Где используется магнитное поле. Что такое магнитное поле

О магнитном поле мы еще помним со школы, вот только что оно собой представляет, “всплывает” в воспоминаниях не у каждого. Давайте освежим то, что проходили, а возможно, расскажем что-то новенькое, полезное и интересное.

Определение магнитного поля

Магнитным полем называют силовое поле, которое воздействует на движущиеся электрические заряды (частицы). Благодаря этому силовому полю предметы притягиваются друг к другу. Различают два вида магнитных полей:

  1. Гравитационное – формируется исключительно вблизи элементарных частиц и вирируется в своей силе исходя из особенностей и строения этих частиц.
  2. Динамическое, вырабатывается в предметах с движущимися электрозарядами (передатчики тока, намагниченные вещества).

Впервые обозначение магнитному полю было введено М.Фарадеем в 1845 году, правда значение его было немного ошибочно, так как считалось, что и электрическое, и магнитное воздействие и взаимодействие осуществляется исходя из одного и того же материального поля. Позже в 1873 году, Д.Максвелл “презентовал” квантовую теорию, в которой эти понятия стали разделять, а ранее выведенное силовое поле было названо электромагнитным полем.

Как появляется магнитное поле?

Не воспринимаются человеческим глазом магнитные поля разных предметов, а зафиксировать его могут только специальные датчики. Источником появления магнитного силового поля в микроскопическом масштабе является движение намагниченных (заряженных) микрочастиц, которыми выступают:

  • ионы;
  • электроны;
  • протоны.

Их движение происходит благодаря спиновому магнитному моменту, который присутствует у каждой микрочастицы.


Магнитное поле, где его можно найти?

Как бы странно это ни звучало, но почти все окружающие нас предметы обладают собственным магнитным полем. Хотя в понятии многих магнитное поле имеется только у камушка под названием магнит, который притягивает к себе железные предметы. На самом деле, сила притяжения есть во всех предметах, только проявляется она в меньшей валентности.

Также следует уточнить, что силовое поле, называемое магнитным, появляется только при условии, что электрические заряды или тела движутся.


Недвижимые заряды имеют электрическое силовое поле (оно может присутствовать и в движущихся зарядах). Получается, что источниками магнитного поля выступают:

  • постоянные магниты;
  • подвижные заряды.

Доброго времени суток, сегодня вы узнаете, что такое магнитное поле и откуда оно берется.

Каждый человек на планете хоть раз, но держал магнит в руках. Начиная от сувенирных магнитиков на холодильник, либо рабочие магниты для сбора железной пыльцы и многое другое. В детстве это была забавная игрушка которая приклеивалась к чёрному металлу, а к остальным металлам нет. Так в чём же секрет магнита и его магнитного поля .

Что такое магнитное поле

В какой момент магнит начинает притягивать к себе? Вокруг каждого магнита существует магнитное поле, попадая в которое, предметы начинают к нему притягиваться. Размер такого поля может различаться в зависимости от размеров магнита и его собственных свойств.

Термин из википедии:

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.

От куда берётся магнитное поле

Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах, а также магнитными моментами других частиц, хотя в заметно меньшей степени.

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы или проводники с . Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B.

У каких предметов есть магнитное поле

Мы часто не задумываемся об этом, но очень многие (если не все) окружающие нас предметы являются магнитами. Мы привыкли к тому, что магнит - это камешек с ярко выраженной силой притяжения к себе, но на самом деле сила притяжения есть практически у всего, просто она значительно ниже. Возьмем хотя бы нашу планету - мы ведь не улетаем в космос, хотя ничем за поверхность не держимся. Поле Земли значительно слабее, чем поле магнита-камешка, поэтому удерживает она нас только за счет своего огромного размера - если Вы когда-нибудь видели, как люди ходят по Луне (диаметр которой в четыре раза меньше), Вы наглядно поймете, о чем речь. Притяжение Земли основано во многом на металлических составляющих.ее коры и ядра - они имеют мощное магнитное поле. Возможно, Вы слышали о том, что рядом с большими залежами железной руды компасы перестают указывать верное направление на север - это потому, что принцип работы компаса основан на взаимодействии магнитных полей, а железная руда притягивает его стрелку.

При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.

Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.

Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.

Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.

Магнитное поле оказывает влияние на:

Перемещающиеся электрические заряды.
Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.

Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).

1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля

Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.

Источники магнитного поля

  • Электрическое поле, меняющееся во времени.
  • Подвижные заряды.
  • Постоянные магниты.

С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.

Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.

Свойства

  • Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
  • Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.

Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.

Правила

Рассмотрим основные правила изображения магнитного поля для различных проводников.

Правило буравчика

Силовая линия изображается в плоскости, которая расположена под углом 90 0 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.

Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.

Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.

Правило буравчика для кольца

Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.

Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.

Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.

Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.

Параметры магнитного поля

  • Сцепление потоков (Ψ ).
  • Вектор магнитной индукции (В ).
  • Магнитный поток (Ф ).

Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l) .

Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 90 0 к направлению поля, при протекающем токе в один ампер:

1 Тл = 1 х Н / (А х м).
Правило левой руки

Правило находит направление вектора магнитной индукции.

Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 90 0 , а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.

Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.

Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.

При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.

Магнитный поток

Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.

Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:

Ф = В * S.

Магнитный поток измеряется в такой единице, как «вебер» , который равен протеканием индукции величиной 1 Тл по площади в 1 м 2 .

Потокосцепление

Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.

В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.

Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф .

Магнитные свойства

Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.

Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.

Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.

Различные вещества можно разделить по свойствам взаимодействия с магнитными полями.

Их разделяют на группы:

Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).

Рассмотренные магнетики также классифицируются еще по двум категориям:

Магнитомягкие материалы . Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении ( , генератор, ).
Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.

Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.

Магнитные цепи

Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием и определяются аналогичными законами математики.

На базе магнитных цепей действуют электрические приборы, индуктивности, . У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.

На просторах инетрнета есть масса тем, посвященных изучению магнитного поля. Необходимо отметить, что многие из них отличаются от того среднестатистического описания, которое существует в школьных учебниках. Моя задача состоит в том, чтобы собрать и систематизировать весь имеющийся в свободном доступе материал по магнитному полю для того, чтобы сфокусировать Новое Понимание магнитного поля. Изучение магнитного поля и его свойств можно с помощью разнообразных приемов. С помощью железных опилок, например грамотный анализ провел товарищ Фатьянов по адресуhttp://fatyf.narod.ru/Addition-list.htm

С помощью кинескопа. Я не знаю фамилии этого человека, но знаю его ник. Он называет себя "Ветерок". При подносе магнита к кинескопу на экране образуется "сотовая картина". Можно подумать, что "сетка" есть продолжение кинескопной сетки. Это метод визуализации магнитного поля.

Я стал изучать магнитное поле с помощью ферромагнитной жидкости. Именно магнитная жидкость максимально визуализирует все тонкости магнитного поля магнита.

Из статьи "что такое магнит" мы выяснили, что магнит это фрактализированная, т.е. уменьшенная в масштабе копия нашей планеты, магнитная геометрия которой максимально идентична простому магниту. Планета земля, в свою очередь, является копией того, из недр чего она была образована - солнца. Мы выснили, что магнит это своего рода индукционная линза, которая фокусирует на своем объеме все свойства глобального магнита планеты земля. Есть необходимость введения новых терминов, с помощью которых мы будем описывать свойства магнитного поля.

Индукционный поток - это поток, который берет свое начало на полюсах планеты и проходит через нас в геометрии воронки. Северный полюс планеты это вход в воронку, южный полюс планеты это выход воронки. Некоторые ученые называют этот поток эфирным ветром, говоря, что он "имеет галактическое происхождение". Но это не "эфирный ветер" и накакой не эфир, это "индукционная река", которая течет с полюса до полюса. Электричество в молнии имеет ту же самую природу, что и электричество появляемое при взаимодействии катушки и магнита.

Лучшее средство понять что есть магнитое поле - увидеть его. Размышлять и делать бесчисленные теории можно, но с позиции понимания физической сути явления - бесполезно. Думаю что все со мной согласятся, если я повторю слова не помню кого но суть такая что лучший критерий это опыт. Опыт и еще раз опыт.

Дома у себя я делал простые опыты, но много мне позволившие понять. Простой магнит цилиндрической формы... И так его и сяк крутил. Налил на него магнитной жидкости. Стоит зараза, не шевелится. Тут я вспомнил, что на каком то форуме вычитал, что два магнита сдавленные одноименными полюсами в герметичной области - повышают температуру области, а противоположными полюсами наооборот понижают. Если температура следствие взаимодействия полей, то почему бы ей не побыть и причиной? Я нагрел магнит используя "короткое замыкание" от 12 вт и резистор, просто прислонив нагретый резистор к магниту. Магнит нагрелся и магнитная жидкость начала сначало дергаться, а потом и вовсе стала подвижной. Магнитное поле возбуждается температурой. Но как же так, спросил я себя, ведь в букварях пишут о том, что температура ослабляет магнитные свойства магнита. И это правда, но это "ослабление" кагбы компенсируется возбуждением магнитного поля этого магнита. Иными словами магнитная сила не исчезает, но трансформируется в силу возбуждения этого поля. Отлично Все вращается и все кружится. Но почему вращающееся магнитное поле имеет именно такую геометрию вращения, а не какую то другую? На первый взгляд движение хаотично, но если посмотреть через микроскоп, то можно заметить, что в этом движении присутствует система. Система никак не принадлежащая магниту Но только локализующая его. Иными словами, магнит можно рассмотреть как энергетическую линзу, которая фокусирует в своем объеме возмущения.

Магнитное поле возбуждается не только от повышения температуры, но и от ее понижения. Думаю что правильней будет сказать, что магнитное поле возбуждается градиентом температур, чем одним каким то конкретным ее знаком. В том то и дело, что нет видимой "перестройки" структуры магнитного поля. Есть визуализация возмущения, которое проходит через область этого магнитного поля. Представьте себе возмущение, которое движется по спирали от северного полюса до южного через весь объем планеты. Так вот магнитное поле магнита = локальная часть этого глобального потока. Понимаете? Однако у меня нет уверенности в том, какого конкретно потока...Но факт в том, что потока. Причем потоков не один, а два. Первый внешний, а второй внутри него и вместе с первым движется, но в обратную сторону вращается. Магнитное поле возбуждается из-за градиента температуры. Но мы опять искажаем суть, когда говорим "магнитное поле возбуждается". Дело в том, что оно уже находится в возбужденном состоянии. Когда мы прикладываем градиент температур, мы искажаем это возбуждение до состояния повяления разбалансировки. Т.е. понимаем, что процесс возбуждения это постоянный процесс, в котором находится магнитное поле магнита. Градиент он искажает параметры этого процесса так, что мы оптически замечаем разницу между нормальным его возбуждением и тем возбуждением, которое вызвано градиентом.

Но почему в стационарном состоянии магнитное поле магнита неподвижно? НЕТ, оно также подвижно, но относительно движущихся систем отсчета, например нас, оно неподвижно. Мы движемся в пространстве с этим возмущением Ра и оно нам кажется наподвижным. Температура, которую мы прикладываем к магниту, создает кагбы местную разбалансировку этой фокусируемой системы. Появлется некая нестабильность в пространственной решетке, коя есть сотовая структура. Ведь пчелы строят свои дома не на пустом месте, но они кагбы облепляют структуру пространства своим строительным материалом. Таким образом, исходя из чисто опытных наблюдений, делаю вывод, что магнитное поле простого магнита это потенциальная система локальной разбалансировки решетки пространства, в котором как Вы уже догадались нет места атомам и малекулам, которых никто никогда не видел Температура она как "ключ зажигания" в этой локальной системе, включает разбалансировку. В данный момент я тщательно изучаю методы и средства управления этой разбалансировки.

Что есть магнитное поле и чем оно отличается от электромагнитного поля?

Что есть торсионное или энергоинформационное поле?

Это все есть одно и тоже, но локализующееся иными методамим.

Сила тока - есть плюс и сила отталкивания,

напряжение есть минус и сила притяжения,

короткое замыкание, или скажем локальная разбалансировка решетки - есть сопротивление этому взаимопроникновению. Или же взаимопроникновение отца, сына и святого духа. Помним, что метафора "адама и евы" есть старое понимание икс и ыгрик хромосом. Ибо понимание нового, это новое понимание старого. "Сила тока" - вихрь, исходящий от постоянно вращающегося Ра, оставляя позади себя информационное переплетение себя. Напряжение есть еще один вихрь, но внутри основного вихря Ра и движущийся вместе с ним. Визуально это можно представить в виде РАковины, рост которой происходит в направлении двух спиралей. Первая внешняя, вторая внутренняя. Или один внутрь себя и по часовой, а второй из себя и против часовой. Когда два вихря взамопроникают друг в друга, они образуют структуру, наподобии слоев Юпитера, которые движутся в разные стороны. Остается понять, механизм этого взаимопроникновения и система, которая образуется.

Примерные задачи на 2015 год

1. Найти методы и средства управления разбалансировкой.

2. Выявить материалы, наиболее влияющие на разбалансировку системы. Найти зависимость от состояния материала согласно таблицы 11 ребенка.

3. Если всякое живое существо, по своей сути, является такой же самой локализованной разбалансировкой, следовательно ее необходимо "увидеть". Иными словами необходимо найти метод фиксации человека в иных спектрах частот.

4. Главная задача в том, чтобы визуализировать не биологические спектры частот, в которых происходит непрерывный процесс творения человека. Например мы с помощью средства прогресса анализируем спектры частот, не входящие в биологический спектр чувств человека. Но мы их только регестрируем, но мы не можем их "осознать". Поэтому мы не видим дальше, чем могут осознать наши органы чувств. Вот моя главная задача на 2015 год. Найти методику технического осознания не биологического спектра частот с тем, чтобы увидеть информационную основу человека. Т.е. по сути его душу.

Особый вид изучения это магнитное поле в движении. Если мы нальем магнитную жидкость на магнит, она займет объем магнитного поля и будет стационарной. Однако нужно проверить опыт "Ветерка" где он подносил магнит к экрану монитора. Есть предположение что магнитное поле уже находится в возбужденном состоянии, однако объем жидкости его кагбы сдерживает в стационарном состоянии. Но я не прверял пока.

Магнитное поле может возбуждаться посредством приложения температуры к магниту, либо помещением магнита в индукционную катушку. Нужно заметить, что жидкость возбуждается только при определенном пространственном положении магнита внутри катушки, состовляя определенный угол к оси катушки, который можно найти опытным путем.

Я провел десятки опытов с движущейся магнитной жидкостью и поставил себе цели:

1. Выявить геометрию движения жидкости.

2. Выявить параметры, которые влияют на геометрию этого движения.

3. Какое место занимает движение жидкости в глобальном движении планеты Земля.

4. Зависит ли пространственное положение магнита и приобритаемой ей геометрии движения.

5. Почему "ленты" ?

6. Почему ленты скручиваются

7. От чего зависит вектор скручивания лент

8. Почему конусы смещаются только посредством узлов, которые есть вершины соты, причем скручиваются всегда только три близ лежащие ленты.

9. Почему смещение конусов происходит резко, по достижении определенной "накрученности" в узлах?

10. Почему размер конусов пропорционален объему и массе наливаемой на магнит жидкости

11. Почему конус разделен на два ярко выраженных сектора.

12. Какое место это "разделение" занимает в разрезе взаимодействия между полюсами планеты.

13. Как зависит геометрия движения жидкости от времени суток, времени года, солнечной активности, намерения эксперементатора, давления и дополнительных градиентов. Например резкое изменение "холодное горячее"

14. Почему геометрия конусов идентична с геометрией Варджи - специального вооружения возвращающихся богов?

15. Имеются ли данные в архивах специальных служб 5 автоматов какие либо сведения о назначении, наличии или хранении образцов данного вида вооружений.

16. Что говорят выпотрошенные кладовые знания различных тайных организаций об этих конусах и связана ли геометрия конусов со звездой Давида, суть которая есть идентичность геометрии конусов. (масоны, иузеиты, ватиканы, и прочие несогласованные образования).

17. Почему среди конусов всегда есть лидер. Т.е. конус с "коронкой" на вершине, который "организует" движения 5,6,7 конусов вокруг себя.

конуса в момент смещения. Рывок. "...только двигаясь буквой "Г" я к нему дойду"....

Для понимания того, что является характеристикой магнитного поля, следует дать определения многим явлениям. При этом заранее нужно вспомнить, как и почему оно появляется. Узнать, что является силовой характеристикой магнитного поля. При этом немаловажно то, что подобное поле может встречаться не только у магнитов. В связи с этим не помешает упомянуть характеристику магнитного поля земли.

Возникновение поля

Для начала следует описать возникновение поля. После можно описать магнитное поле и его характеристики. Оно появляется во время перемещения заряженных частиц. Может влиять на в особенности на токопроводящие проводники. Взаимодействие между магнитным полем и движущимися зарядами, либо проводниками, по которым течет ток, происходит благодаря силам, именуемым электромагнитными.

Интенсивность или силовая характеристика магнитного поля в определенной пространственной точке определяются с помощью магнитной индукции. Последняя обозначается символом В.

Графическое представление поля

Магнитное поле и его характеристики могут быть представлены в графической форме с помощью линий индукции. Данным определением называют линии, касательные к которым в любой точке будут совпадать с направлением вектора у магнитной индукции.

Названные линии входят в характеристику магнитного поля и применяются для определения его направления и интенсивности. Чем выше интенсивность магнитного поля, тем больше данных линий будет проведено.

Что такое магнитные линии

Магнитные линии у прямолинейных проводников с током имеют форму концентрической окружности, центр которой располагается на оси данного проводника. Направление магнитных линий возле проводников с током определяется по правилу буравчика, которое звучит так: если буравчик будет расположен так, что он будет ввинчиваться в проводник по направлению тока, тогда направление обращения рукоятки соответствует направлению магнитных линий.

У катушки с током направление магнитного поля будет определяться также по правилу буравчика. Также требуется вращать рукоятку по направлению тока в витках соленоида. Направление линий магнитной индукции будет соответствовать направлению поступательного движения буравчика.

Является основной характеристикой магнитного поля.

Создаваемое одним током, при равных условиях, поле будет различаться по своей интенсивности в разных средах из-за различающихся магнитных свойств в этих веществах. Магнитные свойства среды характеризуются абсолютной магнитной проницаемостью. Измеряется в генри на метр (г/м).

В характеристику магнитного поля входит абсолютная магнитная проницаемость вакуума, называемая магнитной постоянной. Значение, определяющее, во сколько раз абсолютная магнитная проницаемость среды будет отличаться от постоянной, именуется относительной магнитной проницаемостью.

Магнитная проницаемость веществ

Это безразмерная величина. Вещества, имеющие значение проницаемости менее единицы, зовутся диамагнитными. В данных веществах поле будет слабее, чем в вакууме. Данные свойства присутствуют у водорода, воды, кварца, серебра и др.

Среды с магнитной проницаемостью, превышающей единицу, зовутся парамагнитными. В данных веществах поле будет сильнее, чем в вакууме. К данным средам и веществам относят воздух, алюминий, кислород, платину.

В случае с парамагнитными и диамагнитными веществами значение магнитной проницаемости не будет зависеть от напряжения внешнего, намагничивающего поля. Это означает, что величина является постоянной для определенного вещества.

К особой группе относятся ферромагнетики. У данных веществ магнитная проницаемость будет достигать нескольких тысяч и более. У названных веществ, имеющих свойство намагничиваться и усиливать магнитное поле, существует широкое использование в электротехнике.

Напряженность поля

Для определения характеристик магнитного поля вместе с вектором магнитной индукции может применяться значение, именуемое напряженностью магнитного поля. Данный термин является определяющей интенсивность внешнего магнитного поля. Направление магнитного поля в среде с одинаковыми свойствами по всем направлениям вектор напряженности будет совпадать с вектором магнитной индукции в точке поля.

Сильные у ферромагнитов объясняются присутствием в них произвольно намагниченных малых частей, которые могут быть представлены в виде малых магнитов.

С отсутствующим магнитным полем ферромагнитное вещество может не иметь выраженных магнитных свойств, поскольку поля доменов приобретают разную ориентацию, и их общее магнитное поле равняется нулю.

По основной характеристике магнитного поля, если ферромагнит будет помещен во внешнее магнитное поле, к примеру, в катушку с током, то под влиянием наружного поля домены развернутся по направлению внешнего поля. Притом магнитное поле у катушки усилится, и магнитная индукция увеличится. Если же наружное поле достаточно слабое, то перевернётся лишь часть от всех доменов, магнитные поля которых по направлению близятся к направлению наружного поля. На протяжении увеличения силы внешнего поля число повернутых доменов будет возрастать, и при определенном значении напряжения внешнего поля почти все части будут развернуты так, что магнитные поля расположатся по направлению наружного поля. Данное состояние именуется магнитным насыщением.

Связь магнитной индукции и напряженности

Взаимосвязанность магнитной индукции ферромагнитного вещества и напряженности внешнего поля может изображаться при помощи графика, называемого кривой намагничивания. В месте изгиба графика кривой скорость возрастания магнитной индукции уменьшается. После изгиба, где напряженность достигает определённого показателя, происходит насыщение, и кривая незначительно поднимается, постепенно приобретая форму прямой. На данном участке индукция все еще растет, однако достаточно медленно и лишь за счет возрастания напряженности внешнего поля.

Графическая зависимость данных показателя не является прямой, значит, их отношение не постоянно, и магнитная проницаемость материала не постоянный показатель, а находится в зависимости от наружного поля.

Изменения магнитных свойств материалов

При увеличении силы тока до полного насыщения в катушке с ферромагнитным сердечником и последующим ее уменьшением кривая намагничивания не будет совпадать с кривой размагничивания. С нулевой напряженностью магнитная индукция не будет иметь такое же значение, а приобретет некоторый показатель, именуемый остаточной магнитной индукцией. Ситуация с отставанием магнитной индукции от намагничивающей силы именуется гистерезисом.

Для полного размагничивания ферромагнитного сердечника в катушке требуется дать ток обратной направленности, который создаст необходимую напряженность. Для разных ферромагнитных веществ необходим отрезок различной длины. Чем он больше, тем больший объем энергии необходим для размагничивания. Значение, при котором происходит полное размагничивание материала, именуется коэрцитивной силой.

При дальнейшем увеличении тока в катушке индукция вновь увеличится до показателя насыщения, но с иным направлением магнитных линий. При размагничивании в обратном направлении будет получена остаточная индукция. Явление остаточного магнетизма применяется при создании постоянных магнитов из веществ с большим показателем остаточного магнетизма. Из веществ, имеющих способность к перемагничиванию, создаются сердечники для электрических машин и приборов.

Правило левой руки

Сила, влияющая на проводник с током, обладает направлением, определяемым по правилу левой руки: при расположении ладони девой руки таким образом, что магнитные линии входят в нее, и четыре пальца вытянуты по направлению тока в проводнике, отогнутый большой палец укажет направление силы. Данная сила перпендикулярна вектору индукции и току.

Перемещающийся в магнитном поле проводник с током считается прообразом электродвигателя, который изменяет электрическую энергию в механическую.

Правило правой руки

Во время движения проводника в магнитном поле внутри него индуцируется электродвижущая сила, которая имеет значение, пропорциональное магнитной индукции, задействованной длине проводника и скорости его перемещения. Данная зависимость называется электромагнитной индукцией. При определении направления индуцированной ЭДС в проводнике используют правило правой руки: при расположении правой руки так же, как в примере с левой, магнитные линии входят в ладонь, а большой палец указывает направление перемещения проводника, вытянутые пальцы укажут направление индуктированной ЭДС. Перемещающийся в магнитном потоке под влиянием внешней механической силы проводник является простейшим примером электрического генератора, в котором преобразуется механическая энергия в электрическую.

Может быть сформулирован по-другому: в замкнутом контуре происходит индуцирование ЭДС, при любой смене магнитного потока, охватываемого данным контуром, ЭДЕ в контуре численно равняется скорости смены магнитного потока, который охватывает данный контур.

Данная форма предоставляет усреднённый показатель ЭДС и указывает на зависимость ЭДС не от магнитного потока, а от скорости его изменения.

Закон Ленца

Также нужно вспомнить закон Ленца: ток, индуцируемый при изменении магнитного поля, проходящего через контур, своим магнитным полем препятствует этому изменению. Если витки у катушки пронизываются разными по величине магнитными потоками, то индуцированная по целой катушке ЭДС равняется сумме ЭДЕ в разных витках. Сумма магнитных потоков разных витков катушки именуется потокосцеплением. Единица измерения данной величины, как и магнитного потока, - вебер.

При изменении электрического тока в контуре происходит смена и созданного им магнитного потока. При этом, согласно закону электромагнитной индукции, внутри проводника происходит индуцирование ЭДС. Она появляется в связи со сменой тока в проводнике, потому данное явление называют самоиндукцией, и индуцированная в проводнике ЭДС именуется ЭДС самоиндукции.

Потокосцепление и магнитный поток находятся в зависимости не от одной только силы тока, но и от величины и формы данного проводника, и магнитной проницаемости окружающего вещества.

Индуктивность проводника

Коэффициент пропорциональности именуется индуктивностью проводника. Он обозначает способность проводника создавать потокосцепление при прохождении сквозь него электричества. Это является одним из основных параметров электрических цепей. Для определенных цепей индуктивность является постоянным показателем. Она будет зависеть от величины контура, его конфигурации и магнитной проницаемости среды. При этом сила тока в контуре и магнитный поток не будут иметь значения.

Вышеописанные определения и явления дают объяснение тому, что является магнитным полем. Также приводятся основные характеристики магнитного поля, с помощью которых можно дать определение данного явления.