Почему у железа валентность 2 и 3. Валентность железа. Какая валентность у железа

Трудно переоценить роль железа для человеческого организма, ведь именно оно способствует «творению» крови, его содержание влияет на уровень гемоглобина и миоглобина, железо нормализует работу ферментной системы. Но что это за элемент с точки зрения химии? Какая валентность железа? Об этом будет рассказано в данной статье.

Немного истории

Человечество знало об этом химическом элементе и даже владело изделиями из него еще в IV веке до нашей эры. Это были народы Древнего Египта и Шумеры. Именно они первые начали изготавливать украшения, оружие из сплава железа и никеля, которые были найдены при археологических раскопках и тщательно исследованы химиками.

Немного позже, племена арийцев, переселившиеся в Азию, научилось добывать твердое железо из руды. Оно было настолько ценным для людей того времени, что изделия покрывали золотом!

Характеристика железа

Железо (Fe) стоит на четвертом месте по содержанию его в недрах земной коры. Оно занимает место в 7 группе 4 периода и имеет номер 26 в химической таблице элементов Менделеева. Валентность железа имеет прямую зависимость от своего положения в таблице. Но об этом позже.

Данный металл наиболее всего распространен в природе в виде руды, встречается в воде как минерал, а также в различных соединениях.

Наибольшее количество запасов железа в виде руды, находится в России, Австралии, Украине, Бразилии, США, Индии, Канаде.

Физические свойства

Прежде чем переходить к валентности железа, необходимо подробнее рассмотреть его физические свойства, так сказать, приглядеться к нему поближе.

Этот металл имеет достаточно пластичный, но способен к увеличению твердости путем его взаимодействия с другими элементами (например, с углеродом). Также он обладает магнитными свойствами.

Во влажной среде железо может корродировать, то есть ржаветь. Хотя абсолютно чистый металл устойчивее к влаге, но если в нем есть примеси, именно они провоцируют коррозию.

Железо хорошо взаимодействует с кислотной средой, даже может образовывать соли железной кислоты (при условии сильного окислителя).

В воздушной среде быстро покрывается оксидной пленкой, которая защищает его от взаимодействий.

Химические свойства

Также этот элемент обладает рядом химических свойств. Железо, как и остальные элементы таблицы Менделеева, имеет заряд атомного ядра, который соответствует порядковому номеру +26. А возле ядра вращается 26 электронов.

А вообще, если рассматривать свойства железа - химического элемента, то он является металлом с невысокой активной способностью.

Взаимодействуя с окислителями более слабыми, железо образует соединения, где оно двухвалентно (то есть его степень окисления +2). А если с сильными окислителями, то степень окисления железа достигает +3 (то есть валентность его становится равной 3).

При взаимодействии с химическими элементами, которые не являются металлами, Fe выступает по отношению к ним восстановителем, при этом степень окисления его становиться, кроме +2 и +3, даже +4, +5, +6. Такие соединения имеют очень сильные окислительные свойства.

Как уже отмечалось выше, железо в воздушной среде покрывается оксидной пленкой. А при нагревании скорость реакции повышается и может образоваться оксид железа с валентностью 2 (температура менее 570 градусов по Цельсию) или оксид с валентностью 3 (температурный показатель более 570 градусов).

Взаимодействие Fe с галогенами, приводит к образованию солей. Элементы фтор и хлор окисляют его до +3. Бром же - до +2 или +3 (все зависит от того, какие условия осуществления химического превращения при взаимодействии с железом).

Вступая во взаимодействия с йодом, элемент окисляется до +2.

Нагревая железо и серу, получается сульфид железа с валентностью 2.

Если феррум расплавить и соединить его с углеродом, фосфором, кремнием, бором, азотом, то получатся соединения называемые сплавами.

Железо является металлом, поэтому оно вступает во взаимодействие и с кислотами (об этом кратко также говорилось чуть выше). Например, кислоты серная и азотная, имеющие высокую концентрацию, в среде с пониженной температурой, на железо не оказывают воздействия. Но стоит ей повысится, как происходит реакция, в результате которой железо окисляется до +3.

Чем выше концентрация кислоты, тем большую температуру необходимо дать.

Нагревая 2-х валентное железо в воде, получим его оксид и водород.

Также Fe обладает способностью вытеснять из водных растворов солей металлы, которые имеют пониженную активность. При этом он окисляется до +2.

При повышении температуры, железо восстанавливает металлы из оксидов.

Что такое валентность

Уже в предыдущем разделе немного встречалось понятие валентности, а также степени окисления. Пришло время рассмотреть валентность железа.

Но для начала необходимо понять, что это вообще за такое свойство химических элементов.

Химические вещества почти всегда постоянны в своем составе. Например, в формуле воды Н2О - 1 атом кислорода и 2 атома водорода. То же самое и с другими соединениями, в которых задействованы два химических элемента, один из которых водород: к 1 атому химического элемента может добавиться 1-4 атома водорода. Но никак не наоборот! А потому, видно, что водород присоединяет к себе всего 1 атом другого вещества. И именно это явление называют валентностью - способностью атомов химического элемента присоединять конкретное количество атомов других элементов.

Значение валентности и графическая формула

Есть элементы таблицы Менделеева, которые обладают постоянной валентностью - это кислород и водород.

А есть такие химические элементы, у которых она изменяется. Например, железо чаще 2-х и 3-х валентно, сера 2, 4, 6-ти, углерод 2 и 4-х. Это элементы с переменной валентностью.

Также, зная валентность одного из элементов в соединении, можно определить валентность другого.

Валентность железа

Как было отмечено, железо относится к элементам с переменной валентностью. И она может колебаться не только между показателями 2 и 3, но и достигать 4, 5 и даже 6.

Конечно, более подробно изучает валентность железа Рассмотрим этот механизм кратко на уровне простейших частиц.

Железо является д-элементом, к которому причисляется еще 31 элемент таблицы Менделеева (это 4-7 периоды). С возрастанием порядкового номера, свойства д-элементов приобретают небольшие изменения. Атомный радиус у этих веществ также медленно возрастает. Они обладают переменной валентностью, которая зависит от того, что предвнешний д-электронный подуровень является незавершенным.

Потому для железа валентными есть не только с-электроны, находящиеся во внешнем слое, но и неспаренные 3д-электроны предвнешнего слоя. И, как следствие, валентность Fe в химических соединениях может равнятся 2, 3, 4, 5, 6. В основном, она равна 2 и 3 - это более устойчивые с другими веществами. В менее устойчивых - он проявляет валентность 4, 5, 6. Но, такие соединения встречаются реже.

Двухвалентный феррум

При взаимодействии 2 валентного железа с водой получается оксид железа (2). Такое соединение обладает черным цветом. Достаточно легко взаимодействует с соляной (малой концентрации) и азотной (высокой концентрации) кислотами.

Если такому оксиду 2-х валентного железа провзаимодействовать или с водородом (температура 350 градусов по Цельсию), или с углеродом (коксом) при 1000 градусов, то оно восстанавливается до чистого состояния.

Добывают оксид железа 2-х валентного такими способами:

  • через соединение оксида 3-х валентного железа с угарным газом;
  • при нагревании чистого Fe, при этом низкое давление кислорода;
  • при раскладывании оксалата 2-х валентного железа в вакуумной среде;
  • при взаимодействии чистого железа с его оксидами, температура при этом 900-1000 градусов по Цельсию.

Что касается природной среды, то оксид железа 2-х валентного, присутствует в виде минерала вюстита.

Есть еще способ, как в растворе определить валентность железа - в данном случае, имеющего ее показатель 2. Необходимо провести реакции с красной солью (гексацианоферрат калия) и с щелочью. В первом случае наблюдается получение осадка темно-синего цвета - комплексной соли железа 2-х валентного. Во втором - получение темного серо-зеленого осадка - гидроксида железа также 2-х валентного, в то время, как гидроксид железа 3-х валентного имеет цвет в растворе темно-бурый.

Трехвалентное железо

Оксид 3-х валентного феррума имеет порошкообразную структуру, цвет которой красно-коричневый. Имеет также наименования: окись железа, красный пигмент, пищевой краситель, крокус.

В природе это вещество встречается в виде минерала - гематита.

Оксид такого железа с водой уже не взаимодействует. Но соединяется с кислотами и щелочами.

Применяется оксид железа (3) для окрашивания материалов, применяемых в строительстве:

  • кирпичей;
  • цемента;
  • керамических изделий;
  • бетона;
  • тротуарной плитки;
  • напольных покрытий (линолеум).

Железо в организме человека

Как отмечалось в начале статьи, вещество железо является важной составляющей человеческого организма.

Когда этого элемента является недостаточно, то могут возникнуть следующие последствия:

  • повышенная усталость и чувствительность к холоду;
  • сухость кожи;
  • снижение мозговой деятельности;
  • ухудшение прочности ногтевой пластины;
  • головокружение;
  • проблемы с пищеварением;
  • седина и выпадение волос.

Накапливается железо, как правило, в селезенке и печени, а также почках и поджелудочной железе.

В рационе человека должны быть продукты, содержащие железо:

  • говяжья печень;
  • гречневая каша;
  • арахис;
  • фисташки;
  • зеленый горошек консервированный;
  • сушенные белые грибы;
  • куриные яйца;
  • шпинат;
  • кизил;
  • яблоки;
  • груши;
  • персики;
  • свекла;
  • морепродукты.

Недостаток железа в крови, приводит к снижению гемоглобина и развитию такого заболевания, как железодефицитная анемия.

Валентность атома – это его способность образовывать определенное число химических связей с другими атомами. Например, число черточек, отходящих от символа элемента в структурных формулах, равно валентности этого элемента. Посмотрите на приведенные ниже структурные формулы некоторых веществ – из них видно, что водород и хлор одновалентны, кислород двухвалентен, углерод четырехвалентен, а азот трехвалентен.

Точками здесь обозначены неподеленные пары электронов, но в структурных формулах их показывают не всегда (в связывании они непосредственно не участвуют, хотя важны с точки зрения правила октета). В структурных формулах каждая черточка – это именно поделенная пара электронов. Поэтому можно дать такое определение валентности:

Валентность определяется как число электронных пар, которыми данный атом связан с другими атомами.

Поскольку в химической связи участвуют только электроны внешних оболочек, такие электроны называют валентными. Единичная (простая) связь возникает, когда атомы делят между собой одну пару валентных электронов.

Структурные формулы наглядно показывают состав вещества, последовательность связывания атомов друг с другом и валентность элементов. Но если такая подробная информация не нужна, состав вещества можно записывать в виде сокращенных химических формул:

H2 (водород) Cl2 (хлор) CO2 (углекислый газ) H2O (вода) N2H4 (гидразин) N2 (азот)

В данном случае все вещества состоят из молекул, поэтому такие формулы называют не просто сокращенными, а молекулярными. Цифра, стоящая внизу справа от символа элемента, называется индексом. Индекс показывает, сколько атомов данного элемента содержится в молекуле. Индекс 1 никогда не пишут.

Валентность элемента определяется числом электронов, участвующих в образовании химических связей.

Понятие о валентности прочно вошло в науку к середине прошлого столетия. Основываясь на существовании валентных связей, А. М. Бутлеров (1862г.) построил теорию химического строения. Эта теория создавалась в первую очередь применительно к органическим соединениям, так как в них наиболее ярко выражена зависимость свойств веществ не только от состава, но и от строения их молекул.

Причиной всех реакций, в которые вступает вещество, А. М. Бутлеров считал его химическое строение - последовательность связи атомов в молекуле, характер их взаимодействия и взаимного влияния.

Изучение природы валентности, природы химической связи привело к разделению понятия о валентности на ряд новых более конкретных понятий: ковалентность, ионная валентность, координационное число, степень окисления (окислительное число).

Химические свойства элементов определяются структурой наружных электронных слоев атомов. Химическая реакция сводится к взаимодействию валентных электронов атомов, участвующих в реакции. Поэтому в зависимости от строения атомов характер взаимодействия может быть различным. Таким образом, вид связи между атомами определяется их строением.

Природу химической связи удалось несколько раскрыть с появлением квантовой механики, учитывающей волновые свойства электрона.

Квантово-механические расчеты показывают, что взаимодействовать могут только атомы, у которых имеются неспаренные электроны. Число неспаренных электронов определяет валентность атома того или иного элемента. Валентные электроны у атомов элементов главных подгрупп периодической системы находятся на внешнем энергетическом уровне (s и p подуровнях), У ЭЛЕМЕНТОВ Побочных подгрупп – кроме того на d-подуровне пред внешнего уровня. У атомов лантаноидов и актиноидов валентными могут быть также f-электроны третьего снаружи энергетического уровня. Валентность элементов не всегда совпадает с числом неспаренных электронов. Например, у атома серы имеется два неспаренных электрона. В соответствии с этим сера дает соединения, в которых она двухвалентна, но известны соединения, в которых валентность серы равна четырем и даже шести. Повышение валентности серы с связано с увеличением числа неспаренных электронов, образующихся в результате возбуждения атома и перехода одного из спаренных электронов на ближайший подуровень того же энергетического уровня. Переход р-электрона из одного состояния в другое увеличивает число неспаренных электронов на два, следовательно, валентность атома увеличивается на две единицы; переход одного s-электрона приводит к увеличению валентности еще на две единицы. Таким образом, максимальная валентность атомов многих элементов достигается лишь в возбужденном состоянии. В зависимости от степени возбуждения атома число неспаренных электронов может быть различным, поэтому многие элементы проявляют переменную валентность.

---- Почему у железа валентность в соединениях 2,3,6. Обяснить с электронной точки зрения.

Железо реально имеет ЧЕТЫРЕ устойчивые степени окисления: 0, +2, +3 и +6. Устойчивые в том смысле, что каждой из них соответствуют свои химические СОЕДИНЕНИЯ, например: Fe(CO)5 (0, карбонил железа); FeSO4 (+2, сульфат железа II); FeCl3 (+3, хлорид железа III); K2FeO4 (+6, оксоферрат калия). Я надеюсь, когда нибудь синтезируют и соединения железа с максимально возможной степенью окисления +8 - пока это никому не удалось.

средняя валентность железа Fe2.5 +, Fe 2 + и Fe 3 +

ЖЕЛЕЗО (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s2p6d64s2. Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.

В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят, кроме железа, также кобальт (Co) и никель (Ni). Эти три элемента образуют триаду и обладают сходными свойствами.

Радиус нейтрального атома железа 0,126 нм, радиус иона Fe2+ - 0,080 нм, иона Fe3+ - 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.

Железо высокой чистоты - это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механичской обработки.

Физические и химические свойства: при температурах от комнатной и до 917°C, а также в интервале температур 1394-1535°C существует -Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394°C устойчиво -Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769°C (так называемая точка Кюри) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное -Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917°C, рассматривают как модификацию железа, а -Fe, устойчивое при высоких температурах (1394-1535°C), называют по традиции -Fe (представления о существовании четырех модификаций железа возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535°C, температура кипения 2750°C, плотность 7,87 г/см3. Стандартный потенциал пары Fe2+/Fe0 –0,447В, пары Fe3+/Fe2+ +0,771В.

При хранении на воздухе при температуре до 200°C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe2О3·xН2О.

С кислородом (O) железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe2О3, при сгорании в чистом кислороде - оксид Fe3О4. Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы (S) и железа образуется сульфид, приближенную формулу которого можно записать как FeS.

Железо при нагревании реагирует с галогенами. Так как FeF3 нелетуч, железо устойчиво к действию фтора (F) до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl3. Если взаимодействие железа и брома (Br) протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr3. При нагревании FeСl3 и, особенно, FeBr3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода (I) образуется иодид Fe3I8.

При нагревании железо реагирует с азотом (N), образуя нитрид железа Fe3N, с фосфором (P), образуя фосфиды FeP, Fe2P и Fe3P, с углеродом (C), образуя карбид Fe3C, с кремнием (Si), образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава .

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):

Fe + 2HCl = FeCl2 + H2

Fe + H2SO4 = FeSO4 + H2

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):

2Fe + 4H2SO4 = Fe2 (SO4)3 + SO2 + 4H2O

Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН)2. Оксид железа (III) Fe2O3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН)2, основание Fe(ОН)3, которое реагирует с кислотами:

2Fe(ОН)3 + 3H2SO4 = Fe2(SO4)3 + 6H2O

Гидроксид железа (III) Fe(ОН)3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:

Fe(ОН)3 + КОН = К

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH)3.

Соединения железа (III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl3 = 3FeCl2

При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):

4FeCl2 + O2 + 2H2O = 4Fe(OH)Cl2

Из солей железа (II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа (II) (NH4)2Fe(SO4)2·6Н2О.

Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 - железокалиевые квасцы, (NH4)Fe(SO4)2 - железоаммонийные квасцы и т.д.

При действии газообразного хлора (Cl) или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) - ферраты, например, феррат (VI) калия (K): K2FeO4. Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).

Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe3+ с тиоцианат-ионами CNS–. При взаимодействии ионов Fe3+ с анионами CNS– образуется ярко-красный роданид железа Fe(CNS)3. Другим реактивом на ионы Fe3+ служит гексацианоферрат (II) калия (K): K4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe3+ и 4– выпадает ярко-синий осадок.

Реактивом на ионы Fe2+ в растворе может служить раствор гексацианоферрат (III) калия (K) K3, ранее называвшегося красной кровяной солью. При взаимодействии ионов Fe3+ и 3– выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe3+ и 4–.

Сплавы железа с углеродом: железо используется главным образом в сплавах, прежде всего в сплавах с углеродом (C) - различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно - на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0.8-1 %).

Понятие валентности сыграло в истории химии большую роль, прояснив, каким образом, в каких соотношениях и почему атомы разных химических элементов могут соединяться друг с другом. В случае простейших неорганических и органических соединений теория работала. Однако со временем, как это обычно и бывает в науке, накапливались сведения, которые постепенно заставили химиков отказаться от понятия валентности как универсального способа для описания строения вещества.

Прежде всего, оказалось, что многие элементы, в отличие от водорода и кислорода, могут иметь не одну, а несколько валентностей, так что водород и кислород скорее исключения. Но с этой трудностью довольно легко справились ещё в XIX веке, приписав ряду элементов несколько возможных валентностей.

В результате стало понятно, почему некоторые вещества, образованные всего двумя элементами, могут так сильно отличаться по составу. Например, в одном из оксидов железа (то есть в соединении железа и кислорода) на одну массовую часть железа приходится примерно 0,3 массовые части кислорода, а в другом оксиде — вдвое больше.

Выяснилось, что железо в этих оксидах имеет разную валентность: в оксиде FeO железо двухвалентно, а в оксиде Fe2О3 — трёхвалентно.

Был известен также оксид железа Fe3О4. Какая же в нём валентность железа?

Если кислород двухвалентен, то получается, что валентность железа 2-4/3 = 8/3! Как такое может быть?

Проблему решили, когда было доказано, что в этом оксиде один атом железа двухвалентен, а два — трёхвалентны, то есть формулу этого оксида можно представить в виде FeO Fe2О3. Аналогично была решена проблема со свинцовым суриком, состав которого отвечает формуле Рb3О4.

Но атомы свинца трёхвалентными не бывают. В данном случае оказалось, что два атома свинца двухвалентны (как в РbО), а один — четырёхвалентен (как в РbО2), так что формулу свинцового сурика можно представить в виде 2РbО РbО2.

Многовалентными могут быть и металлы, и неметаллы. Так, йод в соединениях с фтором может быть одновалентным (IF), трёхвалентным (IF3), пятивалентными (IF5) и семивалентным (IF7), то есть проявлять четыре разные валентности, тогда как фтор всегда одновалентен.

Металл молибден в соединениях с галогенами может проявлять валентности 2, 3,4, 5 и 6. Разная валентность у атомов данного элемента — скорее правило, чем исключение. Такое свойство весьма обогащает химию.

Например, углерод с кислородом образует два газа — угарный СО и углекислый СО2, и понятно, что валентность углерода в этих соединениях разная. Сера с кислородом тоже образует по крайней мере два соединения — сернистый газ SО2 и серный ангидрид SО3, в которых сера, как нетрудно догадаться, имеет валентность соответственно 4 и 6. Существование разнообразных оксидов марганца (МnО, Мn2О3, Мn3О4, МnО2, Мn2О7 и др.) показывает, что марганец может иметь несколько разных валентностей.

Валентность в названиях веществ часто обозначают римскими цифрами — в скобках после символа или названия элемента. Химик может назвать вещество FeO оксидом железа (II), а вещество Fe2О3 — оксидом железа (III). И поскольку кислород образует соединения со значительно большим числом элементов, чем водород, химики чаще всего устанавливали валентности элементов именно по их соединениям с кислородом.

Когда химики изучили сложные органические соединения, оказалось, что атомы углерода в них, как и в молекуле метана, практически всегда четырёхвалентны. Четырёхвалентность атомов углерода сыграла огромную роль в истории органической химии; это свойство исключительно важно также для всего живого, поскольку химия органических соединений — это в подавляющем большинстве случаев химия углерода.

Как же объясняется определённая валентность элемента? Оказывается, это связано со строением атомов, вернее, их внешних (то есть наиболее далёких от ядра) электронных оболочек.

Строение этих оболочек у разных атомов разное, поэтому отличается и их валентность.

Именно благодаря электронам атомы могут связываться друг с другом в определённых соотношениях.

Каким же образом электроны осуществляют химическую связь, то есть связывают атомы друг с другом? Химическая связь бывает разной, и её тип зависит от строения электронных оболочек реагирующих атомов.

Известно, что металлический натрий бурно (с пламенем) реагирует с хлором, образуя хлорид натрия NaCl (поваренную соль). Как происходит образование этого вещества?

Рассмотрим изолированный атом натрия. У него 11 электронов, расположенных на трёх электронных оболочках.

На самой близкой к ядру находятся 2 электрона. Дальше — 8 электронов.

По этой же причине натрий находится в 1 — й группе периодической системы. Электронную оболочку, на которой расположен этот «дальний» электрон, называют валентной, а находящийся на ней электрон (или электроны, если их несколько) — валентными электронами.

Cтраница 3


А (для которых уравнение (1) дает порядок связи 0 19); кроме того, приходится принять валентность железа равной 6 вместо первоначальной величины 5 78, а для связей Fe-Si и Fe-Fe использовать различные радиусы атома Fe (VI) па том основании, что вклад d - электропов в эти связи различен. В дальнейшем было показано , что уравнение Полипга не согласуется с межатомными расстояниями при К. Поэтому остается неясным, следует ли использовать это уравнение при обсуждении межатомных расстояний в пптерметаллических соединениях.  

Обе полученные соли железа - хлориды железа - обладают различными свойствами, поэтому необходимо дать им названия, которые указывали бы валентность железа.  

Титриметрическое определение общего железа предусматривает перевод всего имеющегося в образце железа в одно и то же валентное состояние и последующее титрование, в процессе которого валентность железа меняется. Титрование окисных ионов железа никогда не было общераспространенным, и наиболее широко используются методы, в которых закисное железо при титровании переходит в окисное.  

Гемоглобин при помощи железа может присоединять не только кислород, но и окись углерода. Валентность железа при этом тоже не меняется. Ядовитое действие окиси углерода проявляется в том, что образующийся карбоксигемоглобин становится непригодным к переносу кислорода, в результате чего наступает кислородное голодание. При связывании 70 % гемоглобина окисью углерода наступает смерть.  

К шестой координационной связи железа цитохрома а могут присоединиться HCN, H2S, CO. При этом валентность железа (Fe3) становится постоянной и поток электронов прекращается.  


Скорость образования акролеина возрастает с увеличением концентрации железа в катализаторе, а скорость образования СО2 растет значительно меньше, что указывает на участие иона Fe3 в образовании я-аллильного комплекса, ведущего мягкое окисление пропилена. В условиях окисления пропилена валентность железа изменяется обратимо. Если в исходном катализаторе ионы Мо64 окружены октаэдрами кислородных ионов, то образовавшиеся ионы Мо5 находятся в координации квадратной пирамиды. Перестройка решетки катализаторов изменяет ее дефектность и влияет на каталитические свойства.  

Однако деструкция их легко протекает как в сильнокислой, так и в сильнощелочной среде. Последнее нами было использовано для установления валентности железа в этих соединениях. С этой целью вещество 66 (CeH6COC2HN3) 2Fe - H20 в токе азота было обработано 0 02N раствором КОН, приготовленным из перегнанной дважды в токе азота воды. При нагревании наблюдается образование зеленого коллоидного раствора и осадка гидрата закиси железа. Следовательно, в полученном комплексе валентность железа равна двум.  

Зависимость скорости растворения различных базальтов от времени и температуры выщелачивания.| Зависимость развития кремнеземистого скелета, образующегося из обожженных и необожженных образцов базальта от длительности и температуры выщелачивания.  

Извлечение железа до седьмого цикла остается почти экви-пропорциональным, а с восьмого цикла оно также частично остается в скелете и не поддается извлечению. Вероятно, здесь играет роль изменение валентности железа и его координационного числа.  

В тканях, где содержание кислорода незначительно, кислород отщепляется от гемоглобина. Легкость диссоциации оксигемоглобина объясняется тем, что валентность железа остается всегда постоянной.  

Когда такой протопорфирин железа присоединяется к определенному белку, образуется собственно фермент. Связывание происходит, по-видимому, через одну из валентностей железа, а дополнительно и за счет взаимодействия белка с двумя группами пропионовой кислоты протопорфирина. В случае каталазы четыре группы ферригема, или гемина, присоединяются к одной молекуле белка такой величины, что общее содержание железа составляет около 0 1 вес. Каталаза из различных источников или разных видов (например, бактериальная, печеночная или эритроцитная) может обладать разной активностью. Ферригемы каталазы не легко восстанавливаются до феррогема; действительно, только в последнее время выяснена возможность такого восстановления без разрушения фермента. Фермент пероксидаза также образуется подобным образом путем присоединения ферригема к белку. Весьма отчетливое различие заключается в том, что в пероксидазе имеется только одна группа ферригема на молекулу. Молекула белка также меньше и обладает способностью к соединению с протопорфири-ном марганца без потери пероксидатической активности. Пероксидаза отличается еще тем, что она труднее инактивируется при нагревании, чем каталаза.  

Механизм окисления и восстановление цитохромов еще не вполне изучен. Различие между окисленной и восстановленной формами цитохрома с состоит в изменении валентности железа. Функция цитохрома заключается в снятии электрона с атома водорода, активированного дегидразами. Следовательно, цитохром принимает и отдает электроны, являясь переносчиком именно их, а не водорода. В конечном итоге, электроны переносятся на кислород, и последний таким путем приобретает способность вступать в соединение с ионизированным водородом.