Строение коры мозга. Функции коры головного мозга человека. Активирующая ретикулярная система

Кора головного мозга – многоуровневая мозговая структура у людей и многих млекопитающих животных, состоящая из серого вещества и находящаяся в периферийном пространстве гемисфер (серое вещество коры их покрывает). Структура контролирует важные функции и процессы, протекающие в мозге и других внутренних органах.

(гемисферы) мозга в черепной коробке занимают около 4/5 всего пространства. Их составная часть – белое вещество, включающее в себя длинные миелиновые аксоны нервных клеток. С внешней стороны гемисферы покрыты корой мозга, которая тоже состоит из нейронов, а также из глиальных клеток и безмиелиновых волокон.

Принято разделять поверхность гемисфер на некоторые зоны, каждая из которых отвечает за выполнение определенных функций в организме (по большей части это рефлекторная и инстинктивная деятельность и реакции).

Существует такое понятие – «древняя кора». Это эволюционно самая древняя структура плаща конечного мозга коры больших полушарий у всех млекопитающих. Также выделяют «новую кору», которая у низших млекопитающих только намечена, а у человека образовывает большую часть коры головного мозга (есть и «старая кора», которая новее, чем «древняя», но древнее, чем «новая»).

Функции коры

Кора головного мозга человека отвечает за контроль над множеством функций, которые используются в разных аспектах жизнедеятельности организма человека. Ее толщина составляет около 3-4 мм, а объем довольно внушительный за счет наличия связующих с центральной нервной системой каналов. Как по электросети происходит восприятие, обработка информации, прием решений с помощью нервных клеток с отростками.

Внутри коры головного мозга вырабатываются различные электросигналы (тип которых зависит от текущего состояния человека). Активность этих электрических сигналов зависит от самочувствия человека. Технически электросигналы такого типа описываются с помощью показателей частоты и амплитуды. Большее количество связей и локализовано в местах, которые несут ответственность за обеспечение наиболее сложных процессов. При этом кора головного мозга продолжает активно развиваться в течение всей жизни человека (по крайней мере, до того момента, пока развивается его интеллект).

В процессе обработки информации, поступающей в мозг, в коре формируются реакции (психические, поведенческие, физиологические и т.д.).

Наиболее важными функциями коры мозга являются:

  • Взаимодействие внутренних органов и систем с окружающей средой, а также друг с другом, правильное течение обменных процессов внутри организма.
  • Качественный прием и обработка получаемой информации извне, осознание полученной информации за счет протекания процессов мышления. Высокая чувствительность к любой получаемой информации достигается за счет большого количества нервных клеток с отростками.
  • Поддержка беспрерывной взаимосвязи между различными органами, тканями, структурами и системами организма.
  • Формирование и правильная работа сознания человека, течение творческого и интеллектуального мышления.
  • Осуществление контроля над активностью речевого центра и процессами, связанными с разными психическими и эмоциональными ситуациями.
  • Взаимодействие со спинным мозгом и другими системами и органами человеческого организма.

Кора головного мозга в своей структуре имеет передние (лобные) отделы гемисфер, которые на данный момент современной наукой изучены в наименьшей степени. Об этих участках известно, что они практически невосприимчивы к внешнему воздействию. Например, если на эти отделы воздействовать с помощью внешних электрических импульсов, они не будут давать никакой реакции.

Некоторые ученые уверены, что передние отделы больших полушарий отвечают за самосознание человека, за его специфичные особенности характера. Известен тот факт, что люди, у которых передние отделы поражены в той или иной степени, испытывают определенные сложности с социализацией, они практически не уделяют внимания своему внешнему виду, им не интересна трудовая деятельность, не интересует мнение окружающих.

С точки зрения физиологии, значение каждого отдела больших полушарий сложно переоценить. Даже тех, которые на данный момент до конца не изучены.

Слои коры головного мозга

Кора головного мозга образована несколькими слоями, каждый из которых имеет уникальную структуру и отвечает за выполнение определенных функций. Все они взаимодействуют друг с другом, выполняя общую работу. Принято выделять несколько основных слоев коры:

  • Молекулярный. В этом слое формируется огромное количество дендритных образований, которые между собой сплетены в хаотичном порядке. Нейриты параллельно ориентированы, формируют прослойку волокон. Нервных клеток здесь сравнительно мало. Считается, что основная функция этого слоя – ассоциативное восприятие.
  • Внешний. Здесь сосредоточено множество нервных клеток с отростками. Нейроны различаются по форме. Точно о функциях этого слоя пока ничего неизвестно.
  • Внешний пирамидальный. Содержит множество нервных клеток с отростками, которые различаются размерами. Нейроны имеют преимущественно коническую форму. Дендрит имеет большие размеры.
  • Внутренний зернистый. Включает в себя небольшое количество нейронов маленького размера, которые расположены на некотором расстоянии. Между нервными клетками находятся волокнистые сгруппированные структуры.
  • Внутренний пирамидальный. Нервные клетки с отростками, которые в него входят, имеют крупные и средние размеры. Верхняя часть дендритов может соприкасаться с молекулярным слоем.
  • Покров. Включает в себя нервные клетки в форме веретена. Для нейронов в этой структуре характерно то, что нижняя часть нервных клеток с отростками доходит вплоть до белого вещества.

Кора головного мозга включает в себя различные слои, которые различаются формой, расположением, функциональной составляющей своих элементов. В слоях находятся нейроны пирамидального, веретенного, звездного, ветвистого видов. Совместно они создают более пятидесяти полей. Несмотря на то, что поля не имеют четко обозначенных границ, их взаимодействие друг с другом позволяет выполнять регулирование огромного числа процессов, сопряженных с получением и обработкой импульсов (то есть поступающей информации), созданием ответной реакции на влияние раздражителей.

Строение коры крайне сложное и до конца не изученное, поэтому ученые не могут точно сказать, как именно работают некоторые элементы мозга.

Уровень интеллектуальных способностей ребенка связан с размерами мозга и качеством кровообращения в мозговых структурах. У многих детей, у которых отмечались скрытые родовые травмы в области позвоночника, кора головного мозга заметно меньше, чем у их здоровых сверстников.

Префронтальная кора

Крупный отдел коры больших полушарий, который представлен в виде передних отделов лобных долей. С ее помощью осуществляется контроль, управление, фокусировка любых действий, которые совершает человек. Этот отдел позволяет нам правильно распределять своё время. Известный психиатр Т. Голтьери охарактеризовал этот участок в качестве инструмента, с помощью которого люди ставят цели, разрабатывают планы. Он был уверен, что правильно работающая и хорошо развитая префронтальная кора – важнейший фактор эффективности личности.

К основным функциям префронтальной коры также принято относить:

  • Концентрацию внимания, сосредоточение на получении только необходимой человеку информации, игнорирование сторонних мыслей и чувств.
  • Способность «перезагружать» сознание, направляя его в нужное мыслительное русло.
  • Настойчивость в процессе выполнения определенных задач, стремление к получению намеченного результата, несмотря на возникающие обстоятельства.
  • Анализ складывающейся в настоящий момент ситуации.
  • Критическое мышление, позволяющее создать комплекс действий для поиска проверенных и достоверных данных (проверка полученной информации перед ее использованием).
  • Планирование, выработка определенных мер и действий для достижения поставленных целей.
  • Прогнозирование событий.

Отдельно отмечается способность этого отдела управлять эмоциями человека. Здесь процессы, протекающие в лимбической системе, воспринимаются и переводятся в конкретные эмоции и чувства (радость, любовь, желание, горе, ненависть и т.д.).

Разным структурам коры головного мозга приписываются различные функции. Единого мнения по этому вопросу до сих пор нет. Международное медицинское сообщество на данный момент приходит к выводу, что кора может быть разделена на несколько крупных зон, включающих в себя корковые поля. Поэтому, учитывая функции этих зон, принято выделить три основных отдела.

Зона, ответственная за обработку импульсов

Импульсы, поступающие через рецепторы осязательных, обонятельных, зрительных центров, идут именно в эту зону. Практически все рефлексы, связанные с моторикой, обеспечены пирамидальными нейронами.

Здесь же располагается отдел, который отвечает за получение импульсов и информации со стороны мышечной системы, активно взаимодействует с разными слоями коры. Он получает и обрабатывает все импульсы, которые идут от мышц.

Если по какой-то причине кора головы будет повреждена в этой зоне, то у человека будут наблюдаться проблемы с функционированием сенсорной системы, проблемы с моторикой и работой других систем, которые сопряжены с сенсорными центрами. Внешне подобные нарушения будут проявляться в виде постоянных непроизвольных движений, судорог (разной степени выраженности), частичным или полным параличом (в тяжелых случаях).

Зона сенсорного восприятия

Эта зона отвечает за обработку электрических сигналов, поступающих в мозг. Здесь располагаются сразу несколько отделов, которые обеспечивают восприимчивость мозга человека к поступающим от других органов и систем импульсам.

  • Затылочный (обрабатывает импульсы, поступающие от зрительного центра).
  • Височный (осуществляет обработку информации, идущей от речеслухового центра).
  • Гиппокамп (анализирует импульсы, поступающие от обонятельного центра).
  • Теменной (обрабатывает данные, полученные от вкусовых рецепторов).

В зоне сенсорного восприятия располагаются отделы, которые также осуществляют получение и обработку тактильных сигналов. Чем больше будет нейронных связей в каждом отделе, тем выше будет его сенсорная способность по принятию и обработке информации.

Отмеченные выше отделы занимают около 20-25% всей коры головного мозга. Если зона сенсорного восприятия будет каким-то образом повреждена, то у человека могут возникнуть проблемы со слухом, зрением, обонянием, ощущением прикосновений. Получаемые импульсы или не будут доходить, либо будут неправильно обрабатываться.

Далеко не всегда нарушения сенсорной зоны будут вести к утрате какого-то чувства. К примеру, если будет поврежден слуховой центр, это не всегда приведет к полной глухоте. Однако у человека практически наверняка будут определенные сложности с правильным восприятием получаемой звуковой информации.

Ассоциативная зона

В строении коры головного мозга также присутствует ассоциативная зона, которая обеспечивает контакт между сигналами нейронов сенсорной зоны и центра моторики, а также дает необходимые обратные сигналы в эти центры. Ассоциативная зона формирует поведенческие рефлексы, принимает участие в процессах их фактической реализации. Занимает значительную (сравнительно) часть коры головного мозга, охватывая отделы, входящие как в лобную, так и в задние части больших полушарий (затылочная, теменная, височная).

Человеческий мозг устроен таким образом, что в плане ассоциативного восприятия задние отделы больших полушарий развиты особенно хорошо (развитие происходит в течение всей жизни). Они осуществляют управление речью (ее пониманием и воспроизведением).

Если передние или задние отделы ассоциативной зоны будут повреждены, то это может привести к определенным проблемам. Например, в случае поражения перечисленных выше отделов человек утратит способность грамотно анализировать полученную информацию, не сможет давать простейшие прогнозы на будущее, отталкиваться от фактов в процессах мышления, использовать полученный ранее опыт, отложившийся в памяти. Также могут возникнуть проблемы с ориентацией в пространстве, абстрактным мышлением.

Кора головного мозга выступает в виде высшего интегратора импульсов, в то время как эмоции сосредоточены в подкорковой зоне (гипоталамус и другие отделы).

Разные области коры головного мозга отвечают за выполнение определенных функций. Рассмотреть и определить разницу можно несколькими методами: нейровизуализация, сравнение паттернов электроактивности, изучение клеточной структуры и т.д.

В начале 20-го века К. Бродман (немецкий исследователь анатомии мозга человека) создал специальную классификацию, разделив в ней кору на 51 участок, основывая свою работу на цитоархитектонике нервных клеток. В течение всего 20-го века описанные Бродманом поля обсуждались, уточнялись, переименовывались, но до сих пор их используют для описания коры головного мозга у людей и крупных млекопитающих.

Многие поля Бродмана определялись изначально на основе организации нейронов в них, но в дальнейшем их границы были уточнены в соответствии с корреляцией с разными функциями коры мозга. К примеру, первое, второе и третье поля определяются как первичная соматосенсорная кора, четвертое поле – первичная моторная кора, семнадцатое поле – первичная зрительная кора.

При этом некоторые поля Бродмана (например, зона 25 мозга, а также поля 12-16, 26, 27, 29-31 и многие другие) до конца не изучены.

Речедвигательная зона

Хорошо изученный участок коры головного мозга, который принято также называть центром речи. Зону условно разделяют на три крупных отдела:

  1. Речедвигательный центр Брока. Формирует у человека способность говорить. Располагается в задней извилине передней части больших полушарий. Центр Брока и двигательный центр речедвигательных мышц – это разные структуры. Например, если двигательный центр будет поврежден каким-то образом, то человек не утратит способность говорить, не пострадает смысловая составляющая его речи, однако речь перестанет быть четкой, а голос станет маломодулированным (иными словами, утратиться качество произношения звуков). Если будет поврежден центр Брока, то человек не сможет говорить (так же, как и младенец в первые месяцы жизни). Подобные нарушения принято называть моторной афазией.
  2. Сенсорный центр Вернике. Располагается в височном отделе, отвечает за функции по получению и обработке устной речи. Если центр Вернике будет поврежден, то формируется сенсорная афазия – больной не сможет понять обращенную к нему речь (причем не только от другого человека, но и свою собственную). Произнесенное пациентом будет представлять собой набор несвязных звуков. Если произойдет одновременное поражение центров Вернике и Брока (обычно это происходит при инсульте), то в этих случаях наблюдается развитие моторной и сенсорной афазии единовременно.
  3. Центр восприятия письменной речи. Расположен в зрительной части коры головного мозга (поле №18 по Бродману). Если он окажется поврежденным, то у человека наблюдается аграфия – утрата способности писать.

Толщина

Все млекопитающие, которые имеют сравнительно большие размеры мозга (в общем понимании, а не в сравнении с размерами тела), обладают достаточную толстой корой мозга. К примеру, у полевых мышей ее толщина составляет около 0,5 мм, а у людей – около 2,5 мм. Ученые также выделяют определенную зависимость толщины коры от веса животного.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Кора головного мозга — высший отдел ЦНС, который обеспечивает совершенную организацию поведения человека. По факту она предопределяет сознание, участвует в управлении мышлением, способствует обеспечению взаимосвязи с внешним миром и функционирования организма. Она устанавливает взаимодействие с внешним миром посредством рефлексов, что позволяет надлежащим образом адаптироваться к новым условиям.

Указанный отдел ответственный за работу самого мозга. Сверху определенных участков, взаимосвязанных с органами восприятия, образовались зоны, обладающие подкорковым белым веществом. Они важны при сложном обрабатывании данных. Вследствие появления такого органа в мозге начинается следующая стадия, на которой значение ее функционирования существенно возрастает. Данный отдел является органом, который выражает индивидуальность и сознательную деятельность индивида.

Общая информация о коре ГМ

Представляет собой поверхностный слой толщиной до 0,2 см, который покрывает полушария. Он предусматривает вертикально ориентированные нервные окончания. Этот орган содержит центростремительные и центробежные нервные отростки, нейроглии. Каждая доля этого отдела несет ответственность за определенные функции:

  • – слуховая функция и обоняние;
  • затылочная – зрительное восприятие;
  • теменная – осязание и вкусовые рецепторы;
  • лобная – речь, двигательная активность, сложные мыслительные процессы.

По факту кора предопределяет сознательную деятельность индивида, участвует в управлении мышлением, взаимодействует с внешним миром.

Анатомия

Выполняемые корой функции зачастую обусловлены ее анатомическим строением. Структура имеет свои характерные черты, выраженные в разном числе слоев, габаритах, анатомии образующих орган нервных окончаний. Специалисты выделяют следующие разновидности слоев, взаимодействующих между собой и помогающих функционировать системе в целом:

  • Молекулярный слой. Помогает создать хаотично связанных дендритных формирований с малым числом клеток, имеющих веретенообразную форму и обусловливающих ассоциативную деятельность.
  • Наружный слой. Выражается нейронами, имеющими разные очертания. После них локализуются внешние контуры структур, имеющих пирамидальную форму.
  • Наружный слой пирамидального типа. Предполагает наличие нейронов разных размеров. По форме данные клетки схожи с конусом. Сверху выходит дендрит, обладающий наибольшими размерами. связаны при помощи деления на незначительные образования.
  • Зернистый слой. Предусматривает нервные окончания незначительного размера, локализованных обособленно.
  • Пирамидальный слой. Предполагает наличие нейронных цепей, обладающих различными габаритами. Верхние отростки нейронов способны доходить до начального слоя.
  • Покров, содержащий нейронные связи, напоминающие веретено. Часть из них, находящаяся в нижней точке, может достигать уровня белого вещества.
  • Лобная доля
  • Играет ключевую роль для сознательной деятельности. Участвует в запоминании, внимании, мотивации и прочих задачах.

Предусматривает наличие 2 парных долей и занимает 2/3 всего мозга. Полушария осуществляют контроль противоположных сторон туловища. Так, левая доля регулирует работу мышц правой стороны и наоборот.

Лобные части имеют важное значение в последующем планировании, включая управление и принятие решений. Кроме того, они выполняют следующие функции:

  • Речевая. Способствует выражению словами мыслительных процессов. Поражение данного участку может повлиять на восприятие.
  • Моторика. Дает возможность влиять на двигательную активность.
  • Сравнительные процессы. Способствует проведению классификации предметов.
  • Запоминание. Каждый участок мозга имеет важное значение в процессах запоминания. Лобная часть формирует долгосрочную память.
  • Личностное формирование. Дает возможность взаимодействовать импульсам, памяти и прочим задачам, образующим главные характеристики индивида. Поражение лобной доли кардинальным образом меняет личность.
  • Мотивация. Большая часть чувствительных нервных отростков расположены в лобной части. Дофамин способствует поддержанию мотивационной составляющей.
  • Контроль внимания. Если лобные части не способны осуществлять управление вниманием, то формируется синдром нехватки внимания.

Теменная доля

Охватывает верхнюю и боковую части полушария, а также разделяются центральной бороздой. Функции, которые выполняет данный участок, различаются для доминантной и недоминантной сторон:

  • Доминантная (преимущественно левая). Несет ответственность за возможность понимания устройства целого через соотношение его составляющих и за синтез информации. Кроме того, дает возможность осуществления взаимосвязанных движений, которые требуются для получения конкретного результата.
  • Недоминантная (преимущественно правая). Центр, который перерабатывает данные, поступающие из затылочной части, и обеспечивает 3-хмерное восприятие происходящего. Поражение данного участка ведет к неспособности распознавания объектов, лиц, пейзажей. Так как зрительные образы перерабатываются в мозге обособленно от данных, поступающих из остальных органов чувств. Кроме того, сторона принимает участие в ориентации в пространстве человека.

Обе теменные части принимают участие в восприятии температурных изменений.

Височная

Она реализует сложную психическую функцию – речь. Расположена на обоих полушариях сбоку в нижней части, тесно взаимодействуя с близлежащими отделами. Данная часть коры обладает наиболее выраженными контурами.

Височные участки осуществляют обработку слуховых импульсов, преобразуя их в звуковой образ. Имеют важное значение в обеспечении речевых коммуникативных навыков. Непосредственно в данном отделе происходит распознавание услышанной информации, выбор языковых единиц для смысловой выраженности.

На сегодняшний день подтверждено, что возникновение сложностей с обонянием у больного преклонного возраста сигнализирует о формирующемся заболевании Альцгеймера.

Незначительный участок внутри височной доли (), осуществляет контроль долговременной памяти. Непосредственно височная часть накапливает воспоминания. Доминантный отдел взаимодействует с вербальной памятью, недоминантный способствует зрительному запоминанию образов.

Одновременное повреждение двух долей ведет к безмятежному состоянию, потере возможности идентификации внешних образов и повышенной сексуальности.

Островок

Островок (закрытая долька) расположен в глуби боковой борозды. От смежных отделов островок отделяется круговой бороздой. Верхний участок закрытой дольки разделяется на 2 части. Здесь проецируется вкусовой анализатор.

Формирующая дно латеральной борозды, закрытая долька является выступом, верхняя часть которого направлена наружу. Островок отделяется круговой бороздой от близлежащих долей, которые формируют покрышку.

Верхний отдел закрытой дольки подразделяется на 2 части. В первой локализуется прецентральная борозда, а находящаяся посреди них расположена передняя центральная извилина.

Борозды и извилины

Являют собой впадины и находящиеся посреди них складки, которые локализуются на поверхности мозговых полушарий. Борозды способствуют увеличению коры полушарий, не увеличивая объем черепной коробки.

Значимость данных участков заключается в том, что две трети всей коры располагаются в глуби борозд. Бытуют мнение, что полушария развиваются неодинаково в разных отделах, в результате этого напряжение будет также неравномерным в конкретных участках. Это может привести к формированию складок либо извилин. Другие ученые полагают, что большое значение имеет первоначальное развитие борозд.

Анатомическая структура рассматриваемого органа отличается многообразием функций.

Каждый отдел данного органа обладает специфическим предназначением, являясь своеобразным уровнем воздействия.

Благодаря им осуществляется все функционирование головного мозга. Нарушения в работе определенной зоны способно привести к сбоям в деятельности всего мозга.

Зона обработки импульсов

Данный участок способствует обработке нервных сигналов, поступающих через зрительные рецепторы, обоняние, осязание. Большинство рефлексов, взаимосвязанных с моторикой, будут обеспечены пирамидальными клетками. Зона, обеспечивающая обработку мышечных данных, характеризуется слаженной взаимосвязью всех слоев органа, что имеет ключевое значение на этапе соответствующего обрабатывания нервных сигналов.

Если кора мозга поражена на этом участке, то могут произойти нарушения в слаженном функционировании функций и действий по восприятию, неразрывно взаимосвязанных с моторикой. Внешне расстройства в двигательной части проявляются во время непроизвольной двигательной активности, судорогах, тяжелых проявлениях, которые ведут к параличу.

Зона сенсорного восприятия

Данная область отвечает за обработку импульсов, поступающих в мозг. По своей структуре она представляет собой систему взаимодействия анализаторов для установления взаимосвязи со стимулятором. Специалисты выделяют 3 отдела, отвечающих за восприятие импульсов. К ним относят затылочную, обеспечивающая обрабатывание зрительных образов; височную, которая связана со слухом; зону гиппокампа. Часть, которая несет ответственность за обработку данных стимуляторов вкуса, расположены рядом с теменем. Здесь располагаются центры, которые отвечают за прием и обработку тактильных импульсов.

Сенсорная способность непосредственно зависит от количества нейронных связей на этом участке. Примерно данные отделы занимают до пятой части от всего размера коры. Повреждение данного участка провоцирует ненадлежащее восприятие, что не позволит продуцировать встречный импульс, который был бы адекватен раздражителю. Например, нарушение в функционировании слуховой зоны не во всех случаях вызывает глухоту, однако способно спровоцировать некоторые эффекты, искажающие нормальное восприятие данных.

Ассоциативная зона

Этот отдел способствует контактированию между импульсами, принимаемыми нейронными связями в сенсорном отделе, и моторикой, которая представляет собой встречный сигнал. Эта часть формирует осмысленные поведенческие рефлексы, а также принимает участие в их осуществлении. По месту расположения выделяются передние зоны, располагающиеся в лобных частях, и задние, занявшие промежуточное положение посреди висков, теменем и затылочным участком.

Для индивида свойственны сильно развитые задние ассоциативные зоны. Данные центры обладают особым предназначением, гарантируя обрабатывание речевых импульсов.

Патологические изменения в работе переднего ассоциативного участка ведет к сбоям в проведении анализа, прогнозирования, на основе пережитых ранее ощущений.

Расстройства в функционировании заднеассоциативного участка усложняет пространственную ориентацию, делает медленнее абстрактные мыслительные процессы, конструирование и идентификацию сложных зрительных образов.

Кора головного мозга ответственна за работу головного мозга. Подобное вызвало изменения в анатомическом строении самого мозга, так как его работа существенно усложнилась. Сверху определенных участков, взаимосвязанных с органами восприятия и двигательным аппаратом, образовались отделы, которые обладают ассоциативными волокнами. Они необходимы для сложной обработки попадающих внутрь мозга данных. Вследствие формирования данного органа начинается новая стадия, где ее значимость существенно возрастает. Данный отдел считается органом, который выражает индивидуальные особенности человека и его сознательную деятельность.

Мозг это загадочный орган, который постоянно изучается учеными и остается до конца не исследованным. Система строения не простая и является сочетанием нейронных клеток, которые группируются в отдельные отделы. Кора головного мозга имеется у большинства животных и млекопитающих, но именно в человеческом организме она получила большего развития. Этому способствовала трудовая активность.

Почему мозг называют серым веществом или серой массой? Он сероватый, но в нем присутствует белый, красный и черные цвет. Серая субстанция представляет разные типы клеток, а белая нервную материю. Красный цвет это кровяные сосуды, а черный это меланин пигмент, который отвечает за окраску волос и кожи.

Строение мозга

Главный орган делится на пять основных частей. Первая часть продолговатая. Это продление спинного мозга, который контролирует связь с деятельностью тела и состоит из серой и белой субстанции. Вторая, средняя включает четыре бугорка, из которых два ответственные за слуховую, а два за зрительскую функцию. Третья, задняя включает мосток и церебеллум или мозжечок. Четвертая, буферная гипоталамус и таламус. Пятая, конечная, которая формирует два полушария.

Поверхность состоит из бороздочек и мозгов, покрытых оболочкой. Этот отдел составляет 80 % общего веса человека. Также мозг можно разделить на три части церебеллум, стволик и полушария. Он покрыт тремя слоями, которые предохраняют и питают основной орган. Это паутинный слой, в котором циркулирует мозговая жидкость, мягкий содержит кровяные сосуды, твердый близкий к мозгу и защищает его от повреждений.

Функции мозга


Мозговая деятельность включает основные функции серого вещества. Это чувствительные, зрительные, слуховые, обонятельные, осязательные реакции и моторные функции. Однако все главные центры управления находятся в продолговатой части, где координируется деятельность сердечно-сосудистой системы, защитных реакций и мышечной деятельности.

Двигательные пути продолговатого органа создают перекрещивание с переходом на противолежащую сторону. Это ведет к тому, что рецепторы сначала образуются в правой области, после чего поступают импульсы в левую область. Речь выполняется в больших полушариях мозга. Задний отдел отвечает за вестибулярный аппарат.

Локализация функций в больших полушариях. Кора больших полушарий головного мозга делится на основные зоны, состоящие из нескольких корковых полей. Каждая из этих зон выполняет определенную общую функцию, а составляющие ее поля специализированно участвуют в реализации отдельных элементов этой функции. Однако благодаря проводящим путям в осуществлении отдельных звеньев высшей и низшей нервной деятельности участвует несколько зон больших полушарий, определенные подкорковые центры, ядра мозгового ствола и сегменты спинного мозга.

При тонкой и точной специализации определенных групп нейронов головной и спинной мозг функционируют как единое целое. Психические функции головного мозга также не ограничены отдельными участками коры, а являются результатом совместной деятельности обширных зон больших полушарий и подкорковых центров.

Рис. 123. Индивидуальные изменения основных полей новой коры больших полушарий у трех взрослых (А, Б, В). Цифры- поля по Бродману

Моторная зона (поле 4) расположена в передней центральной извилине вдоль центральной борозды. В верхней четверти зоны находятся двигательные центры для мышц ног.

Сверху расположены нейроны, иннервирующие мышцы пальцев ног, а снизу - бедра и туловища. Две средние четверти заняты центрами для рук, выше - центр мышц лопатки, а ниже - мышц пальцев. И, наконец, в нижней четверти передней центральной извилины находятся центры мышц лица и речевого аппарата.

В результате исторического развития головного мозга человека в процессе труда и речи особенно большое место занимают группы нейронов, которые вызывают сокращение мышц кисти руки, главным образом большого пальца, и мышц лица, языка и гортани. К ним поступают центростремительные волокна из проприорецепторов, входящие по задним корешкам в спинной мозг, где они поднимаются в составе заднего столба той же стороны до ядер нежного и клиновидного пучков продолговатого мозга. Из этих ядер выходят волокна вторых нейронов, образующие медиальную петлю и после перекреста достигающие ядер зрительного бугра противоположной стороны. Отсюда большая часть центростремительных волокон третьих нейронов достигает задней центральной извилины и далее поступает в переднюю центральную извилину, а меньшая часть входит в нее прямым путем. Таким образом, передняя центральная извилина посредством волокон, проходящих в проводящих путях коры, связана с задней центральной извилиной. Из моторной зоны выходят центробежные двигательные волокна пирамидных нейронов, которые составляют пирамидные проводящие пути; они достигают нейронов передних рогов спинного мозга. Моторная зона вызывает координированные движения скелетных мыщц, преимущественно на противоположной стороне тела. Она функционирует совместно с подкорковыми центрами - полосатыми телами, а также люисовым телом, красным ядром и черным веществом.


При поражениях определенных участков передней центральной извилины нарушаются произвольные движения отдельных групп мышц. Неполное поражение зоны вызывает нарушение движений- парез, а полное ее разрушение - паралич.

Зона кожно-мышечной чувствительности (поля 1, 2, 3, 43 и частично 5 и 7) расположена в задней центральной извилине вдоль задней центральной борозды. В этой зоне особенно сильно развиты зернистые слои коры, к которым подходят центростремительные волокна из рецепторов кожи, идущие в составе тех же проводящих путей, как и волокна из проприорецепторов. Расположение воспринимающих групп нейронов такое же, как в моторной зоне. Наибольшую поверхность занимают нейроны, воспринимающие импульсы из рецепторов кисти руки, лица, языка и гортани. Поле 7 больше других полей связано с чувствительностью руки. Зона кожно-мышечной чувствительности не полностью отграничена от моторной зоны, так как в полях 3, 4 и 5 происходит сочетание зернистых нейронов с гигантскими пирамидными нейронами. В моторной зоне находится примерно 80% двигательных нейронов, а в зоне кожно-мышечной чувствительности - 20%. В каждое полушарие поступают импульсы главным образом из рецепторов противоположной стороны тела, но также и из рецепторов той же стороны. В эту зону поступают центростремительные импульсы преимущественно из бокового и полулунного ядер зрительного бугра.

При поражениях определенных участков задней центральной извилины нарушается чувствительность в отдельных участках кожи. Потеря способности узнавать предметы при их осязании обозначается как тактильная агнозия. При нарушениях функций зоны наблюдаются расстройства осязания, болевых и температурных ощущений кожи и мышечно-суставной чувствительности. Неполное поражение зоны вызывает понижение рецепции - гипостезию, а полное - ее потерю - анестезию.

Лобная зона (поля 6, 5, 9, 10, 11, 44, 45, 46, 47) расположена в лобной доле впереди моторной. Она делится на премоторную и речедвигательную. Премоторная зона (поля 6, 8, 9, 10, 11) регулирует тонус скелетных мышц и координированные движения тела, ориентирующие его в пространстве. С полем 10, которое участвует в выполнении двигательных условных рефлексов, функционально связано поле 46. В премоторную зону поступают центростремительные импульсы из внутренних органов и из нее исходит значительная часть центробежных вегетативных волокон. Поэтому поражение премоторной зоны вызывает нарушение координации движений - атаксию и расстройства функций сердечнососудистой, дыхательной, пищеварительной и других систем внутренних органов.

Зрительная зона (поля 17, 18, 19) расположена на внутренней поверхности затылочной доли по обеим сторонам шпорной борозды. У человека она занимает 12% общей поверхности коры. Поле 17 находится на затылочном полюсе; оно окружено полем 18, которое окружает поле 19, граничащее с задним отделом лимбической области, верхней и нижней теменными областями. В поле 17 - центральном поле зрительной зоны в 16 раз больше нейронов, чем в центральном поле слуховой зоны (поле 41), и в 10 раз больше нейронов, чем в центральном поле моторной зоны (поле 4). Это указывает на ведущее в историческом и индивидуальном развитии человека значение зрения.

Из сетчатки 900 тыс.- 1 млн. центростремительных волокон зрительных нервов доходит до наружного коленчатого тела, в котором точно проецируются отдельные части сетчатки. Центростремительные волокна нейронов наружного коленчатого тела направляются в зрительную зону, преимущественно в основное зрительное поле 17. Другими промежуточными зрительными центрами, участвующими в передаче не зрительных импульсов, а глазодвигательных, являются подушка зрительного бугра и передние бугры четверохолмия.

До поступления в наружное коленчатое тело волокна зрительного нерва перекрещиваются. Благодаря этому перекресту в составе зрительного пути, направляющегося в зрительную зону каждого полушария, 50% волокон своей стороны и 50% волокон противоположной стороны. В зрительную зону левого полушария поступают зрительные импульсы из левых половин сетчаток обоих глаз, а в зону правого полушария - из правых половин сетчаток обоих глаз. Поэтому разрушение одной из зрительных зон вызывает слепоту в одноименных половинах сетчаток в обоих глазах - гемианопсию. В зрительных нервах, кроме центростремительных волокон, проходят и несколько более толстые центробежные волокна к мышцам радужной оболочки и центробежные тонкие симпатические волокна из нейронов подкорковых центров. Небольшая часть центростремительных волокон зрительного нерва не прерывается в подкорковых образованиях, а прямо направляется в мозжечок и зрительные зоны больших полушарий.

Разрушение обоих полей 17 вызывает полную корковую слепоту, разрушение поля 18 приводит к потере зрительной памяти при сохранении зрения, что обозначается как зрительная агнозия, а разрушение поля 19 - к потере ориентации в непривычной обстановке.

Слуховая зона (поля 41, 42, 21, 22, 20, 37) расположена на поверхности височной доли, преимущественно передней поперечной височной извилины и верхней височной извилины. Поле 41, расположенное в верхней височной извилине и в передней части поперечной извилины, является проекцией кортиева органа улитки. Из органа Корти центростремительные импульсы проходят через спиральный узел по улиточному нерву, состоящему примерно из 30 тыс. волокон. В этом узле находятся первые биполярные нейроны слухового пути. Далее волокна первых нейронов передают слуховые импульсы в ядра слухового нерва в продолговатом мозге, где находятся вторые нейроны. Волокна ядер слухового нерва связываются с ядрами лицевого нерва в продолговатом мозге и глазодвигательного нерва в передних буграх среднего мозга. Поэтому при сильных звуках рефлекторно сокращаются мышцы лица, век, ушной раковины и вызываются движения глаз.

Большая часть волокон ядер слухового нерва перекрещивается в варолиевом мосту, а меньшая проходит на своей стороне. Затем волокна слухового пути поступают в боковую лемнисковую петлю, которая заканчивается в задних буграх четверохолмия и во внутреннем коленчатом теле, где находятся третьи нейроны - их волокна проводят центростремительные импульсы в слуховую зону. Существуют также прямые пути, связывающие ядра слуховых нервов с мозжечком и слуховой зоной. Большая часть прямых мозжечковых путей образуется вестибулярным нервом, а меньшая- улитковым нервом, составляющими вместе общий ствол слухового нерва. Вестибулярный аппарат проецируется также в слуховой зоне.

Разрушение поля 41 на одной стороне вызывает глухоту на противоположной стороне и ослабление слуха на своей стороне, а разрушение полей 41 на обеих сторонах ведет к полной корковой глухоте. Разрушение поля 22 в передней трети верхней височной извилины приводит к музыкальной глухоте - теряется восприятие интенсивности тона, тембра и ритма звуков - слуховая агнозия. Разрушение полей 21 и 20 в средней и нижней височных извилинах вызывает атаксию - расстройство равновесия и координации движений.

В слуховой зоне расположен также рече-слуховой центр.

Обонятельная и вкусовая зоны. Обонятельная зона находится в древней коре, в которую поступают центростремительные импульсы из обонятельных клеток. Кроме обонятельной функции, она выполняет также вкусовую и участвует в деятельности пищеварительной, выделительной и половой систем. Раньше считали, что гиппокамп выполняет обонятельную функцию. В настоящее время полагают, что вместе с лимбической системой, гипоталамической областью промежуточного мозга и гипофизом, средним и продолговатым мозгом и особенно ретикулярной формацией гиппокамп участвует в общих двигательных реакциях и вегетативных рефлексах при эмоциях. Собственно вкусовая зона, вероятно, расположена в поле 43, которое находится в нижнем отделе задней центральной извилины.

Лимбическая извилина (заднее поле 23 и переднее поле 24) и кора островка (поля 13 и 14) участвуют в высшей нервной деятельности.

Все зоны коры не обособлены, а связаны между собой проводящими путями.

Центры речи (поля 44, 45, 46, 39, 40, 42, 22,37). Двигательный центр речи расположен в нижней части передней центральной извилины в поле 44. У большинства правшей площадь поля 44 в левом полушарии больше, чем в правом полушарии. Поле 44 вызывает сложные сокращения речевой мускулатуры, необходимые для произнесения слов. При разрушении этого поля человек не может говорить, но может производить простейшие сокращения речевой мускулатуры - кричать и петь. Это моторная, двигательная афазия, которая в некоторых случаях проявляется в отсутствии сокращений мышц языка и остальной речевой мускулатуры. Так как в этих случаях слуховой центр речи не поврежден, то понимание речи окружающих сохраняется. При поражении поля 44 часто нарушается не только устная речь, но и внутренняя речь или способность формулировать мысли словами без их произнесения, на основе накопленных звуковых образов, имеющих определенное смысловое содержание. При этом затруднено чтение про себя, расстроена способность писать произвольно и под диктовку, но сохранено копирование букв при письме. У правшей моторная афазия наблюдается при поражении левого полушария, а левшей - правого.

Рис. 129. Локализация центров речи:
1 - двигательный, 2 - слуховой, 3 - зрительный

Впереди поля 44 расположено поле 45, которое регулирует построение грамматически правильных сочетаний слов и пение. При поражении этого поля вследствие потери памяти на приемы произношения пение расстраивается. Мимика и жестикуляция, придающие речи ее выразительность, осуществляются благодаря импульсам, поступающим из поля 46 в поля 44 и 45, в поля премоторной области и в подкорковые центры.

Слуховой, или сенсорный, центр речи расположен в заднем отделе левой верхней височной извилины в поле 42, которое осуществляет понимание слова при слышании его. Если поле разрушается, теряется способность понимания смысла слов, но сохраняется их восприятие как звуков - сенсорная афазия, или речевая глухота. При этом вследствие отсутствия понимания собственной речи, иногда наблюдается чрезмерная говорливость - логоррея, или словесный понос. В задней части поля 22 фиксируются связи звуковых образов слов со всеми воспринимающими зонами, в которых возникают представления о предметах и явлениях. Поэтому поражение этого поля также вызывает сенсорную афазию.

Поля 39 и 40, расположенные в теменной доле рядом с полем 22, осуществляют понимание смысла сочетаний слов или фраз. Поэтому их поражение приводит к расстройству речи, которое называется семантической (смысловой) афазией. При поражении поля 39, вследствие потери способности узнавать буквы и цифры и понимать смысл видимых письменных образов слов и цифр, теряется способность читать вслух, писать и считать. Поражение поля 40 вызывает потерю способности писать, так как отсутствует ориентация движений в пространстве и нарушена их последовательность. Это отсутствие способности производить системные, целенаправленные движения (апраксия) не исключает возможности правильно совершать отдельные движения руки, не связанные с письмом. Следовательно, процесс письма у правшей осуществляется, височной, нижнетеменной и нижнелобной областями левого полушария. При поражении поля 37 вызывается потеря памяти на слова - амнестическая афазия.

Таким образом, в осуществлении функции речи участвуют большие полушария головного мозга в целом, но особенная роль выполняется отдельными полями коры. У правшей в результате преимущественного развития функций правой руки и правой половины тела особенно развиты сложнейшие психические функции левого полушария головного мозга.

Похожие материалы: