Три вида треугольника. Что такое треугольник? Определение. Треугольник - определение и общие понятия

Треугольник — это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника часто обозначаются маленькими буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Остроугольным треугольником называется треугольник, у которого все три угла острые.

Тупоугольным треугольником называется треугольник, у которого один из углов тупой.

Прямоугольным треугольником называется треугольник, у которого один из углов прямой, то есть равен 90°; стороны a, b, образующие прямой угол, называются катетами ; сторона c, противоположная прямому углу, называется гипотенузой .

Равнобедренным треугольником называется треугольник, у которого две его стороны равны (a = c); эти равные стороны называются боковыми , третья сторона называется основанием треугольника .

Равносторонним треугольником называется треугольник, у которого все его стороны равны (a = b = c). Если в треугольнике не равна ни одна из его сторон (abc), то это неравносторонний треугольник .

Основные свойства треугольников

В любом треугольнике:

  • Против большей стороны лежит больший угол, и наоборот.
  • Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны.
  • Сумма углов треугольника равна 180°.
  • Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
  • Любая сторона треугольника меньше суммы двух других сторон и больше их разности (a < b + c, a > b — c; b < a + c, b > a — c; c < a + b, c > a − b).
  • Признаки равенства треугольников

    Треугольники равны, если у них соответственно равны:

  • две стороны и угол между ними;
  • два угла и прилегающая к ним сторона;
  • три стороны.
  • Признаки равенства прямоугольных треугольников

    Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

  • равны их катеты;
  • катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
  • гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
  • катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
  • катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.
  • Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника .

    Ортоцентр остроугольного треугольника расположен внутри треугольника, а ортоцентр тупоугольного треугольника — снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

    Медиана — это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

    Биссектриса — это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся центром вписанного круга. Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр — это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

    В остроугольном треугольнике эта точка лежит внутри треугольника, в тупоугольном — снаружи, в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

    Теорема Пифагора

    В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    Доказательство теоремы Пифагора

    Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна a + b. Теперь ясно, что площадь квадрата CDEF равна (a + b) 2. С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть,

    c 2 + 4 (ab / 2) = c 2 + 2 ab,

    c 2 + 2 ab = (a + b) 2,

    и окончательно имеем:

    c 2 = a 2 + b 2 .

    Соотношение сторон в произвольном треугольнике

    В общем случае (для произвольного треугольника) имеем:

    c 2 = a 2 + b 2 — 2 ab * cos C,

    где С — угол между сторонами а и b.

    • school-club.ru — какие бывают треугольники?
    • math.ru — виды треугольников;
    • raduga.rkc-74.ru — все о треугольниках для самых маленьких.
    Признаки равенства прямоугольных треугольников

    Типы треугольников

    Рассмотрим три точки, не лежащие на одной прямой, и три отрезка, соединяющие эти точки (рис. 1).

    Треугольником называют часть плоскости, ограниченную этими отрезками, отрезки называют сторонами треугольника, а концы отрезков (три точки, не лежащие на одной прямой) – вершинами треугольника.

    В таблице 1 перечислены все возможные типы треугольников в зависимости от величины их углов .

    Таблица 1 – Типы треугольников в зависимости от величины углов

    Рисунок Тип треугольника Определение
    Остроугольный треугольник Треугольник, у которого все углы острые , называют остроугольным
    Прямоугольный треугольник Треугольник, у которого один из углов прямой , называют прямоугольным
    Тупоугольный треугольник Треугольник, у которого один из углов тупой , называют тупоугольным
    Остроугольный треугольник

    Определение:

    Треугольник, у которого все углы острые , называют остроугольным

    Прямоугольный треугольник

    Определение:

    Треугольник, у которого один из углов прямой , называют прямоугольным

    Тупоугольный треугольник

    Определение:

    Треугольник, у которого один из углов тупой , называют тупоугольным

    В зависимости от длин сторон выделяют два важных типа треугольников.

    Таблица 2 – Равнобедренный и равносторонний треугольники

    Рисунок Тип треугольника Определение
    Равнобедренный треугольник боковыми сторонами , а третью сторону называют основанием равнобедренного треугольника
    Равносторонний (правильный) треугольник Треугольник, у которого все три стороны равны, называют равносторонним или правильным треугольником
    Равнобедренный треугольник

    Определение:

    Треугольник, у которого две стороны равны, называют равнобедренным треугольником. В этом случае две равные стороны называют боковыми сторонами , а третью сторону называют основанием равнобедренного треугольника

    Равносторонний (правильный) треугольник

    Определение:

    Треугольник, у которого все три стороны равны, называют равносторонним или правильным треугольником

    Признаки равенства треугольников

    Треугольники называют равными , если их можно совместить наложением .

    В таблице 3 приведены признаки равенства треугольников .

    Таблица 3 – Признаки равенства треугольников

    Рисунок Название признака Формулировка признака

    по
    двум сторонам и углу между ними

    Признак равенства треугольников по
    стороне и двум прилежащим к ней углам

    Признак равенства треугольников по
    трём сторонам
    Признак равенства треугольников по двум сторонам и углу между ними

    Формулировка признака .
    Если две стороны одного треугольника и угол между ними соответственно равны двум сторонам другого треугольника и углу между ними, то такие треугольники равны
    Признак равенства треугольников по стороне и двум прилежащим к ней углам

    Формулировка признака .
    Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны
    Признак равенства треугольников по трём сторонам

    Формулировка признака .
    Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны

    Признаки равенства прямоугольных треугольников

    Для сторон прямоугольных треугольников принято использовать следующие названия.

    Гипотенузой называют сторону прямоугольного треугольника, лежащую против прямого угла (рис. 2), две другие стороны называют катетами .

    Таблица 4 – Признаки равенства прямоугольных треугольников

    Рисунок Название признака Формулировка признака

    по
    двум катетам

    Признак равенства прямоугольных треугольников по
    катету и прилежащему острому углу

    Признак равенства прямоугольных треугольников по
    катету и противолежащему острому углу
    Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники равны

    Признак равенства прямоугольных треугольников по
    гипотенузе и острому углу
    Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники равны

    Признак равенства прямоугольных треугольников по
    катету и гипотенузе
    Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие прямоугольные треугольники равны
    Признак равенства прямоугольных треугольников по двум катетам

    Формулировка признака .
    Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники равны
    Признак равенства прямоугольных треугольников по катету и прилежащему острому углу

    Формулировка признака .
    Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники равны
    Признак равенства прямоугольных треугольников по катету и противолежащему острому углу

    Треугольник — это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами (а, b, c), которые соответствуют заглавным буквам, обозначающим противоположные вершины (A, B, C).

    Если в треугольнике все три угла острые, то это остроугольный треугольник .

    Если в треугольнике один из углов прямой, то это прямоугольный треугольник . Стороны, образующие прямой угол, называются катетами . Сторона, противоположная прямому углу, называется гипотенузой .

    Если в треугольнике один из углов тупой, то это тупоугольный треугольник.

    Треугольник равнобедренный , если две его стороны равны; эти равные стороны называются боковыми, а третья сторона называется основанием треугольника.

    Треугольник равносторонний , если все его стороны равны.

    Основные свойства треугольников

    В любом треугольнике:

    1. Против большей стороны лежит больший угол, и наоборот.

    2. Против равных сторон лежат равные углы, и наоборот.
    В частности, все углы в равностороннем треугольнике равны.

    3. Сумма углов треугольника равна 180º .
    Из двух последних свойств следует, что каждый угол в равностороннем
    треугольнике равен 60º.

    4. Продолжая одну из сторон треугольника, получаем внешний
    угол. Внешний угол треугольника равен сумме внутренних углов,
    не смежных с ним.

    5. Любая сторона треугольника меньше суммы двух других сторон и больше
    их разности.

    Признаки равенства треугольников.

    Треугольники равны, если у них соответственно равны:

    A) две стороны и угол между ними;
    b) два угла и прилегающая к ним сторона;
    c) три стороны.

    Признаки равенства прямоугольных треугольников.

    Два прямоугольных треугольника равны, если выполняется одно из следующих условий:

    1) равны их катеты;
    2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
    3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
    4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
    5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

    Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника . Ортоцентр остроугольного треугольника расположен внутри треугольника, а ортоцентр тупоугольного треугольника — снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

    Медиана — это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся его центром тяжести . Эта точка делит каждую медиану в отношении 2:1, считая от вершины.

    Свойство медианы равнобедренного треугольника. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.

    Биссектриса — это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся центром вписанной окружности . Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр — это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанной окружности. В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном — снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанной и центр вписанной окружности совпадают только в равностороннем треугольнике.

    Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.

    Свойство средней линии треугольника . Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна её половине.

    Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. c 2 = a 2 + b 2 .

    Доказательства теоремы Пифагора можно посмотреть здесь.

    Теорема синусов . Стороны треугольника пропорциональны синусам противолежащих углов.

    Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

    Доказательства теоремы синусов и теоремы косинусов можно посмотреть здесь .

    Теорема о сумме углов в треугольнике. Сумма внутренних углов треугольника равна 180°.

    Теорема о внешнем угле треугольника . Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

    Еще дети дошкольного возраста знают, как выглядит треугольник. А вот с тем, какие они бывают, ребята уже начинают разбираться в школе. Одним из видов является тупоугольный треугольник. Понять, что это такое, проще всего, если увидеть картинку с его изображением. А в теории это так называют "простейший многоугольник" с тремя сторонами и вершинами, одна из которых является

    Разбираемся с понятиями

    В геометрии различают такие виды фигур с тремя сторонами: остроугольный, прямоугольный и тупоугольный треугольники. При этом свойства этих простейших многоугольников одинаковы для всех. Так, для всех перечисленных видов будет соблюдаться такое неравенство. Сумма длин любых двух сторон обязательно будет больше протяженности третьей стороны.

    Но для того чтобы быть уверенным, что речь идет именно о законченной фигуре, а не о наборе отдельных вершин, необходимо проверить, чтобы соблюдалось основное условие: сумма углов тупоугольного треугольника равняется 180 о. Это же верно и для других видов фигур с тремя сторонами. Правда, в тупоугольном треугольнике один из углов будет еще больше 90 о, а два оставшихся обязательно будут острыми. При этом именно наибольший угол будет находиться напротив самой длинной стороны. Правда, это далеко не все свойства тупоугольного треугольника. Но и зная лишь эти особенности, школьники могут решать многие задачи по геометрии.

    Для каждого многоугольника с тремя вершинами верно и то, что, продолжая любую из сторон, мы получим угол, размер которого будет равен сумме двух несмежных с ним внутренних вершин. Периметр тупоугольного треугольника рассчитывается так же, как и для других фигур. Он равняется сумме длин всех его сторон. Для определения математиками были выведены различные формулы, в зависимости от того, какие изначально присутствуют данные.

    Правильное начертание

    Одним из важнейших условий решения задач по геометрии является верный рисунок. Часто учителя математики говорят о том, что он поможет не только наглядно представить, что дано и что от вас требуется, но на 80% приблизиться к правильному ответу. Именно поэтому важно знать, как построить тупоугольный треугольник. Если вам нужна просто гипотетическая фигура, то вы можете нарисовать любой многоугольник с тремя сторонами так, чтобы один из углов был больше 90 о.

    Если даны определенные значения длин сторон или градусы углов, то чертить тупоугольный треугольник необходимо в соответствии с ними. При этом необходимо стараться максимально точно изобразить углы, высчитывая их при помощи транспортира, и пропорционально данным в задании условиям отобразить стороны.

    Основные линии

    Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

    Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

    Так, биссектрисы делят угол пополам, а противоположную сторону - на отрезки, которые пропорциональны прилегающим сторонам.

    Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

    Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

    Серединный перпендикуляр - это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

    Работа с окружностями

    В начале изучения геометрии детям достаточно понять, как начертить тупоугольный треугольник, научиться отличать его от остальных видов и запомнить его основные свойства. А вот старшеклассникам этих знаний уже мало. Например, на ЕГЭ часто встречаются вопросы про описанные и вписанные окружности. Первая из них касается всех трех вершин треугольника, а вторая имеет по одной общей точке со всеми сторонами.

    Построить вписанный или описанный тупоугольный треугольник уже намного сложнее, ведь для этого необходимо для начала выяснить, где должен находиться центр окружности и ее радиус. Кстати, необходимым инструментом станет в этом случае не только карандаш с линейкой, но и циркуль.

    Те же сложности возникают при построении вписанных многоугольников с тремя сторонами. Математиками были выведены различные формулы, которые позволяют определить их месторасположение максимально точно.

    Вписанные треугольники

    Как уже было сказано ранее, если круг проходит через все три вершины, то это называется описанной окружностью. Главным ее свойством является то, что она единственная. Чтобы выяснить, как должна располагаться описанная окружность тупоугольного треугольника, необходимо помнить, что ее центр находится на пересечении трех серединных перпендикуляров, которые идут к сторонам фигуры. Если в остроугольном многоугольнике с тремя вершинами эта точка будет находиться внутри него, то в тупоугольном - за его пределами.

    Зная, например, что одна из сторон тупоугольного треугольника равна его радиусу, можно найти угол, который лежит напротив известной грани. Его синус будет равен результату от деления длины известной стороны на 2R (где R - это радиус окружности). То есть sin угла будет равен ½. Значит, угол будет равен 150 о.

    Если вам необходимо найти радиус описанной окружности тупоугольного треугольника, то вам пригодятся сведения о длине его сторон (c, v, b) и его площади S. Ведь радиус высчитывается так: (c х v х b) : 4 х S. Кстати, неважно, какого именно у вас вида фигура: разносторонний тупоугольный треугольник, равнобедренный, прямо- или остроугольный. В любой ситуации, благодаря приведенной формуле, вы можете узнать площадь заданного многоугольника с тремя сторонами.

    Описанные треугольники

    Также довольно часто приходится работать со вписанными окружностями. По одной из формул, радиус такой фигуры, умноженный на ½ периметра, будет равняться площади треугольника. Правда, для ее выяснения вам необходимо знать стороны тупоугольного треугольника. Ведь для того чтобы определить ½ периметра, необходимо сложить их длины и разделить на 2.

    Чтобы понять, где должен находиться центр круга, вписанного в тупоугольный треугольник, необходимо провести три биссектрисы. Это линии, которые делят углы пополам. Именно на их пересечении и будет находиться центр окружности. При этом он будет равноудален от каждой из сторон.

    Радиус такой окружности, вписанной в тупоугольный треугольник, равняется из частного (p-c) х (p-v) х (p-b) : p. При этом p - это полупериметр треугольника, c, v, b - его стороны.

    Пожалуй, самой основной, простой и интересной фигурой в геометрии является треугольник. В курсе средней школы изучаются его основные свойства, однако иногда знания по этой теме формируются неполными. Виды треугольников изначально определяют их свойства. Но подобное представление остается смешанным. Поэтому сейчас разберем немного подробнее эту тему.

    Виды треугольников зависят от градусной меры углов. Эти фигуры бывают остро-, прямо- и тупоугольными. Если все углы не превышают значения в 90 градусов, то фигуру смело можно назвать остроугольной. Если хотя бы один угол треугольника равен 90 градусам, то вы имеете дело с прямоугольным подвидом. Соответственно, во всех остальных случаях рассматриваемую называют тупоугольной.

    Существует множество задач для остроугольных подвидов. Отличительной чертой является внутреннее местонахождение точек пересечения биссектрис, медиан и высот. В других случаях это условие может не выполняться. Определить тип фигуры “треугольник” нетрудно. Достаточно знать, например, косинус каждого угла. Если какие-нибудь значения меньше нуля, значит, треугольник в любом случае является тупоугольным. В случае нулевого показателя фигура обладает прямым углом. Все положительные значения гарантированно подскажут вам о том, что перед вами остроугольный вид.

    Нельзя не сказать о правильном треугольнике. Это самый идеальный вид, где совпадают все точки пересечения медиан, биссектрис и высот. Центр вписанной и описанной окружности лежит также в одном месте. Для решения задач необходимо знать только одну сторону, так как вам углы изначально заданы, а две другие стороны известной. То есть фигура задается только одним параметром. Существуют Их главная особенность - равенство двух сторон и углов при основании.

    Иногда встречается вопрос о том, существует ли треугольник с заданными сторонами. На самом деле вас спрашивают, подходит ли данное описание под основные виды. Например, если сумма двух сторон меньше третьей, то в реальности такой фигуры не существует вообще. Если в задании просят найти косинусы углов треугольника со сторонами 3,5,9, то здесь очевидный можно объяснить без сложных математических приемов. Предположим, вы хотите из пункта A попасть в пункт B. Расстояние по прямой равно 9 километрам. Однако вы вспомнили, что необходимо зайти в пункт C в магазин. Расстояние от А до С равно 3 километрам, а от С до В - 5. Таким образом получается, что, двигаясь через магазин, вы пройдете на один километр меньше. Но так как пункт C не расположен на прямой AB, то вам придется пройти лишнее расстояние. Здесь возникает противоречие. Это, конечно, условное объяснение. Математика знает не один способ доказательства того, что все виды треугольников подчиняются основному тождеству. Оно гласит о том, что сумма двух сторон больше длины третьей.

    Любой вид обладает следующими свойствами:

    1) Сумма всех углов равняется 180 градусам.

    2) Всегда существует ортоцентр - точка пересечения всех трех высот.

    3) Все три медианы, проведенные из вершин внутренних углов, пересекаются в одном месте.

    4) Вокруг любого треугольника можно описать окружность. Также можно вписать круг так, чтобы он имел только три точки соприкосновения и не выходил за внешние стороны.

    Теперь вы познакомились с основными свойствами, которыми обладают различные виды треугольников. В будущем важно понимать, с чем вы имеете дело при решении задачи.