Из чего сделаны черные дыры. Какие бывают и как образуются черные дыры

С. ТРАНКОВСКИЙ

Среди наиболее важных и интересных проблем современной физики и астрофизики академик В. Л. Гинзбург назвал вопросы, связанные с черными дырами (см. "Наука и жизнь" №№ 11, 12, 1999 г.). Существование этих странных объектов было предсказано более двухсот лет назад, условия, приводящие к их образованию, точно рассчитали в конце 30-х годов XX века, а вплотную астрофизика занялась ими менее сорока лет назад. Сегодня научные журналы мира ежегодно публикуют тысячи статей, посвященных черным дырам.

Образование черной дыры может происходить тремя путями.

Так принято изображать процессы, идущие в окрестностях коллапсирующей черной дыры. С течением времени (Y) пространство (X) вокруг нее (закрашенная область) сжимается, устремляясь к сингулярности.

Гравитационное поле черной дыры вносит сильнейшие искажения в геометрию пространства.

Черная дыра, невидимая в телескоп, обнаруживает себя только по своему гравитационному воздействию.

В мощном поле тяготения черной дыры происходит рождение пар частица-античастица.

Рождение пары частица-античастица в лаборатории.

КАК ОНИ ВОЗНИКАЮТ

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.

Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой #1#

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.

Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус r g "), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом r g < 2GM /c 2 , перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2 . 10 33 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 10 16 г/см 3 . Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = r g .

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом r g , образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем).

Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее!".

И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Сжатие становится необратимым, сил, способных противодействовать самогравитации, нет. Такой процесс называется гравитационным коллапсом. Скорость движения оболочки звезды к ее центру увеличивается, приближаясь к скорости света. И здесь начинают играть роль эффекты теории относительности.

Скорость убегания была рассчитана исходя из ньютоновсих представлений о природе света. С точки зрения общей теории относительности явления в окрестностях коллапсирующей звезды происходят несколько по-другому. В ее мощном поле тяготения возникает так называемое гравитационное красное смещение. Это означает, что частота излучения, исходящего от массивного объекта, смещается в сторону низких частот. В пределе, на границе сферы Шварцшильда, частота излучения становится равной нулю. То есть наблюдатель, находящийся за ее пределами, ничего не сможет узнать о том, что происходит внутри. Именно поэтому сферу Шварцшильда и называют горизонтом событий.

Но уменьшение частоты равнозначно замедлению времени, и, когда частота становится равна нулю, время останавливается. Это означает, что посторонний наблюдатель увидит очень странную картину: оболочка звезды, падающая с нарастающим ускорением, вместо того, чтобы достигнуть скорости света, останавливается. С его точки зрения, сжатие прекратится, как только размеры звезды приблизятся к гравитационному ради
усу. Он никогда не увидит, чтобы хоть одна частица "нырнула" под сферу Шварцшиль да. Но для гипотетического наблюдателя, падающего на черную дыру, все закончится в считанные мгновения по его часам. Так, время гравитационного коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды - только 1/20 000 секунды. И здесь его подстерегает неприятность, связанная с геометрией пространства-времени вблизи черной дыры.

Наблюдатель попадает в искривленное пространство. Вблизи гравитационного радиуса силы тяготения становятся бесконечно большими; они растягивают ракету с космонавтом-наблюдателем в бесконечно тонкую нить бесконечной длины. Но сам он этого не заметит: все его деформации будут соответствовать искажениям пространственно-временн ых координат. Эти рассуждения, конечно, относятся к идеальному, гипотетическому случаю. Любое реальное тело будет разорвано приливными силами задолго до подхода к сфере Шварцшильда.

РАЗМЕРЫ ЧЕРНЫХ ДЫР

Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 10 8 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (10 9) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4 . 10 6 ±10% массы Солнца.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 10 14 г и радиусом порядка 10 -12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в
ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю?

Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть (об этом эксперименте рассказано в журнале "Наука и жизнь" № 3, 2000 г.).

КАК УВИДЕТЬ НЕВИДИМОЕ

Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру.

1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.

2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра.

3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.).

И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку.

Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца.

ЧЕРНАЯ ДЫРА МОЖЕТ БЫТЬ И "БЕЛОЙ"

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.

Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E , уменьшит свою энергию, а с энергией E - увеличит.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6 . 10 -8 M с /M кельвинов, где M с - масса Солнца (2 . 10 33 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 10 14 -10 30 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 10 14 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.

Дата публикации: 27.09.2012

Большинство людей смутно или неправильно представляют себе, что такое чёрные дыры. Между тем, это настолько глобальные и мощные объекты Вселенной, по сравнению с которыми наша Планета и вся наша жизнь - ничто.

Сущность

Это космический объект, обладающий настолько огромной гравитацией, что поглощает всё, что попадёт в его пределы. По сути, чёрная дыра - это объект, который не выпускает даже свет и искривляет пространство-время. Даже время возле чёрных дыр течёт медленнее.

На самом деле, существование чёрных дыр - это только теория (и немного практики). У учёных есть предположения и практические наработки, но плотно изучить чёрные дыры пока не удалось. А потому чёрными дырами называют условно все объекты, подходящие под данное описание. Чёрные дыры мало изучены, а потому очень много вопросов остаются нерешёнными.

У любой чёрной дыры есть горизонт событий - та граница, после которой ничто уже не сможет выбраться. Более того, чем ближе объект находится к чёрной дыре, тем он медленнее движется.

Образование

Существует несколько видов и способов образования чёрных дыр:
- образование чёрных дыр в результате образования Вселенной. Такие чёрные дыры появились сразу после Большого Взрыва.
- умирающие звёзды. Когда звезда теряет свою энергию и термоядерные реакции прекращаются - звезда начинает сжиматься. В зависимости от степени сжатия, выделяют нейтронные звёзды, белые карлики и, собственно, чёрные дыры.
- получение с помощью эксперимента. Например, в коллайдере можно создать квантовую чёрную дыру.

Версии

Многие учёные склонны к мнению, что чёрные дыры всю поглощённую материю выбрасывают в другом месте. Т.е. должны существовать «белые дыры», которые действуют по иному принципу. Если в чёрную дыру можно попасть, но нельзя выбраться, то в белую дыру, наоборот, не попасть. Главный аргумент учёных - это зафиксированные в космосе резкие и мощные выплески энергии.

Сторонники теории струн вообще создали свою модель чёрной дыры, которая не уничтожает информацию. Их теория называется «Fuzzball» - она позволяет ответить на вопросы, связанные с сингулярностью и исчезновением информации.

Что такое сингулярность и исчезновение информации? Сингулярность - это такая точка в пространстве, характеризующаяся бесконечным давлением и плотностью. Многих смущает факт сингулярности, ведь физики не могут работать с бесконечными числами. Многие уверены, что сингулярность в чёрной дыре есть, но её свойства описываются весьма поверхностно.

Если говорить простым языком, то все проблемы и недопонимание выходит из соотношения квантовой механики и гравитации. Пока учёные не могут создать теорию, объединяющую их. А потому и возникают проблемы с чёрной дырой. Ведь чёрная дыра вроде как уничтожает информацию, но при этом нарушаются основы квантовой механики. Хотя совсем недавно С.Хокинг, вроде бы, решил данный вопрос, заявив что информация в чёрных дырах всё-таки не уничтожается.

Стереотипы

Во-первых, чёрные дыры не могут существовать бесконечно долго. А всё благодаря испарению Хокинга. А потому не нужно думать, что чёрные дыры рано или поздно поглотят Вселенную.

Во-вторых, наше Солнце не станет чёрной дырой. Так как массы нашей звезды будет недостаточно. Наше солнце скорее превратится в белого карлика (и то не факт).

В-третьих, Большой Адронный Коллайдер не уничтожит нашу Землю, создав чёрную дыру. Даже если они специально создадут чёрную дыру и «выпустят» её, то из-за её малых размеров, она будет поглощать нашу планету очень и очень долго.

В-четвёртых, не нужно думать, что чёрная дыра - это «дыра» в космосе. Чёрная дыра - это сферический объект. Отсюда большинство мнений, что чёрные дыры ведут в параллельную Вселенную. Однако этот факт пока ещё не удалось доказать.

В-пятых, чёрная дыра не имеет цвета. Её обнаруживают либо по рентгеновскому излучению, либо на фоне других галактик и звёзд (эффект линзы).

Из-за того, что люди часто путают чёрные дыры с червоточинами (которые на самом деле существуют), то среди обычных людей данные понятия не различаются. Червоточина и вправду позволяет перемещаться в пространстве и времени, но пока только в теории.

Сложные вещи простым языком

Сложно описывать такой феномен как чёрная дыра простым языком. Если вы считаете себя технарём, разбирающимся в точных науках, то советую почитать труды учёных непосредственно. Если же вы хотите узнать об этом феномене больше, то почитайте труды Стивена Хокинга. Он многое сделал для науки, и особенно в сфере чёрных дыр. Именно в честь него названо испарение чёрных дыр. Он является сторонником педагогического подхода, а потому все его труды будут понятны даже обычному человек.

Книги:
- «Чёрные дыры и молодые Вселенные» 1993 года.
- «Мир в ореховой скорлупке 2001» года.
- «Кратчайшая история Вселенной 2005» года.

Особенно хочу порекомендовать его научно-популярные фильмы, которые расскажут вам понятным языком не только о чёрных дырах, но и о Вселенной вообще:
- «Вселенная Стивена Хокинга» - сериал из 6 эпизодов.
- «Вглубь Вселенной со Стивеном Хокингом» - сериал из 3 эпизодов.
Все эти фильмы переведены на русский язык, их часто показываются на каналах Discovery.

Спасибо за внимание!


Последние советы раздела «Наука & Техника»:

Вам помог этот совет? Вы можете помочь проекту, пожертвовав на его развитие любую сумму по своему усмотрению. Например, 20 рублей. Или больше:)

Черные дыры – это одни из самых могущественных и загадочных объектов во Вселенной. Они формируются после разрушения звезды.

Nasa составили ряд поразительных снимков предполагаемых черных дыр в просторах космоса.

Перед вами фото ближайшей галактики Центавр А, сделанный Chandra X-Ray Observatory. Здесь показано влияние сверхмассивной черной дыры в пределах галактики.

Недавно Nasa было объявлено, что в соседней галактике из взорвавшейся звезды зарождается черная дыра. По сообщению Discovery News эта дыра располагается в галактике M-100, находящейся на расстоянии в 50 миллионов лет от Земли.

Вот еще один очень интересный фотоснимок от Chandra Observatory, показывающий галактику M82. Nasa полагает, что изображенное может быть отправными точками для двух сверхмассивных черных дыр. Исследователи предполагают, что образование черных дыр начнется, когда звезды исчерпают свои ресурсы и сгорят. Они будут раздавлены собственным гравитационным весом.

Ученые связывают существование черных дыр с теорией относительности Эйнштейна. Специалисты используют Эйнштейновское понимание гравитации для определения громадной силы притяжения черной дыры. На представленной фотографии информация от Chandra X-Ray Observatory совпадает со снимками, полученными с космического телескопа Hubble. Nasa считает, что эти две черные дыры движутся по спирали навстречу друг другу на протяжении 30 лет, а со временем они могут стать одной большой черной дырой.

Это мощнейшая черная дыра в космической галактике M87. Субатомные частицы, движущиеся практически со скоростью света, указывают на то, что в центре этой галактики находится сверхмассивная черная дыра. Считают, что она «поглотила» материю, равную 2-м миллионам наших солнц.

Nasa полагает, что на этом снимке засвидетельствовано то, как две сверхмассивные черные дыры, столкнувшись между собой, формируют систему. Или же это так называемый «эффект рогатки», в результате чего система формируется из 3-х черных дыр. Когда звезды суперновые, они обладают способностью разрушаться и опять возникать, в результате чего формируются черные дыры.

Эта художественная визуализация показывает черную дыру, вытягивающую газ от соседней звезды. Черная дыра имеет такой цвет, так как ее гравитационное поле настолько плотное, что оно поглощает свет. Черные дыры невидимые, поэтому ученые только предполагают их наличие. Их величина может быть равной размеру всего 1 атома или же миллиарда солнц.

На этой художественной визуализации показан квазар, который является сверхмассивной черной дырой, окруженной вращающимися частицами. Этот квазар расположен в центре галактики. Квазары находятся на ранней стадии зарождения черной дыры, тем не менее, они могут существовать миллиарды лет. Все-таки считается, что они были сформированы в древние эпохи Вселенной. Предполагают, что все «новые» квазары просто были скрыты от нашего взора.

Телескопы Spitzer и Hubble зафиксировали ложные цветные струи частиц, выстреливающих из гигантской мощной черной дыры. Полагают, что эти струи простираются сквозь 100 000 световых лет пространства, такого же большого, как Млечный Путь нашей галактики. Разные цвета появляются от различных световых волн. В нашей галактике есть мощная черная дыра Sagittarius A. Nasa считает, что ее масса равна 4 миллиона наших солнц.

На этом изображении представлен микроквазар, считающийся уменьшенной черной дырой с такой же массой, как и у звезды. Если бы вы попали в черную дыру, вы бы пересекли временной горизонт на ее границе. Даже если вас не раздавит сила тяжести, обратно из черной дыры вам уже не вернуться. Вас невозможно будет увидеть в темном пространстве. Каждый путешественник в черную дыру будет разорван в результате воздействия силы гравитации.

Спасибо что рассказали о нас друзьям!

«Научная фантастика может быть полезной - она стимулирует воображение и избавляет от страха перед будущим. Однако научные факты могут оказаться намного поразительнее. Научная фантастика даже не предполагала наличия таких вещей, как черные дыры »
Стивен Хокинг

В глубинах вселенной для человека таится бесчисленное множество загадок и тайн. Одной из них являются черные дыры – объекты, которые не могут понять даже величайшие умы человечества. Сотни астрофизиков пытаются раскрыть природу черных дыр, однако на данном этапе мы еще даже не доказали их существование на практике.

Кинорежиссеры посвящают им свои фильмы, а среди простых людей черные дыры стали настолько культовым явлением, что их отождествляют с концом света и неминуемой гибелью. Их боятся и ненавидят, но при этом боготворят их и преклоняются перед неизвестностью, которую таят в себе эти странные осколки Вселенной. Согласитесь, быть поглощенным черной дырой – та еще романтика. С их помощью можно , а также они могут стать для нас проводниками в .

На популярности черных дыр часто спекулирует желтая пресса. Найти заголовки в газетах, связанные с концом света на планете из-за очередного столкновения со сверхмассивной черной дырой, не проблема. Гораздо хуже то, что малограмотная часть населения все воспринимает это всерьез и поднимает настоящую панику. Чтобы внести толику ясности, мы отправимся в путешествие к истокам открытия черных дыр и попытаемся понять, что же это такое и как к этому относиться.

Невидимые звезды

Так уж сложилось, что современные физики описывают устройство нашей Вселенной с помощью теории относительности, которую человечеству в начале 20 века заботливо предоставил Эйнштейн. Тем более загадочными становятся черные дыры, на горизонте событий которых прекращают действовать все известные нам законы физики и эйнштейновская теория в том числе. Это ли не прекрасно? К тому же, догадку о существовании черных дыр высказали задолго до рождения самого Эйнштейна.

В 1783 году в Англии наблюдался значительный рост научной активности. В те времена наука шла бок о бок с религией, они неплохо уживались вместе, а ученых уже не считали еретиками. Более того, научными изысканиями занимались священники. Одним из таких служителей Бога был английский пастор Джон Мичелл, который задавался не только вопросами бытия, но и вполне научными задачами. Мичелл был весьма титулованным ученым: изначально он был преподавателем математики и древнего языкознания в одном из колледжей, а после этого за ряд открытий был принят в Лондонское королевское общество.

Джон Мичелл занимался вопросами сейсмологии, но на досуге любил поразмыслить о вечном и космосе. Так у него родилась идея о том, что где-то в глубинах Вселенной могут существовать сверхмассивные тела с такой мощной гравитацией, что для преодоления силы тяготения такого тела необходимо двигаться со скоростью равной или выше скорости света. Если принять такую теорию за истину, то развить вторую космическую скорость (скорость, необходимая для преодоления гравитационного притяжения покидаемого тела) не сможет даже свет, поэтому такое тело останется невидимым для невооруженного глаза.

Свою новую теорию Мичелл обозвал «темными звездами», а заодно попытался вычислить массу таких объектов. Свои мысли по этому поводу он высказал в открытом письме Лондонскому королевскому обществу. К сожалению, в те времена такие изыскания не представляли особой ценности для науки, поэтому письмо Мичелла отправили в архив. Лишь спустя две сотни лет во второй половине 20 века удалось обнаружить его среди тысяч других записей, бережно хранящихся в древней библиотеке.

Первые научные обоснования существования черных дыр

После выхода Общей теории относительности Эйнштейна в свет, математики и физики всерьез взялись за решение представленных немецким ученым уравнений, которые должны были рассказать нам много нового об устройстве Вселенной. Тем же решил заняться и немецкий астроном, физик Карл Шварцшильд в 1916 году.

Ученый с помощью своих вычислений пришел к выводу, что существование черных дыр возможно. Также он первым описал то, что впоследствии назвали романтической фразой «горизонт событий» — воображаемую границу пространства-времени у черной дыры, после пересечения которой наступает точка невозврата. Из-за горизонта событий не вырвется ничто, даже свет. Именно за горизонтом событий наступает так называемая «сингулярность», где известные нам законы физики перестают действовать.

Продолжая развивать свою теорию и решая уравнения, Шварцшильд открывал для себя и мира новые тайны черных дыр. Так, он смог исключительно на бумаге вычислить расстояние от центра черной дыры, где сконцентрирована ее масса, до горизонта событий. Данное расстояние Шварцшильд назвал гравитационным радиусом.

Несмотря на то, что математически решения Шварцшильда были исключительно верны и не могли быть опровергнуты, научное сообщество начала 20 века не могло сразу принять столь шокирующее открытие, и существование черных дыр было списано на уровень фантастики, которая то и дело проявлялась в теории относительности. На ближайшие полтора десятка лет исследование космоса на предмет наличия черных дыр было медленным, и занимались им единичные приверженцы теории немецкого физика.

Звезды, рождающие тьму

После того, как уравнения Эйнштейна были разобраны по полочкам, настало время с помощью сделанных выводов разбираться в устройстве Вселенной. В частности, в теории эволюции звезд. Ни для кого не секрет, что в нашем мире ничто не вечно. Даже звезды имеют свой цикл жизни, пусть и более долгий, нежели человек.

Одним из первых ученых, которые всерьез заинтересовались звездной эволюцией, стал молодой астрофизик Субраманьян Чандрасекар – уроженец Индии. В 1930 году он выпустил научную работу, в которой описывалось предполагаемое внутреннее строение звезд, а также циклы их жизни.

Уже в начале 20 века ученые догадывались о таком явлении, как гравитационное сжатие (гравитационный коллапс). В определенный момент своей жизни звезда начинает сжиматься с огромной скоростью под действием гравитационных сил. Как правило, это происходит в момент смерти звезды, однако при гравитационном коллапсе есть несколько путей дальнейшего существования раскаленного шара.

Научный руководитель Чандрасекара Ральф Фаулер – уважаемый в свое время физик-теоретик – предполагал, что во время гравитационного коллапса любая звезда превращается в более мелкую и горячую – белого карлика. Но вышло так, что ученик «сломал» теорию учителя, которую разделяло большинство физиков начала прошлого века. Согласно работе молодого индуса, кончина звезды зависит от ее изначальной массы. Например, белыми карликами могут становиться только те звезды, чья масса не превышала 1.44 от массы Солнца. Это число было названо пределом Чандрасекара. Если же масса звезды превышала этот предел, то она умирает совсем иначе. При определенных условиях, такая звезда в момент смерти может возродиться в новую, нейтронную звезду – еще одну загадку современной Вселенной. Теория относительности же подсказывает нам еще один вариант – сжатие звезды до сверхмалых величин, и вот здесь начинается самое интересное.

В 1932 году в одном из научных журналов появляется статья, в которой гениальный физик из СССР Лев Ландау предположил, что при коллапсе сверхмассивная звезда сжимается в точку с бесконечно малым радиусом и бесконечной массой. Несмотря на то, что такое событие весьма сложно представить с точки зрения неподготовленного человека, Ландау был недалек от истины. Также физик предположил, что согласно теории относительности, гравитация в такой точке будет столь велика, что начнет искажать пространство-время.

Теория Ландау понравилась астрофизикам, и они продолжили ее развивать. В 1939 году в Америке благодаря усилиям двух физиков – Роберта Оппенгеймера и Хартленда Снейдера – появилась теория, подробно описывающая сверхмассивную звезду на момент коллапса. В результате такого события должна была появиться настоящая черная дыра. Несмотря на убедительность доводов, ученые продолжали отрицать возможность существования подобных тел, как и превращение в них звезд. Даже Эйнштейн отстранился от этой идеи, посчитав, что звезда не способна на такие феноменальные превращения. Другие же физики не скупились в высказываниях, называя возможность таких событий нелепыми.
Впрочем, наука всегда достигает истины, стоит лишь немного подождать. Так и получилось.

Самые яркие объекты во Вселенной

Наш мир – совокупность парадоксов. Иногда в нем уживаются вещи, сосуществование которых не поддается никакой логике. Например, термин «черная дыра» не будет ассоциироваться у нормального человека с выражением «невероятно яркий», однако открытие начала 60-х годов прошлого века позволило ученым считать это утверждение неверным.

С помощью телескопов астрофизикам удалось обнаружить неизвестные до того момента объекты на звездном небе, которые вели себя совсем странно несмотря на то, что выглядели, как обычные звезды. Изучая эти странные светила, американский ученый Мартин Шмидт обратил внимание на их спектрографию, данные которой показывали отличные от сканирования других звезд результаты. Проще говоря, эти звезды не были похожи на другие, привычные нам.

Внезапно Шмидта осенило, и он обратил внимание на смещение спектра в красном диапазоне. Оказалось, что эти объекты намного дальше от нас, чем те звезды, что мы привыкли наблюдать в небе. Например, наблюдаемый Шмидтом объект был расположен в двух с половиной миллиардах световых лет от нашей планеты, но светил так же ярко, как и звезда в каких-нибудь сотне световых лет от нас. Получается, свет от одного такого объекта сопоставим с яркостью целой галактики. Такое открытие стало настоящим прорывом в астрофизике. Ученый назвал эти объекты «quasi-stellar» или просто «квазар».

Мартин Шмидт продолжил изучение новых объектов и выяснил, что столь яркое свечение может быть вызвано только по одной причине – аккреции. Аккреция – это процесс поглощения сверхмассивным телом окружающей материи с помощью гравитации. Ученый пришел к выводу, что в центре квазаров находится огромная черная дыра, которая с невероятной силой втягивает в себя окружающую ее в пространстве материю. В процессе поглощения дырой материи, частицы разгоняются до огромных скоростей и начинают светиться. Своеобразный светящийся купол вокруг черной дыры называется аккреационным диском. Его визуализация была хорошо продемонстрирована в киноленте Кристофера Нолана «Интерстеллар», которая породила множество вопросов «как черная дыра может светиться?».

На сегодняшний день ученые нашли на звездном небе уже тысячи квазаров. Эти странные невероятно яркие объекты называют маяками Вселенной. Они позволяют нам чуть лучше представить устройство космоса и ближе подойти к моменту, с которого все началось.

Несмотря на то, что астрофизики уже много лет получали косвенные доказательства существования сверхмассивных невидимых объектов во Вселенной, термина «черная дыра» не существовало вплоть до 1967 года. Чтобы избежать сложных названий, американский физик Джон Арчибальд Уиллер предложил назвать такие объекты «черными дырами». Почему бы и нет? В какой-то мере они черные, ведь мы их не можем увидеть. К тому же они все притягивают, в них можно упасть, прямо как в настоящую дыру. Да и выбраться из такого места согласно современным законам физики просто невозможно. Впрочем, Стивен Хокинг утверждает, что при путешествии сквозь черную дыру можно попасть в другую Вселенную, другой мир, а это уже надежда.

Страх бесконечности

Из-за излишней таинственности и романтизации черных дыр, эти объекты стали настоящей страшилкой среди людей. Желтая пресса любит спекулировать на неграмотности населения, выдавая в тираж изумительные истории о том, как на нашу Землю движется огромная черная дыра, которая в считанные часы поглотит Солнечную систему, или же просто излучает волны токсичного газа в сторону нашей планеты.

Особенно популярна тема уничтожения планеты с помощью Большого Адронного Коллайдера, который был построен в Европе в 2006 году на территории Европейского совета по ядерным исследованиям (CERN). Волна паники начиналась как чья-то глупая шутка, однако нарастала как снежный ком. Кто-то пустил слух, что в ускорителе частиц коллайдера может образоваться черная дыра, которая поглотит нашу планету целиком. Конечно же, возмущенный народ начал требовать запретить эксперименты в БАК, испугавшись такого исхода событий. В Европейский суд начали поступать иски с требованием закрыть коллайдер, а ученых, создавших его, наказать по всей строгости закона.

На самом деле физики не отрицают, что при столкновении частиц в Большом Адронном Коллайдере могут возникать объекты, похожие по свойствам на черные дыры, однако их размер находится на уровне размеров элементарных частиц, а существуют такие «дыры» столь недолго, что нам даже не удается зафиксировать их возникновение.

Одним из главных специалистов, которые пытаются развеять волну невежества перед людьми, является Стивен Хокинг – знаменитый физик-теоретик, который, к тому же, считается настоящим «гуру» относительно черных дыр. Хокинг доказал, что черные дыры не всегда поглощают свет, который появляется в аккреационных дисках, и его часть рассеивается в пространство. Такое явление было названо излучением Хокинга, или испарением черной дыры. Также Хокинг установил зависимость между размером черной дыры и скоростью ее «испарения» — чем она меньше, тем меньше существует во времени. А это значит, что всем противникам Большого Адронного Коллайдера не стоит переживать: черные дыры в нем не смогут просуществовать и миллионной доли секунды.

Теория, не доказанная практикой

К сожалению, технологии человечества на данном этапе развития не позволяют нам проверить большинство теорий, разработанных астрофизиками и другими учеными. С одной стороны, существование черных дыр довольно убедительно доказано на бумаге и выведено с помощью формул, в которых все сошлось с каждой переменной. С другой, на практике нам пока не удалось увидеть воочию настоящую черную дыру.

Несмотря на все разногласия, физики предполагают, что в центре каждой из галактик находится сверхмассивная черная дыра, которая собирает своей гравитацией звезды в скопления и заставляет путешествовать по Вселенной большой и дружной компанией. В нашей галактике Млечный путь по разным оценкам насчитывается от 200 до 400 миллиардов звезд. Все эти звезды вращаются вокруг чего-то, что обладает огромной массой, вокруг чего-то, что мы не можем увидеть в телескоп. С большой долей вероятности это черная дыра. Стоит ли ее бояться? – Нет, по-крайней мере не в ближайшие несколько миллиардов лет, но мы можем снять про нее еще один интересный фильм.

Черная дыра является особенной областью в пространстве. Это некое скопление черной материи, способное втягивать в себя и поглощать другие объекты космоса. Явление черных дыр до сих пор не . Все имеющиеся данные - всего лишь теории и предположения ученых астрономов.

Название "черная дыра" ввел в употребление ученый ДЖ.А. Уилер в 1968 году в Принстонском университете.

Существует теория, что черные дыры в являются звездами, но необычными, наподобие нейтронных. Черная дыра - - , потому что имеет очень большую плотность свечения и не посылает абсолютно никакого излучения. Поэтому она невидима ни в инфракрасных, ни в рентгеновских, ни в радиолучах.

Эту ситуацию французский астроном П. Лаплас еще за 150 лет до черных дыр . Согласно его доводам, если имеет плотность, равную плотности Земли, и диаметр, превышающий диаметр Солнца в 250 раз, то она не дает лучам света распространяться по Вселенной в силу своего тяготения, поэтому и остается невидимой. Таким образом предполагается, что черные дыры являются самыми мощными излучающими объектами во Вселенной, но при этом они не имеют твердой поверхности.

Свойства черных дыр

Все предполагаемые свойства черных дыр основаны на теории относительности, выведенной в 20 веке А.Эйнштейном. Любой традиционный подход к изучению этого явления не дает никакого убедительного объяснения явлению черных дыр.

Главное свойство черной дыры - способность искривлять время и пространство. Любой движущийся объект, попавший в ее гравитационное поле, неизбежно будет втянут внутрь, т.к. при этом вокруг объекта возникает плотный гравитационный вихрь, некая воронка. При этом трансформируется и понятие времени. Ученые расчетным путем все же склоняются к выводу, что черные дыры - это не небесные тела в общепринятом понимании. Это действительно некие дыры, червоточины во времени и пространстве, способные изменять и уплотнять его.

Черная дыра - замкнутая область пространства, в которую сжато вещество и откуда ничто не может выйти, даже свет.

Согласно расчетам астрономов, при том мощном гравитационном поле, которое существует внутри черных дыр, ни один объект не сможет остаться невредимым. Его мгновенно разорвет на миллиарды кусочков еще до того, как он попадет внутрь. Однако при этом не исключается возможность обмена частицами и информацией с их помощью. А если черная дыра имеет массу, как минимум в миллиард раз превышающую массу Солнца (сверхмассивная), то теоретически возможно и передвижение объектов сквозь нее без быть разорванными гравитацией.

Конечно, это только теории, ведь исследования ученых еще слишком далеки от понимания того, какие процессы и возможности скрывают черные дыры. Вполне возможно, в будущем нечто подобное может осуществиться.