Как пишется углерод в химии. Конспект урока "Строение атома углерода. Валентные состояния атома углерода"

Углерод (лат. Carboneum) - химический элемент 14‑й группы 2‑го периода периодической системы Менделеева (IV группа в старой нумерации); атомный номер 6, атомная масса 12,011.

Углерод - химический элемент совершенно особый. Из химии углерода выросло мощное дерево органической химии с её сложнейшими синтезами и необъятным кругом изучаемых соединений. Появляются новые отрасли органической химии. Всё живое, составляющее биосферу, построено из соединений углерода. И деревья, которые давно отшумели, миллионы лет назад, превратились в топливо, содержащее углерод, - каменный уголь, торф и т. д. Возьмем самый обычный карандаш - предмет, всем знакомый. Не правда ли, удивительно, что скромный графитовый стерженек родствен сверкающему алмазу, самому твердому веществу в природе? Алмаз, графит, карбин - аллотропические модификации углерода (см. Аллотропия). Строение графита (1), алмаза (2), карбина (3).

История знакомства человека с этим веществом уходит далеко в глубь веков. Неизвестно имя того, кто открыл углерод, неизвестно, какая из форм чистого углерода - графит или алмаз - была открыта раньше. Лишь в конце XVIII в. было признано, что углерод - самостоятельный химический элемент.

Содержание углерода в земной коре составляет 0,023% по массе. Углерод - основная составная часть растительного и животного мира. Все горючие ископаемые - нефть, газ, торф, сланцы - построены на углеродной основе, особенно богат углеродом каменный уголь. Большая часть углерода сосредоточена в минералах - известняке CaCO 3 и доломите CaMg(CO 3) 2 , представляющих собой соли щелочноземельных металлов и слабой угольной кислоты H 2 CO 3 .

Среди жизненно важных элементов углерод - один из важнейших: жизнь на нашей планете построена на углеродной основе. Почему? Ответ на этот вопрос находим в «Основах химии» Д. И. Менделеева : «Углерод встречается в природе как в свободном, так и соединительном состоянии, в весьма различных формах и видах… Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях… Ни в одном из элементов… способности к усложнению не развито в такой степени, как в углероде… Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Действительно, атомы углерода могут соединяться разнообразными способами между собой и с атомами многих других элементов, образуя огромное разнообразие веществ. Их химические связи могут возникать и разрушаться под действием природных факторов. Так возникает круговорот углерода в природе: из атмосферы - в растения, из растений - в животные организмы, из них - в неживую природу и т. д. Где углерод, там многообразие веществ, где углерод, там самые разнообразные по молекулярной архитектуре конструкции (см. Углеводороды).

С накоплением углерода в земной коре связано накопление и многих других элементов, осаждающихся в виде нерастворимых карбонатов, и т. д. Важную геохимическую роль в земной коре играют CO 2 и угольная кислота. Огромное количество CO 2 выделяется при вулканизме - в истории Земли это был основной источник углерода для биосферы.

Неорганических соединений углерода по количеству намного меньше, чем органических. Углерод в форме алмаза, графита, угля вступает в соединение только при нагревании. При высоких температурах он соединяется с металлами и некоторыми неметаллами , например с бором, образуя карбиды .

Из неорганических соединений углерода наиболее известны соли угольной кислоты, диоксид углерода CO 2 (углекислый газ) и моноксид углерода CO. Значительное менее известен третий оксид C 3 O 2 - бесцветный газ с неприятным резким запахом.

В атмосфере Земли находится 2,3 10 12 т диоксида CO 2 - продукта дыхания и горения . Это основной источник углерода для развития растений. Оксид углерода CO, известный под названием угарного газа, образуется при неполном сгорании топлива: в выхлопных газах автомобилей и т. д.

В промышленности оксид углерода CO используют в качестве восстановителя (например, при выплавке чугуна в доменных печах) и для синтеза органических веществ (например, метилового спирта по реакции: CO + 2H 2 → CH 3 (OH).

Наиболее известные аллотропические модификации элементарного углерода: алмаз - неорганический полимер пространственной, объемной структуры; графит - полимер плоскостной структуры; карбин - линейный полимер углерода, существующий в двух формах, отличающихся характером и чередованием химических связей; двумерная модификация графен ; углеродные нанотрубки цилиндрической структуры. (см. Аллотропия).

Алмаз - кристаллическая форма углерода, редкий минерал, по твердости превосходящий все природные и все, кроме кристаллического нитрида бора, искусственные материалы. Крупные кристаллы алмаза после огранки превращаются в драгоценнейшие из камней - бриллианты.

В конце XVII в. флорентийские ученые Аверани и Тарджони пытались сплавить несколько мелких алмазов в один крупный, нагрели их солнечными лучами с помощью зажигательного стекла. Алмазы исчезли, сгорев на воздухе… Прошло около ста лет, прежде чем французский химик А. Лавуазье в 1772 г. не только повторил этот опыт, но и объяснил причины исчезновения алмаза: кристаллик драгоценного бриллианта сгорал точно так же, как в других опытах сгорали кусочки фосфора и угля. И только в 1797 г. английский ученый С. Теннант доказал идентичность природы алмаза и угля. Он установил, что объемы углекислого газа после сгорания равных по массе уголька и алмаза оказались одинаковыми. После этого множество раз пытались получить алмаз искусственным путем из графита, угля и углеродсодержащих материалов при высоких температурах и давлениях. Иногда после этих опытов находили мелкие алмазоподобные кристаллики, но произвести удачные эксперименты не удавалось ни разу.

Синтез алмаза стал возможен после того, как советский физик О. И. Лейпунский в 1939 г. рассчитал условия, при которых графит может превращаться в алмаз (давление около 60 000 ат, температура 1600-2000 °C). В 50‑х гг. нашего века почти одновременно в нескольких странах, в том числе и в СССР, искусственные алмазы были получены в промышленных условиях. В наши дни с одной отечественной промышленной установки получают ежедневно 2000 каратов искусственных алмазов (1 карат = 0,2 г). Алмазные коронки буровых установок, алмазный режущий инструмент, шлифовальные круги с алмазной крошкой работают надежно и долго. Искусственные алмазы, так же как и природные кристаллы, широко используются в современной технике.

Еще шире применяется на практике другой чисто углеродный полимер - графит . В кристалле графита атомы углерода, лежащие в одной плоскости, прочно связаны в правильные шестиугольники. Шестиугольники с общими гранями образуют плоскости-пачки. Связи между углеродными атомами разных пачек малопрочны. К тому же расстояние между углеродными атомами разных плоскостей почти в 2,5 раза больше, чем между соседними атомами одной плоскости. Поэтому незначительного усилия достаточно, чтобы расщепить графитовый кристалл на отдельные чешуйки. Вот почему графитовый стержень карандаша оставляет след на бумаге. Несравненно труднее разрушить связь между атомами углерода, лежащими в одной плоскости. Прочность этих связей - причина высокой химической стойкости графита. На него не действуют даже горячие щелочи и кислоты, за исключением концентрированной азотной кислоты.

Помимо высокой химической стойкости графиту свойственна и высокая термостойкость: изделия из него можно использовать при температуре до 3700 °C. Способность проводить электрический ток определила многие области применения графита. Он нужен в электротехнике, металлургии , производстве порохов, атомной технике. Графит высочайшей чистоты используется в реакторостроении - как эффективный замедлитель нейтронов .

Линейный полимер углерода - карбин пока применяется в практике ограниченно. В молекуле карбина атомы углерода соединены в цепочки поочередно тройными и одинарными связями:

−C≡C−C≡C−C≡C−C≡C−C≡C−

Это вещество было впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 60‑х гг. в Институте элементоорганических соединений Академии наук СССР. Карбин обладает полупроводниковыми свойствами, причем под действием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах.

В молекуле другой формы карбина - поликумулена (β-карбина), впервые полученного также в нашей стране, углеродные атомы связаны иначе, чем в карбине, - только двойными связями:

═C═C═C═C═C═C═C═C═C═

Число известных науке органических соединений - соединений углерода - превышает 7 млн. Химия полимеров - природных и синтетических - это тоже прежде всего химия соединений углерода. Органические соединения углерода изучают такие самостоятельные науки, как органическая химия , биохимия , химия природных соединений.

Неоценимо значение соединений углерода в жизни человека - повсюду нас окружает связанный углерод: в атмосфере и литосфере , в растениях и животных, в нашей одежде и пище.

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

Важная область практического применения новейших открытий в области физики, химии и даже астрономии - создание и исследование новых материалов с необычными, подчас уникальными свойствами. О том, в каких направлениях ведутся эти работы и чего уже сумели добиться ученые, мы расскажем в серии статей, созданных в партнерстве с Уральским федеральным университетом . Первый наш текст посвящен необычным материалам, которые можно получить из самого обычного вещества - углерода.

Если спросить у химика, какой элемент самый важный, можно получить массу разных ответов. Кто-то скажет про водород - самый распространенный элемент во Вселенной, кто-то про кислород - самый распространенный элемент в земной коре. Но чаще всего вы услышите ответ «углерод» - именно он лежит в основе всех органических веществ, от ДНК и белков до спиртов и углеводородов.

Наша статья посвящена многообразным обличьям этого элемента: оказывается, только из его атомов можно построить десятки различных материалов - от графита до алмаза, от карбина до фуллеренов и нанотрубок. Хотя все они состоят из абсолютно одинаковых атомов углерода, их свойства радикально отличаются - а главную роль в этом играет расположение атомов в материале.

Графит

Чаще всего в природе чистый углерод можно встретить в форме графита - мягкого черного материала, легко расслаивающегося и словно скользкого на ощупь. Многие могут вспомнить, что из графита делаются грифели карандашей - но это не всегда верно. Часто грифель делают из композита графитовой крошки и клея, но встречаются и полностью графитовые карандаши. Интересно, но на карандаши уходит больше одной двадцатой всей мировой добычи естественного графита.

Чем необычен графит? В первую очередь, он хорошо проводит электрический ток - хотя сам углерод и не похож на другие металлы. Если взять пластинку графита, то окажется, что вдоль ее плоскости проводимость примерно в сто раз больше, чем в поперечном направлении. Это напрямую связано с тем, как организованы атомы углерода в материале.

Если посмотреть на структуру графита, то мы увидим, что она состоит из отдельных слоев толщиной в один атом. Каждый из слоев - сетка из шестиугольников, напоминающая собой соты. Атомы углерода внутри слоя связаны ковалентными химическими связями. Более того, часть электронов, обеспечивающих химическую связь, «размазана» по всей плоскости. Легкость их перемещения и определяет высокую проводимость графита вдоль плоскости углеродных чешуек.

Отдельные слои соединяются между собой благодаря ван-дер-ваальсовым силам - они гораздо слабее, чем обычная химическая связь, но достаточны для того, чтобы кристалл графита не расслаивался самопроизвольно. Такое несоответствие приводит к тому, что электронам гораздо сложнее перемещаться перпендикулярно плоскостям - электрическое сопротивление возрастает в 100 раз.

Благодаря своей электропроводности, а также возможности встраивать атомы других элементов между слоями, графит применяется в качестве анодов литий-ионных аккумуляторов и других источников тока. Электроды из графита необходимы для производства металлического алюминия - и даже в троллейбусах используются графитовые скользящие контакты токосъемников.

Кроме того, графит - диамагнетик, причем обладающий одной из самых высоких восприимчивостей на единицу массы. Это означает, что если поместить кусочек графита в магнитное поле, то он всячески будет пытаться вытолкнуть это поле из себя - вплоть до того, что графит может левитировать над достаточно сильным магнитом.

И последнее важное свойство графита - невероятная тугоплавкость. Самым тугоплавким веществом на сегодняшний день считается один из карбидов гафния с температурой плавления около 4000 градусов Цельсия. Однако если попытаться расплавить графит, то при давлениях около ста атмосфер он сохранит твердость вплоть до 4800 градусов Цельсия (при атмосферном давлении графит сублимирует - испаряется, минуя жидкую фазу). Благодаря этому материалы на основе графита используют, например, в корпусах ракетных сопел.

Алмаз

Многие материалы под давлением начинают менять свою атомарную структуру - происходит фазовый переход. Графит в этом смысле ничем не отличается от других материалов. При давлениях в сто тысяч атмосфер и температуре в 1–2 тысячи градусов Цельсия слои углерода начинают сближаться между собой, между ними возникают химические связи, а когда-то гладкие плоскости становятся гофрированными. Образуется алмаз, одна из самых красивых форм углерода.

Свойства алмаза радикально отличаются от свойств графита - это твердый прозрачный материал. Его чрезвычайно сложно поцарапать (обладатель 10-ки по шкале твердости Мооса, это максимум твердости). При этом электропроводность алмаза и графита отличается в квинтиллион раз (это число с 18 нулями).

Алмаз в горной породе

Wikimedia Commons

Этим определяется применение алмазов: большая часть добываемых и получаемых искусственно алмазов используется в металлообработке и других отраслях промышленности. Например, широко распространены точильные диски и режущие инструменты с алмазным порошком или напылением. Алмазные напыления используются даже в хирургии - для скальпелей. Об использовании этих камней в ювелирной промышленности хорошо известно всем.

Потрясающая твердость находит применение и в научных исследованиях - именно с помощью высококачественных алмазов в лабораториях изучают материалы при давлениях в миллионы атмосфер. Подробнее об этом можно прочитать в нашем материале « ».

Графен

Вместо того чтобы сжимать и нагревать графит, мы, следуя за Андреем Геймом и Константином Новоселовым, приклеим к кристаллу графита кусочек скотча. Затем отклеим его - на скотче останется тонкий слой графита. Повторим эту операцию еще раз - приложим скотч к тонкому слою и снова отклеим. Слой станет еще тоньше. Повторив процедуру еще несколько раз, мы получим графен - материал, за который вышеупомянутые британские физики получили Нобелевскую премию в 2010 году.

Графен представляет собой плоский монослой из атомов углерода, полностью идентичный атомарным слоям графита. Его популярность связана с необычным поведением электронов в нем. Они двигаются так, словно бы вовсе не обладают массой. В действительности, конечно, масса электронов остается все той же, что и в любом веществе. Во всем «виноваты» атомы углерода графенового каркаса, притягивающие заряженные частицы и образующие особенное периодическое поле.

Устройство на основе графена. На заднем плане фотографии - золотые контакты, над ними находится графен, выше - тонкий слой полиметилметакрилата

Engineering at Cambridge / flickr.com

Следствием такого поведения стала большая подвижность электронов - они перемещаются в графене гораздо быстрее, чем в кремнии. По этой причине многие ученые надеются, что основой электроники будущего станет именно графен.

Интересно, что у графена есть углеродные собратья - и . Первый из них состоит из немного искаженных пятиугольных секций и, в отличие от графена, плохо проводит электрический ток. Фаграфен состоит из пяти-, шести- и семиугольных секций. Если свойства графена одинаковы во всех направлениях, то фаграфен будет обладать выраженной анизотропией свойств. Оба этих материала были предсказаны теоретически, но в реальности пока не существуют.


Обломок кремниевого монокристалла (на переднем плане) на вертикальном массиве углеродных нанотрубок

Углеродные нанотрубки

Представьте себе, что вы свернули небольшой кусочек графенового листа в трубку и склеили ее края. Получилась полая конструкция, состоящая из тех же самых шестиугольников атомов углерода, что и графен и графит, - углеродная нанотрубка. Этот материал во многом родственен графену - он обладает высокой механической прочностью (когда-то из углеродных нанотрубок предлагали строить лифт в космос), высокой подвижностью электронов.

Однако есть одна необычная особенность. Графеновый лист можно скручивать параллельно воображаемому краю (стороне одного из шестиугольников), а можно и под углом. Оказывается, от того, как мы скрутим углеродную нанотрубку, будут очень сильно зависеть ее электронные свойства, а именно: будет она больше похожа на полупроводник с запрещенной зоной или на металл.

Многослойная углеродная нанотрубка

Wikimedia commons

Когда углеродные нанотрубки наблюдались впервые, достоверно неизвестно. В 1950–1980-х года разные группы исследователей, занимавшихся катализом реакций с участием углеводородов (например, пиролиза метана), обращали внимание на продолговатые структуры в саже, покрывавшей катализатор. Сейчас, чтобы синтезировать углеродные нанотрубки только конкретного вида (конкретной хиральности), химики предлагают использовать специальные затравки. Это небольшие молекулы в виде колец, состоящих, в свою очередь, из шестиугольных бензольных колец. Про работы по их синтезу можно почитать, например, .

Как и графен, углеродные нанотрубки могут найти большое применение в микроэлектронике. Уже сейчас созданы первые транзисторы на нанотрубках, по своим свойствам традиционные кремниевые приборы. Кроме того, нанотрубки легли в основу транзистора с .

Карбин

Говоря о вытянутых структурах из атомов углерода, нельзя не упомянуть карбины. Это линейные цепочки, которые по оценкам теоретиков могут оказаться самым прочным материалом из возможных (речь идет об удельной прочности). К примеру, модуль Юнга для карбина оценивается в 10 гиганьютон на килограмм. У стали этот показатель в 400 раз меньше, у графена - по меньшей мере в два раза меньше.

Тонкая нить, тянущаяся к железной частице внизу - карбин

Wikimedia Commons

Карбины бывают двух типов, в зависимости от того, как устроены связи между атомами углерода. Если все связи в цепочке одинаковые, то речь идет о кумуленах, если же связи чередуются (одинарная-тройная-одинарная-тройная и так далее), то о полиинах. Физики показали, что нить карбина можно «переключать» между этими двумя видами путем деформации - при растяжении кумулен превращается в полиин. Интересно, что это радикально меняет электрические свойства карбина. Если полиин проводит электрический ток, то кумулен- диэлектрик.

Главная сложность в изучении карбинов - их очень сложно синтезировать. Это химически активные вещества, к тому же легко окисляющиеся. На сегодняшний день цепочки длиной лишь в шесть тысяч атомов. Чтобы достигнуть этого, химикам пришлось растить карбин внутри углеродной нанотрубки. Кроме того, синтез карбина поможет побить рекорд размера затвора в транзисторе - его удастся уменьшить до одного атома.

Фуллерены

Хотя шестиугольник - одна из самых стабильных конфигураций, которые могут образовывать атомы углерода, есть целый класс компактных объектов, где встречается правильный пятиугольник из углерода. Эти объекты называются фуллеренами.

В 1985 году Гарольд Крото, Роберт Кёрл и Ричард Смолли исследовали пары углерода и то, в какие фрагменты слипаются атомы углерода при охлаждении. Оказалось, что в газовой фазе есть два класса объектов. Первый - кластеры, состоящие из 2–25 атомов: цепочки, кольца и другие простые структуры. Второй - кластеры, состоящие из 40–150 атомов, не наблюдавшиеся ранее. За следующие пять лет химикам удалось доказать, что этот второй класс представляет собой полые каркасы из атомов углерода, наиболее устойчивый из которых состоит из 60 атомов и повторяет по форме футбольный мяч. C 60 , или бакминстерфуллерен, состоял из двадцати шестиугольных секций и 12 пятиугольных, скрепленных между собой в сферу.

Открытие фуллеренов вызвало большой интерес химиков. Впоследствии был синтезирован необычный класс эндофуллеренов - фуллеренов, в полости которых находился какой-либо посторонний атом или небольшая молекула. К примеру, всего лишь год назад в фуллерен впервые молекулу плавиковой кислоты, что позволило очень точно определить ее электронные свойства.

Фуллериты - кристаллы фуллеренов

Wikimedia Commons

В 1991 году оказалось, что фуллериды - кристаллы фуллеренов, в которых часть полостей между соседними многогранниками занимают металлы, - это молекулярные сверхпроводники с рекордно высокой температурой перехода для этого класса, а именно 18 кельвин (для K 3 C 60). Позднее нашлись фуллериды и с еще большей температурой перехода - 33 кельвина, Cs 2 RbC 60 . Такие свойства оказались напрямую связаны с электронной структурой вещества.

Q-углерод

Среди недавно открытых форм углерода можно отметить так называемый Q-углерод. Впервые он был американскими материаловедами из Университета Северной Каролины в 2015 году. Ученые облучали аморфный углерод с помощью мощного лазера, локально разогревая материал до 4000 градусов Цельсия. В результате примерно четверть всех атомов углерода в веществе принимала sp 2 -гибридизацию, то есть то же электронное состояние, что и в графите. Остальные атомы Q-углерода сохраняли гибридизацию, характерную для алмаза.

Q-углерод

В отличие от алмаза, графита и других форм углерода, Q-углерод ферромагнетиком, таким как магнетит или железо. При этом его температура Кюри составила около 220 градусов Цельсия - только при таком нагреве материал терял свои магнитные свойства. А при допировании Q-углерода бором физики получили еще один углеродный сверхпроводник, с температурой перехода уже около 58 кельвинов.

***

Перечисленное - не все известные формы углерода. Более того, прямо сейчас теоретики и экспериментаторы создают и изучают новые углеродные материалы. В частности, такие работы ведутся в Уральском федеральном университете. Мы обратились к Анатолию Федоровичу Зацепину, доценту и главному научному сотруднику Физико-технологического института УрФУ, чтобы выяснить, как можно предсказывать свойства еще не синтезированных материалов и создавать новые формы углерода.

Анатолий Зацепин работает над одним из шести прорывных научных проектов УрФУ «Разработка фундаментальных основ новых функциональных материалов на базе низкоразмерных модификаций углерода». Работа осуществляется с академическими и индустриальными партнерами России и мира.

Проект реализует Физико-технологический институт УрФУ - стратегическая академическая единица (САЕ) университета. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

N + 1: Свойства углеродных наноматериалов очень сильно зависят от структуры и варьируются в широких пределах. Можно ли как-то заранее предсказать свойства материала по его структуре?

Анатолий Зацепин: Предсказать можно, и мы этим занимаемся. Существуют методы компьютерного моделирования, с помощью которых осуществляются расчеты из первых принципов (ab initio ) - мы закладываем определенную структуру, моделируем и берем все фундаментальные характеристики атомов, из которых состоит эта структура. В результате получаются те свойства, которыми может обладать материал или новое вещество, которое мы моделируем. В частности, что касается углерода, мы сумели смоделировать новые модификации, не известные природе. Их можно создать искусственно.

В частности, наша лаборатория на физтехе УрФУ сейчас занимается разработкой, синтезом и исследованиями свойств новой разновидности углерода. Ее можно назвать так: двумерно-упорядоченный линейно-цепочный углерод. Такое длинное название связано с тем, что этот материал представляет из себя так называемую 2D-структуру. Это пленки, составленные из отдельных цепей углерода, причем в пределах каждой цепи атомы углерода находятся в одной и той же «химической форме» - sp 1 -гибридизация. Это придает совершенно необычные свойства материалу, в цепочках sp 1 -углерода прочность превышает прочность алмаза и других углеродных модификаций.

Когда мы формируем из этих цепочек пленки, получается новый материал, обладающий свойствами, присущими цепочкам углерода, плюс к тому совокупность этих упорядоченных цепочек формирует двумерную структуру или сверхрешетку на специальной подложке. Такой материал обладает большими перспективами не только благодаря механическим свойствам. Самое главное, что углеродные цепочки в определенной конфигурации можно замкнуть в кольцо, при этом возникают очень интересные свойства, такие как сверхпроводимость, а магнитные свойства таких материалов могут быть лучше, чем у существующих ферромагнетиков.

Задача остается в том, чтобы их реально создать. Наше моделирование показывает путь, куда двигаться.

Как сильно отличаются реальные и предсказанные свойства материалов?

Погрешность всегда существует, но дело в том, что расчеты и моделирование из первых принципов используют фундаментальные характеристики отдельных атомов - квантовые свойства. И когда на таком микро- и наноуровне из этих квантовых атомов формируются структуры, то ошибки связаны с существующим ограничением теории и тех моделей, которые существуют. Например, известно, что уравнение Шредингера точно можно решить только для атома водорода, а для более тяжелых атомов надо использовать определенные приближения, если мы говорим о твердых телах или более сложных системах.

С другой стороны - ошибки могут возникать за счет компьютерных вычислений. При всем этом грубые ошибки исключены, а точности вполне достаточно, чтоб предсказать то или иное свойство или эффект, которые будут присущ данному материалу.

Много ли материалов можно предсказать такими способами?

Если говорить об углеродных материалах, то тут много вариаций, и я уверен, что многое еще не исследовано и не открыто. В УрФУ есть все для исследования новых углеродных материалов, и впереди предстоит большая работа.

Мы занимаемся и другими объектами, к примеру, кремниевыми материалами для микроэлектроники. Кремний и углерод - это, кстати, аналоги, они находятся в одной группе в таблице Менделеева.

Владимир Королёв

УГЛЕРОД, С (а. carbon; н. Kohlenstoff; ф. carbone; и. carbono), — химический элемент IV группы периодической системы Менделеева , атомный номер 6, атомная масса 12,041. Природный углерод состоит из смеси 2 стабильных изотопов: 12 С (98,892%) и 13 С (1,108%). Известно также 6 радиоактивных изотопов углерода, из которых наиболее важным является изотоп 14 С с периодом полураспада 5,73.10 3 лет (этот изотоп в небольших количествах постоянно образуется в верхних слоях атмосферы в результате облучения ядер 14 N нейтронами космического излучения).

Углерод известен с глубокой древности. Древесный использовался для восстановления металлов из руд , а алмаз — как . Признание углерода в качестве химического элемента связано с именем французского химика А. Лавуазье (1789).

Модификации и свойства углерода

Известны 4 кристаллические модификации углерода: графит , алмаз, карбин и лонсдейлит, сильно различающиеся по своим свойствам. Карбин — искусственно полученная разновидность углерода, представляющая собой мелкокристаллический порошок чёрного цвета, кристаллическая структура которого характеризуется наличием длинных цепочек атомов углерода, расположенных параллельно друг другу. Плотность 3230-3300 кг/м 3 , теплоёмкость 11,52 Дж/моль.К. Лонсдейлит обнаружен в метеоритах и получен искусственно; его структура и физические свойства окончательно не установлены. Для углерода характерно также состояние с неупорядоченной структурой — т.н. аморфный углерод (сажа, кокс , древесный уголь). Физические свойства "аморфного" углерода в сильной степени зависят от дисперсности частиц и от наличия примесей.

Химические свойства углерода

В соединениях углерод имеет степени окисления +4 (наиболее распространённая), +2 и +3. При обычных условиях углерод химически инертен, при высоких температурах соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность углерода убывает в ряду "аморфный" углерод, графит, алмаз; взаимодействие с кислородом воздуха у этих разновидностей углерода происходит соответственно при температурах 300-500°С, 600-700°С и 850-1000°С с образованием диоксида (CO 2) и монооксида (CO) углерода. Диоксид растворяется в воде с образованием угольной кислоты. Все формы углерода устойчивы к щелочам и кислотам. С галогенами углерод практически не взаимодействует (кроме графита, который с F 2 выше 900°С реагирует), поэтому его галогениды получают косвенным путём. Среди азотсодержащих соединений важное практическое значение имеют цианистый водород HCN (синильная кислота) и его многочисленные производные. При температурах выше 1000°С углерод взаимодействует со многими металлами, образуя карбиды. Все формы углерода нерастворимы в обычных неорганических и органических растворителях.

Важнейшее свойство углерода — способность его атомов образовывать прочные химические связи между собой, а также между собой и другими элементами. Способность углерода образовывать 4 равнозначные валентные связи с другими атомами углерода позволяет строить углеродные скелеты разных типов (линейные, разветвлённые, циклические); именно этими свойствами и объясняется исключительная роль углерода в строении всех органических соединений и, в частности, всех живых организмов.

Углерод в природе

Среднее содержание углерода в земной коре 2,3.10 % (по массе); при этом основная масса углерода концентрируется в осадочных горных породах (1%), тогда как в других горных породах существенно более низкие и примерно одинаковые (1-3.10%) концентрации этого элемента. Углерод накапливается в верхней части , где его присутствие связано в основном с живым веществом (18%), древесиной (50%), каменным углём (80%), нефтью (85%), антрацитом (96%), а также с доломитами и известняками . Известно свыше 100 минералов углерода, из которых наиболее распространены карбонаты кальция , магния и железа (кальцит CaCO 3 , доломит (Ca, Mg)CO 3 и сидерит FeCO 3). С накоплением углерода в земной коре часто связано и накопление других элементов, сорбируемых органическим веществом и осаждающихся после его захоронения на дне водоёмов в виде нерастворимых соединений. Большие количества диоксида CO 2 выделяются в атмосферу из Земли при вулканической деятельности и при сжигании органических топлив. Из атмосферы CO 2 усваивается растениями в процессе фотосинтеза и растворяется в морской воде , слагая тем самым важнейшие звенья общего круговорота углерода на Земле. Важную роль играет углерод и в космосе; на Солнце углерод занимает 4-е место по распространённости после водорода, гелия и кислорода, участвуя в ядерных процессах.

Применение и использование

Важнейшее народно-хозяйственное значение углерода определяется тем, что около 90% всех первичных источников энергии, потребляемой человеком, приходится на органическое топливо. Наблюдается тенденция использовать нефть и не как топливо, а как сырьё для разнообразных химических производств. Меньшую, но тем не менее весьма существенную роль в народном хозяйстве играет углерод, добываемый в виде карбонатов (металлургия, строительство, химические производства), алмазов (ювелирные украшения, техника) и графита (ядерная техника, жаропрочные тигли, карандаши, некоторые виды смазок и т.д.). По удельной активности изотопа 14 С в остатках биогенного происхождения определяют их возраст (радиоуглеродный метод датирования). 14 С широко используется в качестве радиоактивного индикатора. Важное значение имеет наиболее распространённый изотоп 12 С — одна двенадцатая часть массы атома этого изотопа принята за единицу атомной массы химических элементов.