Как называются пятна на солнце. Темные пятна на солнце

Как, например, в середине прошлого тысячелетия. Каждый обитатель нашей планеты в курсе, что на главном источнике тепла и света находятся небольшие потемнения, которые сложно рассмотреть без специальных приспособлений. Но далеко не всем известен факт, что именно они приводят к которые могут сильно отразиться на магнитном поле Земли.

Определение

Говоря простым языком, солнечные пятна - это тёмные участки, образующиеся на поверхности Солнца. Ошибочно полагать, что они не излучают яркий свет, однако по сравнению с остальной фотосферой они действительно гораздо мрачнее. Их основной характеристикой является пониженная температура. Таким образом, солнечные пятна на Солнце холоднее примерно на 1500 Кельвинов, чем другие окружающие их участки. По сути, они представляют собой те самые области, сквозь которые магнитные поля выходят на поверхность. Благодаря этому явлению можно говорить о таком процессе, как магнитная активность. Соответственно, если пятен мало, то это именуется спокойным периодом, а когда их много, то такой период будет называться активным. Во время последнего свечение Солнца чуть более яркое из-за факелов и флоккулов, расположенных вокруг тёмных участков.

Изучение

Наблюдение солнечных пятен ведется давно, оно своими корнями уходит ещё в эпоху до нашей эры. Так, Теофраст Аквинский ещё в IV веке до н. э. в своих работах упоминал об их существовании. Первая зарисовка потемнений на поверхности главной звезды была обнаружена в 1128 году, принадлежит она Джону Ворчестеру. Помимо этого, в древнерусских произведениях XIV века упоминается о чёрных солнечных вкраплениях. Наука стремительно начала заниматься их изучением в 1600-х годах. Большинство учёных того периода придерживались версии, что солнечные пятна - это движущиеся вокруг оси Солнца планеты. Но после изобретения Галилеем телескопа этот миф был развеян. Ему первому удалось выяснить, что пятна являются неотъемлемыми от самой солнечной структуры. Это событие породило мощную волну исследований и наблюдений, которые не прекращаются с тех самых пор. Современное изучение поражает воображение своими масштабами. В течение 400 лет прогресс в этой области сделался ощутимым, и сейчас Бельгийская королевская обсерватория занимается подсчётом количества солнечных пятен, но раскрытие всех граней этого космического явления всё ещё продолжается.

Появление

Ещё в школе детям рассказывают о существовании магнитного поля, однако обычно упоминают лишь полоидальный компонент. Но теория солнечных пятен предполагает изучение также тороидального элемента, естественно, речь уже идёт о магнитном поле Солнца. У Земли его невозможно вычислить, так как оно не появляется на поверхности. Другая ситуация обстоит с небесным светилом. При совокупности определённых условий магнитная трубка всплывает наружу сквозь фотосферу. Как вы догадались, этот выброс приводит к тому, что на поверхности образуются солнечные пятна. Чаще всего это происходит массово, именно поэтому наиболее распространены групповые скопления пятен.

Свойства

В среднем достигает 6000 К, в то время как у пятен она составляет около 4000 К. Однако это не мешает им по-прежнему производить мощное количество света. Солнечные пятна и активные области, то есть группы пятен, имеют разные сроки существования. Первые живут от пары дней до нескольких недель. А вот последние куда более живучие и могут оставаться в фотосфере на протяжении месяцев. Что касается структуры каждого отдельного пятна, то она представляется непростой. Центральная его часть называется тенью, которая внешне выглядит однотонной. В свою очередь, она окружена полутенью, отличающейся своей изменчивостью. В результате соприкосновения холодной плазмы и магнитной на ней заметны колебания вещества. Размеры солнечных пятен, а также их количество в группах может быть самым разнообразным.

Циклы солнечной активности

Всем известно, что уровень постоянно меняется. Это положение привело к возникновению понятия 11-летнего цикла. Солнечные пятна, их появление и число очень тесно взаимосвязаны с этим явлением. Однако этот вопрос остаётся противоречивым, так как один цикл может варьироваться от 9 до 14 лет, а также уровень активности неустанно изменяется от столетия к столетию. Таким образом, могут быть периоды некого затишья, когда более одного года пятна практически отсутствуют. Но может случиться и обратное, когда их количество считается аномальным. Раньше отсчёт начала цикла начинался с момента минимальной солнечной активности. Но с появлением усовершенствованных технологий исчисление ведётся с того момента, когда изменяется полярность пятен. Данные о прошлых солнечных активностях доступны для изучения, однако они вряд ли могут стать самым верным помощником в прогнозировании будущего, ведь природа Солнца весьма непредсказуема.

Воздействие на планету

Не секрет, что на Солнце тесным образом взаимодействуют с нашей повседневной жизнью. Земля постоянно подвергается атакам различных раздражителей извне. От их разрушительного воздействия планета защищена при помощи магнитосферы и атмосферы. Но, к сожалению, они не способны противостоять ему полностью. Таким образом, из строя могут быть выведены спутники, нарушается радиосвязь, а космонавты подвержены повышенной опасности. Помимо этого, излучение влияет на климатические изменения и даже на внешность человека. Существует такое явление, как солнечные пятна на теле, появляющиеся под воздействием ультрафиолета.

Этот вопрос ещё не изучен должным образом, как и влияние солнечных пятен на повседневную жизнь людей. Ещё одним явлением, зависящим от магнитных нарушений, можно назвать Магнитные бури стали одним из самых известных последствий солнечной активности. Они представляют собой ещё одно внешнее поле вокруг Земли, которое параллельно постоянному. Современные учёные даже связывают повышенную смертность, а также обострение заболеваний сердечно-сосудистой системы с появлением этого самого магнитного поля. А в народе это даже постепенно начало превращаться в суеверие.

История изучения

Первые сообщения о пятнах на Солнце относятся к наблюдениям 800 года до н. э. в Китае .

Зарисовки пятен из хроники Иоанна Вустерского

Впервые пятна были зарисованы в 1128 году в хронике Иоанна Вустерского .

Первое известное упоминание солнечных пятен в древнерусской литературе содержится в Никоновской летописи , в записях, относящихся ко второй половине XIV века:

бысть знамение на небеси, солнце бысть, аки кровь, и по нем места черны

бысть знамение в солнце, места черны по солнцу, аки гвозди, и мгла велика была

Первые исследования фокусировались на природе пятен и их поведении. Несмотря на то, что физическая природа пятен оставалась неясной вплоть до XX века , наблюдения продолжались. К XIX веку уже имелся достаточно продолжительный ряд наблюдений пятен , чтобы заметить периодические вариации в активности Солнца. В 1845 году Д. Генри и С. Александер (англ. S. Alexander ) из Принстонского университета провели наблюдения Солнце с помощью специального термометра (en:thermopile) и определили, что интенсивность излучения пятен, по сравнению с окружающими областями Солнца, понижена.

Возникновение

Возникновение солнечного пятна: магнитные линии проникают сквозь поверхность Солнца

Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса трубки магнитного поля «прорываются» сквозь фотосферу в область короны, и сильное поле подавляет конвективное движение плазмы в гранулах , препятствуя в этих местах переносу энергии из внутренних областей наружу. Сначала в этом месте возникает факел , чуть позже и западнее - маленькая точка, называемая по́ра , размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.

Срок существования пятен достигает нескольких месяцев, то есть отдельные группы пятен могут наблюдаться в течение нескольких оборотов Солнца. Именно этот факт (движение наблюдаемых пятен по солнечному диску) послужил основой для доказательства вращения Солнца и позволил провести первые измерения периода обращения Солнца вокруг своей оси.

Пятна обычно образуются группами, однако иногда возникает одиночное пятно, живущее всего несколько дней, или биполярная группа: два пятна разной магнитной полярности, соединённые линиями магнитного поля. Западное пятно в такой биполярной группе называется «ведущим», «головным» или «P-пятном» (от англ. preceding ), восточное - «ведомым», «хвостовым» или «F-пятном» (от англ. following ).

Только половина пятен живёт больше двух дней, и всего десятая часть - более 11 дней.

В начале 11-летнего цикла солнечной активности пятна на Солнце появляются на высоких гелиографических широтах (порядка ±25-30°), а с ходом цикла пятна мигрируют к солнечному экватору, в конце цикла достигая широт ±5-10°. Эта закономерность носит название «закон Шпёрера ».

Группы пятен ориентируются приблизительно параллельно солнечному экватору, однако отмечается некоторый наклон оси группы относительно экватора, который имеет тенденцию к увеличению для групп, расположенных дальше от экватора (т. н. «закон Джоя »).

Свойства

Средняя температура поверхности Солнца около 6000 К (эффективная температура - 5770 К, температура излучения - 6050 К). Центральная, самая темная, область пятен имеет температуру всего около 4000 К, наружные области пятен, граничащие с нормальной поверхностью, - от 5000 до 5500 К. Несмотря на то, что температура пятен ниже, их вещество все равно излучает свет, пусть и в меньшей степени, чем остальная поверхность. Именно из-за этой разницы температур при наблюдении и возникает ощущение, что пятна темные, почти черные, хотя на самом деле они тоже светятся, однако их свечение теряется на фоне более яркого солнечного диска.

Центральная тёмная часть пятна носит название тени. Обычно её диаметр составляет около 0,4 диаметра пятна. В тени напряжённость магнитного поля и температура довольно однородны, а интенсивность свечения в видимом свете составляет 5-15 % от фотосферной величины. Тень окружена полутенью, состоящей из светлых и тёмных радиальных волокон с интенсивностью свечения от 60 до 95 % от фотосферного.

Поверхность Солнца в области, где располагается пятно, расположена примерно на 500-700 км ниже, чем поверхность окружающей фотосферы. Это явление носит название «вильсоновской депресии ».

Пятна - области наибольшей активности на Солнце. В случае, если пятен много, то существует высокая вероятность того, что произойдет пересоединение магнитных линий - линии, проходящие внутри одной группы пятен, рекомбинируют с линиями из другой группы пятен, имеющими противоположную полярность. Видимым результатом этого процесса является солнечная вспышка . Всплеск излучения, достигая Земли, вызывает сильные возмущения её магнитного поля, нарушает работу спутников и даже оказывает влияние на расположенные на планете объекты. Из-за нарушений магнитного поля Земли увеличивается вероятность возникновения северных сияний в низких географических широтах. Ионосфера Земли также подвержена флуктуациям солнечной активности, что проявляется в изменении распространения коротких радиоволн.

Классификация

Пятна классифицируют в зависимости от срока жизни, размера, расположения.

Стадии развития

Локальное усиление магнитного поля, как было сказано выше, тормозит движение плазмы в конвекционных ячейках, тем самым замедляя вынос тепла на поверхность Солнца. Охлаждение затронутых этим процессом гранул (примерно на 1000 °C) приводит к их потемнению и формированию единичного пятна. Некоторые из них исчезают через несколько дней. Другие развиваются в биполярные группы из двух пятен, магнитные линии в которых имеют противоположную полярность. Из них могут сформироваться группы из множества пятен, которые в случае дальнейшего увеличения области полутени объединяют до сотни пятен, достигая размеров в сотни тысяч километров. После этого происходит медленное (в течение нескольких недель или месяцев) снижение активности пятен и уменьшение их размеров до маленьких двойных или одинарных точек.

Самые крупные группы пятен всегда имеют связанную группу в другом полушарии (северном или южном). Магнитные линии в таких случаях выходят из пятен в одном полушарии и входят в пятна в другом.

Размеры групп пятен

Размеры группы пятен принято характеризовать её геометрической протяжённостью, а также количеством входящих в неё пятен и их полной площадью.

В группе может насчитываться от одного до полутора сотен и более пятен. Площади групп, которые удобно измерять в миллионных долях площади солнечной полусферы (м.с.п.), варьируются от нескольких м.с.п. до нескольких тысяч м.с.п.

Максимальную площадь за весь период непрерывных наблюдений групп пятен (с 1874 по 2012 годы) имела группа № 1488603 (по Гринвичскому каталогу), появившаяся на диске Солнца 30 марта 1947 года, в максимуме 18-го 11-летнего цикла солнечной активности . К 8 апреля её полная площадь достигла 6132 м.с.п. (1,87·10 10 км², что более чем в 36 раз превышает площадь земного шара). На фазе своего максимального развития эта группа состояла из более чем 170 отдельных солнечных пятен.

Цикличность

Солнечный цикл связан с частотой появления пятен, их активностью и сроком жизни. Один цикл охватывает примерно 11 лет. В периоды минимума активности пятен на Солнце очень мало или нет вообще, в то время как в период максимума их может наблюдаться несколько сотен. В конце каждого цикла полярность солнечного магнитного поля меняется на противоположную, поэтому правильнее говорить о 22-летнем солнечном цикле.

Длительность цикла

Хотя в среднем цикл солнечной активности длится около 11 лет, бывают циклы длиной от 9 до 14 лет. Средние значения также меняются на протяжении столетий. Так, в XX веке средняя длина цикла составила 10,2 года.

Форма цикла непостоянна. Швейцарский астроном Макс Вальдмайер утверждал, что переход от минимума к максимуму солнечной активности происходит тем быстрее, чем больше максимальное количество солнечных пятен, зарегистрированное в этом цикле (т. н. «правило Вальдмайера»).

Начало и конец цикла

В прошлом началом цикла считался момент, когда солнечная активность пребывала в точке своего минимума. Благодаря современным методам измерений стало возможно определять изменение полярности солнечного магнитного поля, поэтому сейчас за начало цикла принимают момент изменения полярности пятен.

Нумерация циклов была предложена Р. Вольфом . Первый цикл, согласно этой нумерации, начался в 1749 году. В 2009 году начался 24 солнечный цикл.

  • Данные последней строки - прогноз

Существует периодичность изменения максимального количества солнечных пятен с характерным периодом около 100 лет («вековой цикл»). Последние минимумы этого цикла приходились примерно на 1800-1840 и 1890-1920 годы. Есть предположение о существовании циклов ещё большей длительности.

См. также

Примечания

Ссылки

  • Объединенная база данных магнитных полей солнечных пятен - включает изображения солнечных пятен периода 1957-1997 годов
  • Изображения солнечных пятен обсерватории Локарно-Монти - охватывает период 1981-2011 годов
  • Физика космоса. Маленькая энциклопедия М.: Советская Энциклопедия, 1986
Анимации-схемы процесса зарождения солнечных пятен
  • how are sunspots formed? (Как солнечные пятна формируются?)

Для понимания физической природы процессов, протекающих на Солнце, важно установить причины более низкой температуры пятен по сравнению с фотосферой, роль магнитных явлений в их развитии и существовании и механизм 11 (22)-летней цикличности солнечной активности.

Таблица 6. Модель солнечного пятна по Мишару (1953). В каждой двойной колонке первая относится к фотосфере, вторая к пятну. Давление выражено в дин/см2. Неуверенные значения поставлены в скобки. Аргументом выбрана оптическая глубина при .

Температура пятен, как сказано было ранее, значительно ниже температуры фотосферы, что подтверждается их относительной темнотой и гораздо более низкой степенью ионизации и возбуждения, как это следует из их спектров. Уменьшение числа электронов в пятнах вызывает уменьшение непрозрачности солнечного вещества (в первую очередь за счет сильного уменьшения числа ионов ). Таким образом, в пятнах мы «заглядываем» в большие геометрические глубины, чем в фотосфере. Однако эти глубины все равно крайне незначительны, как это видно из таблицы 6.

Таким образом, учитывая эффект Вильсона, видимое пятно можно уподобить мелкой тарелке. Проследить простирание пятна в глубину очень трудно, так как оно зависит от распределения магнитного поля с глубиной. Действительно, как видно из таблицы 6, давление на одном и том же уровне в пятне приблизительно на дин/см2 (около 0,2 атм) меньше, чем в соседней фотосфере. Равновесие может поддерживаться только при добавочном давлении, которое создается магнитным полем [см. § 2, формулу (2.26)]. Давление равно и эта величина будет равняться дин/см2, если . Как раз такое магнитное поле обычно для верхнего уровня пятен. Следующие численные характеристики типичны для среднего солнечного пятна:

Ввиду большого масштаба движений в солнечной фотосфере и под ней затухание магнитных полей на Солнце протекает исключительно медленно (нужны сотни лет). По этой причине активные области Солнца имеют длительное существование и магнитные поля то погружаются в глубь фотосферы, то всплывают на ее поверхность. Вблизи поверхности, где плотность вещества становится малой, условие равенства кинетической энергии и энергии магнитного поля нарушается в пользу последней, и конвекция оказывается сильно подавленной, между тем нормально конвекционные потоки несут с собой тепло. Кроме того, на субфотосфер ном уровне пятен конвективный приток тепла с периферии также запрещен, так как он протекает поперек магнитных силовых линий. Именно отсутствие конвекции является причиной низкой температуры пятен. Впрочем, это не единственная причина. Возможен также унос тепла из тени магнитогидродинамическими волнами.

Длительно существующие магнитные поля на Солнце связаны, по-видимому, с существованием больших циркуляционных движений в конвективной зоне Солнца до глубины в несколько десятков тысяч километров, возникающих вследствие неоднородности вращения Солнца. Циркуляция плазмы порождает магнитные вихри, и когда они выходят на поверхность, то появляются биполярные группы, простые или сложные, видимым выражением которых становятся пятна (рис. 40). Одновременно на Солнце имеется много таких вихрей на различных меридианах. Вероятно, в течение цикла они перемещаются к экватору, в то время как новые вихри зарождаются у полюсов и приходят на смену старым. Естественно, что направление вихрей различно в обоих полушариях. Скорость, с которой спускаются к экватору большие вихри, определяет продолжительность цикла солнечной активности.

22-летняя цикличность остается непонятной. Конечно, магнитные силовые линии выходят и далеко за поверхность Солнца, в хромосферу и корону, но они должны быть выносимы определенными массами вещества. Мы увидим дальше признаки вмешательства магнитных сил в хромосферные и корональные процессы.

Рис. 40. Магнитные области на Солнце (схема)

Небольшие магнитные поля, подобные тем, которые существуют на периферии пятен, вместо того, чтобы подавлять конвекцию, усиливают ее. Это происходит потому, что слабое поле, не будучи в состоянии помешать энергичной конвекции, подавляет сравнительно слабую турбулентность и тем самым уменьшает вязкость газа что ускоряет конвективные движения. Выходя в верхние слои фотосферы, избыточный за счет конвекции поток тепла нагревает газ, и потому вокруг пятен наблюдаются факелы, а над факелами - флоккулы, кальциевые и водородные. Граница кальциевых флоккул определяет в целом границу активной области, водородные же флоккулы теснятся ближе к пятну - туда, где магнитное поле несколько сильнее: 10-15 Э. Возможно, что петлеобразная форма «выпирающих» магнитных силовых линий (рис. 41) определяет продвижение газовых потоков (вдоль силовых линий), что согласуется с наблюдаемым при помощи лучевых скоростей явлением втекания вещества внутрь пятна на большой высоте.

Рис. 41. Выход магнитного поля на поверхность Солнца (схема)

Хотя в неактивных областях Солнца магнитное поле имеет напряженность 1-2 Э, в отдельных местах, небольших по размерам, оно может достигать 100 Э. В тех же местах в фотосфере наблюдаются тогда небольшие яркие узлы.

Более высокая, чем окружающая, температура вместе с магнитным полем порождает перевес давления над окружающим веществом, так что узел должен быстро рассеяться, а для длительного его существования необходим приток газов извне, который может осуществиться, если основание узла в фотосфере холоднее, а давление ниже, чем в окружающей среде.

Более детальную картину горизонтальных движений на разных уровнях солнечной атмосферы в связи с тонкой структурой магнитных полей дают модифицированные спектрогелиографические наблюдения по методу Лейтона. Метод этот состоит в том, что одновременно получают спектрогелиографические крупномасштабные изображения свободного от пятен участка Солнца в лучах коротко- и длинноволнового крыла той или иной спектральной линии. Как уже говорилось выше (с. 47), удаляясь от центра линии, мы наблюдаем все более глубокие слои атмосферы Солнца, между тем как правое и левое крылья линии соответствуют в одном случае преимущественно приближающимся, а в другом - удаляющимся газовым массам. Сопоставление обеих спектрогелиограмм выявляет на поверхности Солнца потоки, движущиеся к наблюдателю и от него. Оказалось, что они локализуются в пределах ячеек поперечником около 30 тыс. км, так что в каждой ячейке имеется систематическое движение газовых масс от центра к периферии. Эти ячейки получили название супергранул. Они гораздо более долговечны, чем обычные гранулы, - их средняя продолжительность жизни составляет 40 часов. Они имеют угловатую форму, похожую на многоугольники.

Супергрануляция отражает явление конвекции на Солнце в гораздо большем масштабе, чем грануляция, захватывая не только большие площади, но и большие глубины. По условиям наблюдений (в крыльях различных линий) удается проследить эту конвекцию лишь в верхних слоях солнечной фотосферы. Наблюдаемая на -спектрогелиограммах ячеистая сетка относится уже к верхней хромосфере и не совпадает с сеткой супергрануляции. Наоборот, явление гранул, наблюдаемое в интегральном свете, относится к несколько большим глубинам, чем наблюдаемые области супергрануляции. Но как по распределению скоростей в супергранулах, так и по изучению движения индивидуальных гранул все перемещения солнечной плазмы идут к границам супергранул, унося с собой и магнитное поле. Здесь, встречаясь с подобным же потоком соседней супергранулы, плазма уходит вглубь, чем и обеспечивается постоянная циркуляция ее. Магнитное поле при этом остается (так как движение плазмы происходит вдоль силовых линий), и здесь его напряженность достигает значений в несколько десятков и даже сотен эрстед, а в углах ячеек даже до 1,5-2 тыс. эрстед, как это видно из наблюдений эффекта Зеемана. Таким образом, у каждой супергранулы имеется ограничивающий и охраняющий ее магнитный барьер. Но кроме этого граница супергранулы обладает более высокой температурой, чем ее центр, примерно на 2-4 %, что следует из возрастания яркости тех спектральных линий, которые усиливаются в пятнах, т. е. линий низкого возбуждения. Возрастание яркости в линиях свидетельствует об уменьшении числа поглощающих атомов, которое в данном случае происходит из-за возрастания возбуждения или ионизации.

Допускается, что в глубине фотосферы супергранулы частично сливаются, так как, за исключением углов ячеек, стенки супергранул представляют довольно слабый магнитный барьер при возрастающей плотности газов.

Влияние супер грануляционной структуры больше простирается вверх. При наблюдениях вблизи солнечного края супергранулы совпадают с ячейками факелов. Здесь, в фотосфере, только в этом случае супергрануляция может быть видима. Наоборот, в хромосфере супергрануляция проявляет себя той сеткой флоккул, которая отчетливо выступает на спектрогелиограммах в лучах CaII К. Эта сетка хорошо видна и на заатмосферных фотографиях Солнца в лучах ультрафиолетовых линий, перечисленных на с. 72, излучающих над хромосферой в переходном слое, но исчезает в лучах корональных линий, как, например, линии . Надо думать, что так далеко простираются и магнитные поля супер гранул, их окаймляющие. Только на корональных высотах они приобретают упорядоченный вид: магнитные линии идут радиально, определяя каналы, по которым движутся теплопроводящие электроны. Их движение, таким образом, стеснено, теплопроводность переходного слоя уменьшается и толщина его становится больше, чем при отсутствии поля. Разумеется, все сказанное относится к спокойным хромосфере и короне.

ВОПРОС №114. Что предвещают тёмные пятна на Солнце, почему они появляются и для чего? Означает ли их отсутствие скорое наступление ледникового периода на планете?

На сайте «Вселенная» от 16.05.17 г. учёные заявили о необычном явлении на Солнце по ссылке:

«Ученые NASA сообщили, что с поверхности Солнца пропали все пятна. Ни единого пятнышка не удается обнаружить уже третий день подряд. Это вызывает у специалистов серьезное беспокойство.

По мнению ученых NASA, если ситуация не изменится в ближайшее время, жителям Земли следует готовиться к суровым холодам. Исчезновение на Солнце пятен грозит человечеству наступлением ледникового периода. Специалисты уверены, что изменения в облике Солнца могут сообщать о значительном снижении активности единственной звезды Солнечной системы, что в итоге приведет к глобальному понижению температуры на планете Земля. Подобные явления происходили в период с 1310 по 1370 и с 1645 по 1725 года, тогда же были зафиксированы и периоды глобального похолодания или так называемые малые ледниковые периоды.

Согласно наблюдениям ученых, удивительная чистота на Солнце была зафиксирована в начале 2017 года, солнечный диск оставался без пятен на протяжении 32 дней. Ровно столько же Солнце оставалось без пятен и в минувшем году. Такие явления грозят тем, что снижается мощность ультрафиолетового излучения, а значит, разряжаются верхние слои атмосферы. Это приведет к тому, что весь космический мусор будет скапливаться в атмосфере, а не сгорать как это случается всегда. Некоторые ученые уверены, что Земля начинает замерзать.»

Так выглядело Солнце без тёмных пятен в начале 2017 г.

На Солнце не было пятен в 2014 - 1 день, в 2015 г. - 0 дней, за 2 месяца в начале 2017 г. – 32 дня.

Что это значит? Почему пропадают пятна?

Чистое Солнце знаменует приближение минимума солнечной активности. Цикл солнечных пятен - как маятник, качающийся туда-сюда с периодом 11–12 лет. Прямо сейчас маятник близок к малому числу солнечных пятен. Эксперты ожидают, что цикл достигнет минимума в 2019–2020 годах. От текущего момента и до того времени мы еще много раз увидим абсолютно незапятнанное Солнце. Сперва периоды без пятен будут измеряться днями, позже - неделями и месяцами. Полного объяснения этому феномену у науки пока нет.

Что такое 11-летний цикл солнечной активности?

Одиннадцатилетний цикл - это заметно выраженный цикл солнечной активности, длящийся примерно 11 лет. Он характеризуется довольно быстрым (примерно за 4 года) увеличением числа солнечных пятен, и затем более медленным (около 7 лет) его уменьшением. Длина цикла не равна строго 11 годам: в XVIII–XX веках его длина составляла 7–17 лет, а в XX веке - примерно 10,5 года.

Известно, что уровень солнечной активности постоянно меняется. Тёмные пятна, их появление и число очень тесно взаимосвязаны с этим явлением и один цикл может варьироваться от 9 до 14 лет, а также уровень активности неустанно изменяется от столетия к столетию. Таким образом, могут быть периоды затишья, когда более одного года пятна практически отсутствуют. Но может случиться и обратное, когда их количество считается аномальным. Так, в октябре 1957 г. на Солнце было 254 тёмных пятна, что является максимумом до настоящего времени.

Самый интригую­щий вопрос: откуда берется солнечная активность и как объяс­нить ее особенности?

Известно, что определяющим фактором солнечной активности является магнитное поле. Для ответа на этот вопрос уже сделаны первые шаги в на­правлении построения научно обоснованной теории, которая смо­жет объяснить все наблюдаемые особенности активности велико­го светила.

Наукой установлен также факт, что именно тёмные пятна приводят к солнечным вспышкам, которые могут оказывать сильное воздействие на магнитное поле Земли. Тёмные пятна имеют пониженную температуру по отношению к фотосфере Солнца – около 3500 градусов С и представляют собой те самые области, сквозь которые магнитные поля выходят на поверхность, что называется магнитной активностью. Если пятен мало, то это именуется спокойным периодом, а когда их много, то такой период будет называться активным.

В среднем температура Солнца на поверхности достигает 6000 град. С. Солнечные пятна живут от пары дней до нескольких недель. А вот группы пятен могут оставаться в фотосфере на протяжении месяцев. Размеры солнечных пятен, а также их количество в группах может быть самым разнообразным.

Данные о прошлых солнечных активностях доступны для изучения, однако они вряд ли могут стать самым верным помощником в прогнозировании будущего, ведь природа Солнца весьма непредсказуема.

Воздействие на планету. Магнитные явления на Солнце тесным образом взаимодействуют с нашей повседневной жизнью. Земля постоянно подвергается атакам различных излучений Солнца. От их разрушительного воздействия планета защищена при помощи магнитосферы и атмосферы. Но, к сожалению, они не способны противостоять ему полностью. Из строя могут быть выведены спутники, нарушается радиосвязь, а космонавты подвержены повышенной опасности. Опасными для планеты могут быть повышенные дозы выбросов ультрафиолетового и рентгеновского излучения Солнца, особенно при наличии озоновых дыр в атмосфере. В феврале 1956 г. произошла самая мощная вспышка на Солнце с выбросом огромного облака плазмы размером больше планеты со скоростью 1000 км/сек.

Помимо этого, излучение влияет на климатические изменения и даже на внешность человека. Существует такое явление, как солнечные пятна на теле, появляющиеся под воздействием ультрафиолета. Этот вопрос ещё не изучен должным образом, как и влияние солнечных пятен на повседневную жизнь людей. Ещё одним явлением, зависящим от магнитных нарушений, можно назвать северное сияние.

Магнитные бури в атмосфере планеты стали одним из самых известных последствий солнечной активности. Они представляют собой ещё одно внешнее магнитное поле вокруг Земли, которое параллельно постоянному. Современные учёные даже связывают повышенную смертность, а также обострение заболеваний сердечно-сосудистой системы с появлением этого самого магнитного поля.»

Вот некоторые сведения о параметрах Солнца: диаметр – 1млн. 390 тыс. км., химический состав водород (75%) и гелий (25%), масса – 2х10 в 27-й степени тонн, что составляет 99,8% от массы всех планет и объектов в солнечной системе, ежесекундно в термоядерных реакциях Солнце сжигает 600 млн. тонн водорода, превращая его в гелий, и выбрасывает в пространство 4 млн. тонн своей массы в виде всех излучений. В объёме Солнца можно разместить 1 млн. планет как Земля и ещё останется свободное место. Расстояние от Земли до Солнца – 150 млн. км. Его возраст около 5 млрд. лет.

Ответ:

В статье №46 данного раздела сайта сообщается информация, неизвестная науке: «Термоядерного реактора в центре Солнца нет, там находится белая дыра, которая получает до половины энергии для Солнца из чёрной дыры в центре Галактики через порталы пространственно-временных каналов. Термоядерные реакции, которые вырабатывают лишь около половины энергии, расходуемой Солнцем, происходят локально в наружных слоях нейтринной и нейтронной оболочек. Тёмные пятна на поверхности Солнца – это чёрные дыры, через которые энергия из центра Галактики поступает в центр вашего светила».

Почти все звёзды Галактик, имеющие планетарные системы, соединены невидимыми пространственно-энергетическими каналами с огромными чёрными дырами в центрах Галактик.

Эти галактические чёрные дыры имеют пространственно-энергетические каналы со звёздными системами и являются энергетической основой Галактик и всей Вселенной. Они подпитывают звёзды с планетарными системами своей аккумулированной энергией, полученной от поглощённой ими материи в центре Галактик. Чёрная дыра в центре нашей Галактики Млечный Путь имеет массу равную 4-м млн. масс Солнца. Энергетическая подпитка звёзд от чёрной дыры происходит по установленным расчётам для каждой звёздной системы по периоду и мощности.

Это необходимо, чтобы звезда всегда на протяжении миллионов лет светила бы с одинаковой силой без затухания для проведения ВЦ постоянных экспериментов в каждой звёздной системе. Чёрная дыра в центре Галактики восстанавливает до 50% всей энергии, расходуемой Солнцем на выброс до 4-х млн. тонн своей массы ежесекундно в виде излучений. Ещё столько же энергии Солнце создаёт своими термоядерными реакциями на поверхности.

Поэтому при подключении звезды к энергетическим каналам чёрной дыры из центра Галактики на поверхности Солнца образуется необходимое количество чёрных дыр, получающих энергию и передающих её в центр светила.

В центре Солнца находится чёрная дыра, получающая энергию с его поверхности, такие дыры наука называет белыми дырами. Появление тёмных пятен на Солнце – чёрных дыр – является периодом подключения звезды к подпитке от энергетических каналов Галактики и не является предвестником будущего глобального похолодания или ледникового периода на Земле, как это предполагают учёные. Для наступления глобального похолодания на планете необходимо понижение среднегодовой температуры на 3 градуса, что может привести к обледенению севера Европы, России и скандинавских стран. Но по наблюдениям и мониторингу учёных за последние 50 лет среднегодовое значение температуры на планете не изменилось.

Среднегодовое значение солнечного ультрафиолетового излучения также сохранилось на обычном уровне. Во время периода солнечной активности при наличии тёмных пятен на Солнце происходит увеличение магнитной активности светила /магнитные бури/ в пределах максимальных значений всех прошедших 11-ти летних циклов. Дело в том, что энергия от чёрной дыры из центра Галактики, поступающая на чёрные дыры Солнца, обладает магнетизмом. Поэтому в период с тёмными пятнами вещество на поверхности фотосферы Солнца активируется магнитным полем этих пятен в виде выбросов, арок и протуберанцев, что называют повышенной солнечной активностью.

Мрачные предположения учёных о предстоящем периоде глобального похолодания на планете несостоятельны из-за отсутствия достоверной информации о Солнце. Глобальные похолодания или малые ледниковые периоды во 2-ом тысячелетии нашей эры, которые указаны в начале статьи, случались по плану проведения климатических экспериментов на Земле нашими Создателями и Наблюдателями, а не по причине случайных сбоев в виде длительного отсутствия тёмных пятен на Солнце.

Просмотры 2 341

Сергей Богачев

Как устроены пятна на Солнце

На диске Солнца появилась одна из самых крупных в этом году активных областей, а значит, на Солнце снова есть пятна - притом что наша звезда вступает в период . О природе и истории обнаружения солнечных пятен, а также об их влиянии на земную атмосферу рассказывает сотрудник Лаборатории рентгеновской астрономии Солнца ФИАН, доктор физико-математических наук Сергей Богачев.


В первом десятилетии XVII века итальянский ученый Галилео Галилей и немецкий астроном и механик Кристоф Шейнер приблизительно одновременно и независимо друг от друга усовершенствовали изобретенную за несколько лет до этого подзорную трубу (или телескоп) и создали на ее основе гелиоскоп - прибор, позволяющий наблюдать Солнце, проецируя его изображение на стену. На этих изображениях ими были обнаружены детали, которые можно было бы принять за дефекты стены, если бы они не перемещались вместе с изображением - небольшие пятна, усеивающие поверхность идеального (и отчасти божественного) центрального небесного тела - Солнца. Так в историю науки вошли солнечные пятна, а в нашу жизнь - поговорка о том, что на свете нет ничего идеального: «И на Солнце есть пятна».

Солнечные пятна являются основной деталью, которую можно разглядеть на поверхности нашей звезды без применения сложной астрономической техники. Видимые размеры пятен составляю порядка одной угловой минуты (размер 10-копеечной монеты с расстояния в 30 метров), что находится на пределе разрешения человеческого глаза. Однако достаточно совсем простого оптического прибора, увеличивающего всего в несколько раз, чтобы эти объекты были обнаружены, что, собственно, и произошло в Европе в начале XVII века. Отдельные наблюдения пятен, впрочем, регулярно происходили и до этого, причем часто они делались просто глазом, но оставались незамеченными или непонятыми.

Природу пятен некоторое время пытались объяснить, не затрагивая идеальность Солнца, например, как облака в солнечной атмосфере, но довольно быстро стало понятно, что они относятся посредственно к солнечной поверхности. Природа их, тем не менее, оставалась загадкой вплоть до первой половины XX, когда на Солнце впервые были обнаружены магнитные поля и оказалось, что места их концентрации совпадают с местами формирования пятен.

Почему пятна выглядят темными? Прежде всего надо заметить, что их темнота не является абсолютной. Она, скорее, подобна темному силуэту человека, стоящего на фоне освещенного окна, то есть является лишь кажущейся на фоне очень яркого окружающего света. Если измерить «яркость» пятна, то можно обнаружить, что оно также излучает свет, но лишь на уровне 20-40 процентов от нормального света Солнца. Этого факта достаточно, чтобы без каких-либо дополнительных измерений определить температуру пятна, так как поток теплового излучения от Солнца однозначно связан с его температурой через закон Стефана-Больцмана (поток излучения пропорционален температуре излучающего тела в четвертой степени). Если положить яркость обычной поверхности Солнца с температурой около 6000 градусов Цельсия как единицу, то температура солнечных пятен должна составлять около 4000-4500 градусов. Собственно говоря, так оно и есть - солнечные пятна (а это впоследствии было подтверждено и иными методами, например спектроскопическими исследованиями излучения), являются просто участками поверхности Солнца более низкой температуры.

Связь пятен с магнитными полями объясняется влиянием магнитного поля на температуру газа. Такое влияние связано с наличием у Солнца конвективной (кипящей) зоны, которая простирается от поверхности на глубину примерно трети солнечного радиуса. Кипение солнечной плазмы непрерывно поднимает из его недр к поверхности горячую плазму и тем самым повышает температуру поверхности. В областях, где поверхность Солнца пробивают трубки сильного магнитного поля, эффективность конвекции подавляется вплоть до полной ее остановки. В результате без подпитки горячей конвективной плазмой поверхность Солнца остывает как раз до температур порядка 4000 градусов. Формируется пятно.


В наши дни пятна изучают в основном как центры активных солнечных областей, в которых концентрируются солнечные вспышки. Дело в том, что магнитное поле, «источником» которого являются пятна, приносит в атмосферу Солнца дополнительные запасы энергии, которые являются для Солнца «лишними», и оно, как и любая физическая система, стремящаяся минимизировать свою энергию, пытается от них избавиться. Эта дополнительная энергия так и называется - свободная. Для сброса лишней энергии существует два основных механизма.

Первый, когда Солнце просто выбрасывает в межпланетное пространство отягощающую его часть атмосферы вместе с лишними магнитными полями, плазмой и токами. Эти явления называют корональными выбросами массы. Соответствующие выбросы, распространяясь от Солнца, достигают порой колоссальных размеров в несколько миллионов километров и являются, в частности, главной причиной магнитных бурь - удар такого сгустка плазмы по магнитному полю Земли выводит его из равновесия, заставляет колебаться, а также усиливает электрические токи, текущие в магнитосфере Земли, что и составляет суть магнитной бури.

Второй способ - это солнечные вспышки. В этом случае свободная энергия сжигается непосредственно в солнечной атмосфере, однако последствия этого тоже могут доходить до Земли - в виде потоков жесткого излучения и заряженных частиц. Такое воздействие, являющееся по своей природе радиационным, является одной из главных причин выхода из строя космических аппаратов, а также полярных сияний.

Не стоит, впрочем, обнаружив на Солнце пятно, сразу готовиться к солнечным вспышкам и магнитным бурям. Довольно частой является ситуация, когда появление на диске Солнца пятен, даже рекордно крупных, не приводит даже к минимальному повышению уровня солнечной активности. Почему так происходит? Связано это с природой высвобождения магнитной энергии на Солнце. Такая энергия не может высвободиться из одного магнитного потока, точно так же как лежащий на столе магнит, как бы его ни трясли, не создаст никакой солнечной вспышки. Таких потоков должно быть, как минимум, два, и они должны иметь возможность для взаимодействия друг с другом.

Поскольку одна магнитная трубка, пробивающая поверхность Солнца в двух местах, создает два пятна, то все группы пятен, в которых пятен всего два или одно, создавать вспышки не способны. Эти группы образованы одним потоком, которому не с чем взаимодействовать. Такая пара пятен может быть гигантской и существовать на диске Солнца месяцами, пугая Землю своими размерами, но не создаст ни одной, даже минимальной, вспышки. Подобные группы имеют классификацию и называются типом Альфа, если пятно одно, или Бета, если их два.


Сложное солнечное пятно типа Бета-Гамма-Дельта. Сверху - пятно в видимом диапазоне, внизу - магнитные поля, показанные с помощью прибора HMI на борту космической обсерватории SDO

Если вы обнаружили сообщение о появлении на Солнце нового пятна, не поленитесь и посмотрите тип группы. Если это Альфа или Бета, то можете не беспокоиться - ни вспышек, ни магнитных бурь Солнце в ближайшие дни не произведет. Более сложным классом является Гамма. Это группы пятен, в которых существует несколько пятен северной и южной полярности. В такой области существует как минимум два взаимодействующих магнитных потока. Соответственно, такая область будет терять магнитную энергию и подпитывать солнечную активность. И, наконец, последний класс - Бета-Гамма. Это максимально сложные области, с предельно запутанным магнитным полем. Если такая группа появилась в каталоге, можно не сомневаться - распутывать эту систему Солнце будет не менее нескольких дней, сжигая энергию в виде вспышек, в том числе крупных, и выбрасывая плазму, пока не упростит данную систему до простой конфигурации Альфа или Бета.

Впрочем, несмотря на «устрашающую» связь пятен со вспышками и магнитными бурями, не следует забывать, что это одно из наиболее замечательных астрономических явлений, которое можно наблюдать с поверхности Земли в любительские инструменты. Наконец, солнечные пятна, это очень красивый объект - достаточно посмотреть на их снимки, полученные с высоким разрешением. Тем же, кто даже после этого не способен забыть о негативных аспектах этого явления, можно утешиться тем, что число пятен на Солнце все-таки относительно мало (не более 1 процента поверхности диска, а чаще гораздо меньше).

Ряд типов звезд, как минимум красные карлики, «страдают» в куда большей степени - пятнами в них может быть покрыто до десятков процентов площади. Можно вообразить, какие имеют гипотетические обитатели соответствующих планетных систем, и еще раз порадоваться, рядом с какой относительно спокойной звездой нам посчастливилось жить.