + x 2 =

Теорема 3 . Для того, чтобы корни квадратного трехчлена (1) были действительны и имели различные знаки, необходимо и достаточно выполнение следующих условий:

D=b 2 - 4ac > 0, x 1 x 2 =

при этом положительный корень имеет больший модуль при x 1 + x 2 = > 0,

и отрицательный корень имеет больший модуль при x 1 + x 2 =

Доказываемые ниже теоремы и следствия эффективно могут (и значит, должны) применяться при решении задач с параметрами.

Теорема 4 . Для того, чтобы оба корня квадратного трехчлена (1) были меньше, чем число M, то есть на числовой прямой корни лежат левее точки M, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия,

(рис. 1,а и 1,б).

Доказательство .

Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 (может быть, совпадающие), x 1 x 2 и x 1 , (x 1 - M) (x 2 - M) > 0, x 1 + x 2 0, M > (x 1 + x 2)/2. По формулам Виета , поэтому , или , ч.т.д.

Достаточность - противоречие с условием. Если же , то (x 1 - M)(x 2 - M)0, x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M) 0 - вновь противоречие с условием; остается только возможность x 1

Теорема 5 . Для того, чтобы один из корней квадратного трехчлена (1) был меньше, чем число M, а другой больше, чем число M, то есть точка M лежала бы в интервале между корнями, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия, af(M)

(рис. 2,а и 2,б).

Доказательство .

Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 , x 1 M , то (x 1 - M)(x 2 - M), поэтому , или af(M)

Достаточность . Пусть af(M) , или , , тогда (x 1 - M)(x 2 - M)0,

x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M)0 - противоречие с условием; остается только возможность , что и требуется доказать. Теорема доказана.

Теорема 6 . Для того, чтобы оба корня квадратного трехчлена (1) были больше, чем число M, то есть на числовой прямой корни лежат правее точки M, необходимо и достаточно выполнение следующих условий:

, или, объединяя условия,

(рис. 3,а и 3,б).

Доказательство . Необходимость . Если трехчлен (1) имеет действительные корни x 1 и x 2 (может быть, совпадающие), x 1 x 2 и x 1 > M, x 2 > M , то , (x 1 -M)(x 2 -M)>0, x 1 + x 2 > 2M; иначе x 1 x 2 - (x 1 + x 2)M + M 2 > 0, M , поэтому , или , ч.т.д.

Достаточность . Пусть . Рассуждаем от противного. Предположим, что , , тогда - противоречие с условием. Если же , то (x 1 - M)(x 2 - M)0, x 1 x 2 - (x 1 + x 2)M + M 2 0, откуда , af(M) 0 - вновь противоречие с условием; остается только возможность x 1 > M, x 2 > M, что и требуется доказать. Теорема доказана.

Следствие 1 . Для того, чтобы оба корня квадратного трехчлена (1) были больше, чем число M, но меньше, чем число N (M

, или, объединяя условия,

(рис. 4,а и 4,б).

Следствие 2 . Для того, чтобы только больший корень квадратного трехчлена (1) принадлежал интервалу (M,N), где M

, или, объединяя условия,

меньший корень при этом лежит вне отрезка

(рис. 5,а и 5,б).

Следствие 3 . Для того, чтобы только меньший корень квадратного трехчлена (1) принадлежал интервалу (M,N), где M

, или, объединяя условия, ;

больший корень при этом лежит вне отрезка

(рис. 6,а и 6,б).

Следствие 4 . Для того, чтобы один из корней квадратного трехчлена (1) был меньше, чем M, а другой больше, чем N (M

, или, объединяя условия,

(рис. 7,а и 7,б).

Разумеется, аналитическая и геометрическая интерпретации результатов теорем 4-6 и следствий 1-4 эквивалентны, и стратегической целью является выработка навыков точного перевода с одного языка на другой. Особенно важно продемонстрировать, как “визуализация” (“графический взгляд”) помогает безошибочно записать формальные условия, необходимые и достаточные для выполнения требований задачи.

Укажем типичные задачи, решаемые с помощью доказанных теорем (более общо - решаемые на основании свойств квадратного трехчлена).

Задача 1 . Найдите все значения a, при которых уравнения x 2 +ax+1=0 и x 2 +x+a=0 имеют хотя бы один общий корень.

Решение . Оба уравнения имеют в точности одинаковые корни в том и только том случае, если коэффициенты соответствующих квадратных трехчленов совпадают (многочлен второй степени полностью определяется двумя своими корнями и при этом соответственные коэффициенты этих многочленов равны), отсюда получаем a=1. Однако, если учитывать только действительные корни, то при a=1 таковых нет (дискриминант соответствующего трехчлена отрицателен). При a1 рассуждаем так: если x 0 - корень обоих уравнений f(x)=0 и g(x)=0, то x 0 будет корнем уравнения f(x)-g(x)=0 (это только необходимое, но не достаточное условие существования общего корня двух уравнений f(x)=0 и g(x)=0, так как уравнение f(x) - g(x)=0 является их следствием ); вычтем из первого уравнения второе, и получим

(x 2 + ax + 1) - (x 2 + x + a) = 0, x(a-1) - (a-1)=0, откуда, поскольку a1, x=1. Таким образом, если заданные уравнения имеют общий корень, то он равен 1 . Подставим x = 1 в первое уравнение: 1 + a + 1 = 0, и a = -2.

Ответ . a = -2.

Задача 2 . При каких a сумма квадратов корней уравнения x 2 - ax + a – 1 = 0 будет наименьшей?

Решение . По теореме Виета , x 1 + x 2 = a, x 1 x 2 = a - 1. Имеем:

x 1 2 + x 2 2 = (x 1 +x 2) 2 - 2x 1 x 2 = a 2 - 2(a-1) = a 2 - 2a + 2 = (a-1) 2 + 1 1 и =1 при a=1.

Ответ . a = 1.

Задача 3 . Существуют ли такие a, что корни многочлена f(x)=x 2 +2x+a действительны, различны и оба заключены между -1 и 1?

Решение . Для того, чтобы оба корня x 1 и x 2 трехчлена f(x) были заключены между -1 и 1, необходимо, чтобы между -1 и 1 было заключено среднее арифметическое этих корней: ; но, по теореме Виета , , поэтому

Ответ . Нет.

Задача 4 . При каких значениях параметра a оба корня квадратного уравнения x 2 +(2a+6)x + 4a + 12 = 0 действительны и оба больше -1?

Решение . Теорема 6 дает:

, , , .

Ответ . .

Задача 5 . При каких значениях параметра a оба корня квадратного уравнения x 2 +4ax+ (1-2a+4a 2) = 0 действительны и оба меньше -1?

Решение . Теорема 4 дает:

, , , a>1.

Ответ . a > 1.

Задача 6 . При каких значениях параметра a один корень квадратного уравнения f(x) = (a-2)x 2 - 2(a+3)x + 4a = 0 больше 3, а другой меньше 2?

Решение . Заметим сразу, что a2 (иначе уравнение имело бы только один корень). Применим следствие 4 (здесь M=2, N=3):

, , , 2

Ответ . a(2;5).

Задача 7 . При каких a уравнение (a-1)x 2 -(2a-1)x+a+5 = 0 (2) имеет действительные корни? Исследуйте знаки этих корней.

Решение . Если a = 1, уравнение (2) является линейным: -x + 6 = 0, x = 6 > 0.

Если a1, то уравнение (2) - квадратное и имеет действительные корни тогда и только тогда, когда D=(2a-1) 2 -4(a-1)(a+5)0, . Оба корня положительны при (теорема 6 ), откуда

и ;

оба корня отрицательны при (теорема 4 ) - эта система решений не имеет; корни имеют разные знаки при (a-1)(a+5) теорема 5), то есть -5

Ответ .

При оба корня положительны; при a=-5 один из корней равен 0.

При a = 1 - единственный положительный корень x=6.

При решений нет.

Задача 8 . Найдите все действительные значения a, при которых трехчлен

(a 2 -1)x 2 + 2(a-1)x + 1 положителен при всех действительных x.

Решение . При a 2 =1 получаем двучлен 2(a-1)x+1; при a=1 условие задачи выполняется, при a=-1 - нет. Если же a 2 1, то для выполнения неравенства

(a 2 -1)x 2 +2(a-1)x+1>0 при всех xR необходимо и достаточно

,

откуда находим a>1.

Ответ . a 1.

Уравнения

Задача 9 . При каких условиях уравнение x 2 +px+q=0 (3), где x=sint, имеет решения относительно t? Найдите все эти решения.

Решение . 1. Уравнение (3) имеет корень x 1 =-1, или sint=-1, или t=, если 1-p+q=0. При этом второй корень равен x 2 =1-p; значит, если , то уравнение sin 2 t +psint+q=0 (4) имеет еще, кроме указанных, корни (при p=2 обе серии корней совпадают).

2. Уравнение (3) имеет корень x 1 =1, или sint=1, или t=, если

1+p+q=0. При этом второй корень равен x 2 =-1-p; значит, если , то уравнение (4) имеет еще, кроме указанных, корни (при p=-2 обе серии корней совпадают).

3. Корни (3) равны между собой при p 2 -4q=0; тогда x 1 =x 2 =-p/2; если к тому же , то , а при p2 корней нет. Если p=2, то q=1, x 2 +2x+1=0, x=-1, t=, а если p=-2, то x=1, t=.

Случай I имеет место тогда и только тогда, когда 1-p+q>0, 1+p+q следствие 3), или p-1 .

Случай II имеет место тогда и только тогда, когда 1-p+q 0 (следствие 2 ), или -p-1 .

Случай III имеет место тогда и только тогда, когда p 2 >4q, -2+p 0, 1-p+q>0, 1+p+q>0 (следствие 1 ), или -2

При этом .

В остальных случаях уравнение sin 2 t +psint+q=0 не имеет решений.

Задача 10 . При каких aR уравнение sin 4 x+cos 4 x+sin2x+a=0 (5) имеет решения? Найдите эти решения.

Решение . Так как sin 4 x + cos 4 x = sin 4 x + 2sin 2 xcos 2 x + cos 4 x - 2sin 2 xcos 2 x =

(sin 2 x+cos 2 x) 2 - 4sin 2 xcos 2 x = 1 - sin 2 2x, уравнение (5) можно переписать так:

1 - sin 2 2x + sin2x + a = 0, sin 2 2x - 2sin2x - 2 - 2a = 0; сделаем замену y=sin2x:

y 2 - 2y - 2 - 2a = 0 (6).

Уравнение (6) имеет действительные корни, если D=3+2a. Пусть y 1 , y 2 - корни (6). Уравнение (5) имеет корни в одном из следующих случаях:

1. Хотя бы один корень равен 1. Тогда 1-2-2-2a=0, a=; уравнение (6) приобретает вид y 2 -2y+1=0, и второй корень также равен 1; следовательно, при a= sin2x=1, 2x=.

2. Хотя бы один корень равен -1. Тогда 1+2-2-2a=0, a=; уравнение (6) приобретает вид y 2 -2y-3=0, и второй корень равен 3; но корень y=3 не подходит, следовательно, при a= sin2x=-1, 2x=.

3. -1 : 3+2a>0, a>-, (-1) 2 -2(-1)-2-2a>0, 2(-1)-2

1 2 -21-2-2a>0, 21-2>0 - противоречивая система (0=2-2>0).

4. y 1: (-1) 2 -2(-1)-2-2a1-2-2a>0 - противоречие.

5. -1 Следствие 3: В этом случае 1 2 -21-2-2a (-1)-2-2a>0 и . Корнями (6) являются y 1 =1-, y 2 =1+, и только . Тогда

МОУ «Средняя общеобразовательная школа №15»

г. Мичуринска Тамбовской области

Урок по алгебре в 9классе

«Расположение корней квадратного трехчлена в зависимости от значений параметра»

Разработала

учитель математики 1 категории

Бортникова М.Б.

Мичуринск - наукоград 201 6 год

Урок рассчитан на 2 часа.

Дорогие ребята! Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.

Цели урока: 1. Расширить представление о квадратных уравнениях 2.Научить находить все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям. 3. Развивать интерес к предмету.

Ход урока:

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним основные уравнения:
aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

    Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1 , (a – 2) х = a 2 4.

    Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например.

    a уравнение 4 х 2 4 aх + 1 = 0 имеет единственный корень?

    Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2) х 2 2 aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2 aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2 aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4
a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 <
а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств потребует от вас новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: у =
х 2 – 2 ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.

      Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <
      х о < 5.

      Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2 ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Примеры решения задач

3. Исследование расположения корней квадратного трехчлена в зависимости от искомых значений параметра а.

Задача № 2.

При каких значениях параметра а корни квадратного уравнения

х 2 – 4х – (а – 1)(а – 5) = 0 больше единицы?

Решение.

Рассмотрим функцию: у = х 2 – 4х – (а – 1)(а – 5)

Графиком функции является парабола. Ветви параболы направлены вверх.

Схематично изобразим параболу (геометрическую модель задачи).

Теперь от построенной геометрической модели перейдем к аналитической, т.е. опишем эту геометрическую модель адекватной ей системой условий.

    Имеются точки пересечения (или точка касания) параболы с осью х, следовательно, Д≥0, т.е. 16+4(а-1)(а-5)≥0.

    Замечаем, что вершина параболы расположена в правой полуплоскости относительно прямой х=1, т.е. ее абсцисса больше 1, т.е. 2>1 (выполняется при всех значениях параметра а).

    Замечаем, что у(1)>0, т.е. 1 – 4 – (а – 1)(а – 5)>0

В результате приходим к системе неравенств.

;

Ответ: 2<а<4.

Задача № 3.

Х 2 + ах – 2 = 0 больше единицы?

Решение.

Рассмотрим функцию: у = -х 2 + ах – 2

Графиком функции является парабола. Ветви параболы направлены вниз. Изобразим геометрическую модель рассматриваемой задачи.


У(1)

Составим систему неравенств.

, решений нет

Ответ. Таких значений параметра а нет.

Условия задачи № 2 и № 3, в которых корни квадратного трехчлена больше некоторого числа при искомых значениях параметра а, сформулируем следующим образом.

Общий случай № 1.

При каких значениях параметра а корни квадратного трехчлена

f (х) = ах 2 + вх + с больше некоторого числа к, т.е. к<х 1 ≤х 2 .

Изобразим геометрическую модель данной задачи и запишем соответствующую систему неравенств.

Таблица 1. Модель – схема.

Задача № 4.

При каких значениях параметра а корни квадратного уравнения

Х 2 +(а+1)х–2а(а–1) = 0 меньше единицы?

Решение.

Рассмотрим функцию: у = х 2 +(а+1)х–2а(а–1)

Графиком функции является парабола. Ветви параболы направлены вверх. По условию задачи корни меньше 1, следовательно, парабола пересекает ось х (или касается оси х левее прямой х=1).

Схематично изобразим параболу (геометрическая модель задачи).

у(1)

От геометрической модели перейдем к аналитической.

    Так как имеются точки пересечения параболы с осью ох, то Д≥0.

    Вершина параболы находится левее прямой х=1, т.е. ее абсцисса х 0 <1.

    Замечаем, что у(1)>0, т.е. 1+(а+1)-2а(а-1)>0.

Приходим к системе неравенств.

;

Ответ: -0,5<а<2.

Общий случай № 2.

При каких значениях параметра а оба корня трехчлена f (х) = ах 2 + вх + с будут меньше некоторого числа к: х 1 ≤х 2 <к.

Геометрическая модель и соответствующая система неравенств представлена в таблице. Необходимо учитывать тот факт, что существуют задачи, где первый коэффициент квадратного трехчлена зависит от параметра а. И тогда ветви параболы могут быть направлены как вверх, так и вниз, в зависимости от значений параметра а. Этот факт будем учитывать при создании общей схемы.

Таблица № 2.

f(k)

Аналитическая модель

(система условий).

Аналитическая модель

(система условий).

Задача № 5.

При каких значениях параметра а 2 -2ах+а=0 принадлежат интервалу (0;3)?

Решение.

Рассмотрим квадратный трехчлен у(х) = х 2 -2ах+а.

Графиком является парабола. Ветви параболы направлены вверх.

На рисунке представлена геометрическая модель рассматриваемой задачи.

У

У(0)

У(3)

0 х 1 х 0 х 1 3 х

От построенной геометрической модели перейдем к аналитической, т.е. опишем ее системой неравенств.

    Имеются точки пересечения параболы с осью х (или точка касания), следовательно, Д≥0.

    Вершина параболы находится между прямыми х=0 и х=3, т.е. абсцисса параболы х 0 принадлежит промежутку (0;3).

    Замечаем, что у(0)>0, а также у(3)>0.

Приходим к системе.

;

Ответ: а

Общий случай № 3.

При каких значениях параметра а корни квадратного трехчлена принадлежат интервалу (k ; m ), т.е. k <х 1 ≤х 2 < m

Таблица № 3. Модель – схема.

f (x )

f (k )

f (m )

k х 1 х 0 х 2 m x

f(x)

0 k x 1 x 0 x 2 m

f(k)

f(m)

Аналитическая модель задачи

Аналитическая модель задачи

ЗАДАЧА № 6.

При каких значениях параметра а только меньший корень квадратного уравнения х 2 +2ах+а=0 принадлежит интервалу Х(0;3).

Решение.

2 -2ах+а

Графиком является парабола. Ветви параболы направлены вверх. Пусть х 1 меньший корень квадратного трехчлена. По условию задачи х 1 принадлежит промежутку (0;3). Изобразим геометрическую модель задачи, отвечающую условиям задачи.

Y (x )

Y (0)

0 x 1 3 x 0 x 2 x

Y (3)

Перейдем к системе неравенств.

1) Замечаем, что у(0)>0 и у(3)<0. Так как ветви параболы направлены вверх и у(3)<0, то автоматически Д>0. Следовательно, это условие записывать в систему неравенств не нужно.

Итак, получаем следующую систему неравенств:

Ответ: а >1,8.

Общий случай № 4.

При каких значениях параметра а меньший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. k <х 1 < m <х 2 .

Таблица № 4 . Модель – схема.

f(k)

k x 1 0 m x 2

f(m)

F(x)

f(m)

k x 1 m x 2 x

f(k)

Аналитическая модель

Аналитическая модель

ЗАДАЧА № 7.

При каких значениях параметра а только больший корень квадратного уравнения х 2 +4х-(а+1)(а+5)=0 принадлежит промежутку [-1;0).

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 +4х-(а+1)(а+5).

Графиком является парабола. Ветви направлены вверх.

Изобразим геометрическую модель задачи. Пусть х 2 – больший корень уравнения. По условию задачи только больший корень принадлежит промежутку.


y (х)

y (0)

x 1 -1 х 2 0 х

y (-1)

Замечаем, что у(0)>0, а у(-1)<0. Кроме этого ветви параболы направлены вверх, значит, при этих условиях Д>0.

Составим систему неравенств и решим ее.

Ответ:

Общий случай № 5.

При каких значениях параметра а больший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. х 1 < k <х 2 < m .

Таблица № 5. Модель – схема.

f(x)

f(m)

0 x 1 k x 2 m x

f(k)

f(x)

f(k)

x 1 0 k x 2 m

f(m)

Аналитическая модель

Аналитическая модель

З АДАЧА № 8.

При каких значениях параметра а отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+а-11

Графиком является парабола.

Геометрическая модель данной задачи представлена на рисунке.

Y (x )

X 1 -1 0 3 x 2 x

Y (-1)

Y (3)

При этих условиях Д>0, так как ветви параболы направлены вверх.

Ответ: а

Общий случай № 6.

При каких значениях параметра а корни квадратного трехчлена находятся вне заданного интервала (k ; m ), т.е. х 1 < k < m <х 2 .

х 2 -(2а+1)х+4-а=0 лежат по разные стороны числа от числа 3?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+4-а.

Графиком является парабола, ветви направлены вверх (первый коэффициент равен 1). Изобразим геометрическую модель задачи.


X 1 3 x 2 x

Y (3)

Перейдем от геометрической модели к аналитической.

  1. Замечаем, что у(3)<0, а ветви параболы направлены вверх. При этих условиях Д>0 автоматически. +вх+с меньше некоторого числа к: х 1 ≤ х 2

    3. При каких значениях параметра а корни квадратного трехчлена ах 2 +вх+с принадлежат интервалу (к,т) к<х 1 ≤х 2

    4. При каких значениях параметра а только меньший корень квадратного трехчлена ах 2 +вх+с принадлежит заданному интервалу (к,т),т.е.к<х 1 <т<х 2

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Корни квадратного уравнения х 2 -4х-(а-1)(а-5)=0, больше чем 1.

    Ответ: 2<а<4

    Корни квадратного уравнения х 2 +(а+1)х-2а(а-1)=0, меньше чем 1.

    Ответ:

    -0,5<а<2

    Корни квадратного уравнения х 2 -2ах+а=0, принадлежат интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    Только меньший корень уравнения х 2 -2ах+а=0, принадлежит интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Только больший корень уравнения х 2 +4х-(а+1)(а+5)=0, принадлежит промежутку [-1;0).

    Ответ:(-5;-4]U[-2;-1)

    Отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0.

    Ответ:-1 <а<3

    Корни квадратного уравнения х 2 -2(а+1)х+4-а=0, лежат по разные стороны от числа 3.

    Ответ( 10 / 7 ;∞)

    Спасибо за урок ребята!