Дать определение что такое вселенная. Современное представление о размере наблюдаемой Вселенной. Общие сведения о строении


Не многие люди, живущие в современном обществе, смогут уверенно рассказать о том, каким образом возникла Вселенная. Мало кто на сегодняшний день задумывается, а как она смогла превратиться в громадное колоссальное пространство, не знающее определенных и четких границ. Немногие думают о том, что может произойти с Вселенной через миллиарды лет.Тематика подобного рода всегда мучила древние умы ученых мужей, в лице неутомимых исследователей и философов, которые в порыве минутного озарения создавали собственные шедевры – интересные и очень безумные теории, касающиеся истории возникновения Вселенной.

Современные ученые зашли дальше в рамках научного познания, чем их древние предшественники. Многие астрономы, физики, а вместе с ними и космологи убеждены в том, что Вселенная могла появиться в результате масштабного взрыва, который смог стать не только родоначальником основной части материи, но и стать базисом для формирования всех главнейших физических законов, определившим существование космоса. Это явление принято называть «теорией Большого взрыва».

Смысл теории

Ее основы чрезвычайно просты. Теория констатирует тот факт, что материя современная и материя, существовавшая в далекой-предалекой древности, идентичны друг другу, так как по сути своей они являются одним и тем же изучаемым объектом. Вся материя сформировалась примерно 13,8 миллиардов лет назад. В те далекие времена она существовала в виде точки, или компактно сформированного абстрактного тела в форме шара, обладающего в свою очередь бесконечной плотностью и определенной температурой. Данное состояние учеными принято называть «сингулярностью». По неизвестным причинам эта самая сингулярность внезапно начала стремительно расширяться в разные стороны, вследствие чего и появилась Вселенная.Данная точка зрения является на самом деле лишь гипотезой, причем одной из самых распространенных и популярных на сегодняшний день. Она принята наукой в качестве объяснения, касающегося возникновения материи, основных физических законов и колоссальной структуры самой Вселенной. Это связано с тем, что в теории Большого взрыва описаны причины, которые повлияли на расширение Вселенной, так же в ней содержится огромное количество прочих аспектов и феноменов, связанных с безграничным пространством.

Экскурс в историю

Тематика Большого взрыва стала актуальна для науки с самого начала прошлого столетия. В 1912 году астроном из США по имени Весто Слайфер в течение некоторого времени провел ряд наблюдений за спиральными галактиками (раннее принимались за туманности), в ходе которых ученому удалось измерить допплеровское красное смещение этих самых галактик. Он пришел к выводу, что объект его исследования на протяжении определенного временного интервала все дальше и дальше удаляется прочь от Млечного Пути.Наука на месте долго не стояла, и уже в 1922-м году советский космолог и математик А. Фридман, опираясь на труды Эйнштейна, смог из уравнений, относящихся к теории относительности, вывести свои уравнения. Именно он стал первым ученым, кто смог заявить ученому обществу о расширении Вселенной, высказав одно только личное предположение.

Эдвин Хаббл в 1924-м году измерил дистанцию от Земли до ближайшей к ней спиральной туманности, чем доказал, что рядом могут находиться другие галактические системы. Проводя свои эксперименты при помощи мощного телескопа, ученый установил взаимосвязь, образованную между расстоянием галактик и скоростью, с которой те друг от друга удалялись.

Церковь всегда навязывала людям то мнение, что Бог сотворил мир практически за неделю, то есть за 6 дней. Это догмата христианской религии активно поддерживается и по сей день. Однако не все церковные канонники убеждены в данной точке зрения.

Отцом-основателем концепции теории Большого взрыва принято считать священнослужителя, Жоржа Леметра. Он стал первым человеком, который поставил перед обществом вопрос о происхождении такого мирового безграничного пространства, как Вселенная. Он занимался исследованием первобытного атома и его превращения многочисленных осколков в небесные тела – звезды с галактиками. В 1927 году священник опубликовал собственные доводы в газете. Когда с размышлениями Леметра ознакомился великий Эйнштейн, он отметил, что священник абсолютно все правильно рассчитал, однако познания святого отца в области физики мэтра не удовлетворили. Теория Большого взрыва была принята только в 1933 году, когда сам Эйнштейн сдался под напором тезисов и фактов научного открытия, признав версию Леметра одной из самых убедительных из всех тех, с которыми ему только доводилось сталкиваться.Над тайной происхождения Вселенной работал и сам Эйнштейн. Ученый в 1931 году написал рукопись, в которой он изложил свой вариант событий, отличный от версии Жоржа Леметра. Точно в таком же направлении была в 1940-х годах написана работа еще одного выдающегося ученого Альфреда Хойла, который работал независимо от других знаменитых исследователей.

Эйнштейн скептически относился к одному факту, имевшему быть в теории Большого взрыва, а именно к сингулярности материи, в которой она пребывала до взрыва. Он попытался высказать свое собственное суждение, относящееся к бесконечному расширению космического пространства. Согласно его убеждениям, материя во Вселенной возникла и вовсе неоткуда, она нужна была для поддержания космической плотности в условиях постоянного расширения. Согласно мнению Эйнштейна, данный процесс можно описать, используя теорию относительности, однако позднее ученый осознал, что совершил в своих расчетах ошибку и отказался от своего открытия.

Подобной этой теории придерживался всемирно известный писатель-фантаст Эдгар Аллан По, который размышлял над происхождением Вселенной в далеком 1848 году. Физиком этот человек не был, следовательно, все его размышления никакой научной ценности не несли вследствие того, что не были закреплены никакими вычислениями. К тому же в те далекие времена не были изобретены необходимые математические аппараты, позволяющие рассчитывать исследования такого рода. По мог воплотить свою идею только лишь в литературном произведении, что он и сделал с большим успехом, написав поэму «Эврика», в которой уже рассказывается о таком явлении, как черная дыра, и доступно объясняется парадокс Олберса. Сам фантаст называл свое литературное творение откровением, о котором прежде человечество даже и не слышало.
Парадокс Олберса являет собой косвенное подтверждение теории Большого взрыва, он заключается в следующем: если в ночное время суток поднять голову и увидеть какую-нибудь звезду (акцентируя на ней свое пристальное внимание), то мысленно прочерченная линия, имеющая начало на земле на этой самой звезде и закончится. По в своей «Эврике» написал о первобытной частице, которая по его словам являлась совершенно уникальной и индивидуальной. Его литературный труд был подвергнут жестокой критике, поэма оказалась разнесенной буквально в пух и прах, она оказалась неудачной работой с художественной точки зрения. Современные ученые же, наоборот, повергнуты в смятение, они не могут до сих пор понять, как человек, не имеющий научного образования, мог прогнозировать такие факты. По их словам Эдгар Аллан По своей книгой намного опередил официальные научные познания.Открытия физиков и астрономов 20-х – 30-х годов прошлого столетия взбудоражили научный мир, так как большинство ученых придерживались той точки зрения, что Вселенная находится в стационарном положении.

Уже после окончания Второй Мировой войны в обществе ученых вновь стали говорить о теории Большого взрыва и размышлять над ее концептуальностью. Именно этот вариант происхождения Вселенный с каждым годом набирал обороты популярности, отставляя позади другие вариации, которые время от времени предлагались неутомимыми исследователями космоса и объектов ему принадлежащих.

Время шло, а теория Большого взрыва все прочнее занимала свою нишу на научном Олимпе, стационарность же Вселенной стала и вовсе ставиться под сомнение. В 1965-м году было обнаружено реликтовое излучение: открытие подобного рода, ставшее фундаментальным, окончательно укрепило Большой взрыв, и связанное с ним рождение Вселенной в науке. С 60-х по 90-е годы XX века огромное количество космологов и астрономов проводили целые серии исследовательских работ, касающихся знаменитой теории, вследствие чего ими было обнаружено множество проблем теоретического характера и соответственно их решений, которые относились к предмету возникновения огромной Вселенной из одной точки.
О том, что сингулярность – есть неоспоримое начальное состояние общей относительности, а также космологического состояния самого взрыва, высказался всемирно известный физик, имя которого на сегодняшний день знает каждый человек, Стивен Хокинг.1981 год ознаменовался появлением теории, описывающей период стремительного расширения космического пространства: она в свою очередь позволила решить огромное количество проблемных вопросов, на которые ранее никто не мог дать конкретного ответа.

К концу XX века у многих ученых появился неподдельный интерес, сопровождающийся любопытством, к такому объекту исследования, как темная энергия. Она была рассмотрена в качестве ключа, позволяющего раскрыть важность многих космологических проблем. Ученых интересовало, по какой причине происходит потеря веса Вселенной, а также, почему теряет свою массу и темная энергия. Гипотеза такого рода была создана давно ученым Яном Оортом, еще в 1932 году.

В последнее десятилетие прошлого столетия интенсивно создавались телескопы, усовершенствованные и позволяющие проводить четкое обследование космического пространства. Спутники, напичканные компьютерным оборудованием, позволяют современным ученым исследовать буквально каждый миллиметр Вселенной, и передавать через спутниковую систему данные прямиком в исследовательские центры различных государств.

Откуда взялось название

Автором названия для теории Большого взрыва явился ее противник Альфред Хойл, английский физик. Именно он придумал фразу «Big Bang», но сделал это физик не чтобы возвысить суждение Леметра, а чтобы наоборот его унизить, объявив абсурдом, а не величайшим феноменом в области космологии, физики и астрономии.

Хронология событий

Современные исследователи, имеющие достоверные сведения о состоянии положения дел во Вселенной, сводятся к единому мнению, согласно которому все создалось из точки. Постоянно увеличивающиеся бесконечная плотность и конечное время, непременно должны были иметь свое собственное начало в определенной точке. Когда произошло первоначальное расширение, согласно уже вышеупомянутой теории, Вселенная смогла пройти фазу охлаждения, ставшую соавтором создания субатомных частиц, а немного позднее и самых простых атомов. Спустя некоторое время, огромных размеров облака, состоящие из первоначальных древних элементов, благодаря исключительно лишь гравитации, стали формировать звезды, которые теперь каждой ночью может лицезреть абсолютно любой человек, и галактики, где, по мнению уфологов, могут находиться параллельные миры и сосредотачиваться высокоразвитые цивилизации инопланетных существ. Весь этот механизм, по предположению исследователей, запустился как раз 13,8 миллиардов лет назад: следовательно, данную отправную точку можно указывать в качестве возраста Вселенной. В ходе исследования огромного количества теоретической информации, проведения многочисленных экспериментов, которые базировались на привлечении ускорителей частиц и всевозможных высокоэнергетических состояний, обследования при помощи телескопа дальних потаенных углов космического пространства, была установлена хронологическая событийность, начавшаяся с момента Большого взрыва и приведшая Вселенную к современному виду, или как его иначе называют физики и астрономы - к «состоянию космической эволюции».

Среди ученых бытует мнение о том, что первоначальные периоды формирования космического пространства могли длиться от 10-43 до 10-11 секунды от взрыва; однако на этот счет однозначного мнения на сегодняшний день не существует. Стоит иметь в виду, что все известные современному обществу физические законы в далеком прошлом просто-напросто еще не существовали в полном наборе, который известен человечеству, следовательно, сам процесс формирования молодой Вселенной остается непонятным. Эту таинственность подкрепляет и тот факт, что до настоящего времени, включая также и его, ни в одном развитом государстве не был проведен ни один эксперимент, относящийся к исследованию тех видов энергии, которые существовали в момент создания безграничного космического пространства. В одном только сходятся мнения ученых мужей: некогда существовала точка, ставшая опорной, вот с нее-то и все началось.

Эпохальный период становления

1. Эпоха сингулярности (планковская). Ее принято считать первичной, в качестве раннего эволюционного периода Вселенной. Материя была сосредоточена в одной точке, имеющей свою температуру и бесконечную плотность. Ученые утверждают, что эта эпоха характерна для доминирования квантовых эффектов, принадлежащих гравитационному взаимодействию над физическими, причем ни одна физическая сила из всех существовавших в те далекие времена по своей силе не была идентична гравитации, то есть не была ей равна. Время продолжительности планковской эры сосредотачивается в интервале от 0 до 10-43 секунды. Она получила такое название по причине того, что полноценно измерить ее протяженность смогло лишь планковское время. Этот временной интервал считается очень нестабильным, что в свою очередь тесным образом связано с экстремальной температурой и безграничной плотностью материи. Следом за эпохой сингулярности произошел период расширения, а вместе с ним и охлаждения, приведшие к формированию основных физических сил.

С периода с 10-43 до 10-3 секунды в безграничном пространстве происходит новое событие в виде столкновения переходных температур, это, в свою очередь, отображается на их состоянии. Бытует мнение, что фундаментальные силы, ныне главенствующие в современной космическом безграничном пространстве, в данный момент начали стремительно удаляться друг от друга. Следствием этого процесса стало формирование слабых гравитационных сил, такого состояния, как электромагнетизм, а вместе с тем слабых, наряду с сильными, ядерных взаимодействий.

С 10-36 до 10-32 секунды от Большого взрыва во Вселенной устанавливается очень низкая температура, равная 1028К, этот факт в свою очередь становится причиной разделения электромагнитных сил, что происходит в процессе сильного взаимодействия со слабым (ядерным).
2. Эпоха инфляции. С появлением на безграничных просторах Вселенной первых сил, названных учеными не иначе, как фундаментальными, начинается новая эпоха, длившаяся с 10-32 секунды (согласно планковскому времени) до абсолютно никому неизвестному времени.Огромное количество космологических моделей устанавливают, что в данный временной интервал Вселенная могла пребывать в состоянии бариогенезиса – очень высокая температура влияет на хаотичное движение частиц в пространственной среде, происходящее с запредельной скоростью.

Это время характерно для столкновения и отталкивания античастиц – разрушающихся пар частиц. Исследователи склонны считать, что именно тогда произошло доминирование материи над ее антиподом, антиматерией, что является на сегодняшний день характерной особенностью Вселенной, имеется в виду доминант. К моменту завершения эпохи инфляции Вселенная сформировалась на основе кварк-глюоновой плазмы и прочих элементарных частиц. Она стала постепенно остывать, а материя в свою очередь начала активное образование и соединение.
3. Эпоха охлаждения. С момента понижения уровня плотности и температуры в самой Вселенной стали происходить существенные изменения каждой частицы – у них стала снижаться энергия. Состояние подобного рода закончилось лишь тогда, когда к своему современному виду пришли элементарные частицы, а вместе с ними и фундаментальные силы. Энергия частиц стала опускаться до тех параметров, которые на сегодняшний день удается получить исключительно лишь в рамках лабораторных условий, в ходе проведения многочисленных опытов и наряду с ними экспериментов.Ученые ни на секунду не сомневаются, что данный временной интервал существовал в истории формирования Вселенной. Они отмечают, что сразу же после Большого взрыва энергия частиц постепенно уменьшилась, в результате чего она приобрела значительные размеры. На 10-6 секунде барионы в виде протонов и нейтронов стали образовываться из глюонов и кварков. Вместе с этим появился диссонанс в форме преобладания кварков над антикварками, барионов над антибарионами. Вследствие понижения температуры началось прекращение выработки протонно-нейтронных пар и соответственно, их антиподов, протоны и нейтроны стали стремительно исчезать, а их античастицы и вовсе прекратили свое существование. Подобный процесс вновь произошел спустя некоторое время. Однако на этот раз действие коснулось позитронов и электронов.

Вследствие стремительного уничтожения частицы прекратили свое хаотичное движение, а энергетическую плотность, относящуюся к Вселенной, стали интенсивно заполнять фотоны.

С момента расширения безграничного пространства формируется процесс запуска нуклеосинтеза. Благодаря низкой температуре и понижению плотности энергии нейтрон и протон своим симбиозом создали первый в мире дейтерий (изотоп водорода), также они приняли непосредственное участие в формировании атомов гелия. Огромное количество протонов в свою очередь стали базой для создания ядра водорода.

Через 379 000 лет ядра водорода соединятся с электронами, вследствие чего появятся уже атомы все того же водорода. В данный момент времени происходит отделение радиации от материи, она отныне самостоятельно заполняет все вселенское пространство. Эта радиация получила название реликтового излучения, ее принято считать самым древнейшим источником света из всех существующих.
4. Эпоха структуры. В течение последующего временного интервала, насчитывающего пару миллиардов лет, материя уже смогла распространиться по всей Вселенной, а ее наиболее плотные регионы стали активней притягиваться друг к другу, становясь плотнее. Вследствие такого действия начали возникать облака, состоящие из газа, галактики, звезды и прочие космические объекты, которые можно увидеть и сегодня. Данный период известен еще под одним названием, его принято именовать «Иерархической эпохой».Этот временной период связан с тем, что Вселенная удалось обрести определенную форму. Материя начала образовываться в разнообразные структуры, имеющие разнообразные размеры:
- звезды,
- галактики,
- планеты,
- галактические скопления и сверхскопления, разделенные между собой при помощи межгалактических перемычек и включающие в себя несколько галактик.

Прогнозы на будущее

Вследствие того, что Вселенная имеет собственную точку начала, у ученых периодически создаются гипотезы относительно того, что когда-нибудь появится и та точка, которая прекратит ее существование. Также физиков и астрономов интересует вопрос, касающийся расширения Вселенной всего из одной точки, они даже строят прогнозы на предмет того, что она может расширяться еще больше. Или же и вовсе однажды может произойти обратный процесс, в безграничном пространстве по неизвестным причинам может прекратить действовать экспансивная сила, вследствие чего может произойти обратный процесс, заключающийся в сжатии.В 1990-х годах в качестве основной модели развития Вселенной была принята теория Большого взрыва, именно тогда же примерно и были разработаны два основных пути дальнейшего существования космического безграничного пространства.

1. Большое сжатие. В один момент Вселенная может достигнуть максимального пика в виде огромного размера, а потом начнется ее разрушение. Подобный вариант развития станет возможным только в том случае, когда плотность массы Вселенной будет больше, чем ее критическая плотность.

2. В данном случае будет происходить иная картина действий: плотность приравняется или даже станет ниже критический. Итог – замедление расширения, которое никогда не остановится. Этот вариант был назван тепловой смертью Вселенной. Расширение будет длиться до тех времен, пока звездообразованиями не перестанет активно потребляться газ, находящийся внутри близлежащих галактик. В таком случае произойдет следующее: от энергии и материи просто-напросто прекратится передача от одного космического объекта к другому. Всех звезд, которые невооруженным взглядом можно лицезреть каждые вечер и ночь на небосводе, постигнет одна и та же печальная участь: они станут не чем иным, как белым карликом, черной дырой либо же нейтронной звездой.
Черные дыры всегда представляли неприятность не только для космологов. Новообразованные дыры будут соединяться с собой, образовывая себе подобные же объекты гораздо большего размера. Между тем показатель средней температуры в безграничном пространстве может достичь отметки в 0. Следствием данной ситуации станет абсолютное испарение черных дыр, которые напоследок начнут выдавать в окружающую среду излучение Хокигнга. Завершающим этапом в данном случае будет тепловая смерть.Современные ученые проводят огромное количество исследований, касающихся не только существования темной энергии, но и ее непосредственного влияния на расширение космического пространства. В ходе проведения своих исследований они в свою очередь установили, что расширение Вселенной происходит настолько быстрыми темпами, что скоро человечество даже не будет и знать, насколько безграничным на самом деле является безграничное пространство. Конечно же, по какому именно дальнейшему пути развития может пойти планета, умы ученых мужей даже и представить себе не могут. Они лишь прогнозируют результат, обосновывая свой выбор теми или иными критериями. Однако, многие из светил предрекают безграничному пространству такой конец, как тепловая смерть, считая его наиболее вероятным.

Также в научной среде бытует мнение, что все планеты, ядра атомов, атомы, материя и звезды будут в далеком будущем сами собой разрываться, что приведет к большому разрыву. Это еще один вариант гибели Вселенной, однако, он формируется на расширении.

Другие варианты

Конечно же, теория Большого Взрыва единственной не является, о чем было не раз указано выше. Человечество на протяжении всего своего существования имело право на свою версию возникновения Вселенной.

1. В очень глубокой древности люди задумывались о том, в каком мире они живут и существуют. Еще не установилась религиозное мировоззрение, а человек уже задумывался над тем, как устроен мир, какое именно место он сам занимает в окружающем его пространстве.
Древние развитые народы связывали свою жизнь тесным образом с религиозными догмами. Кто, как не божество могло создать дерево, человека, огонь? А огда ему это все под силу, следовательно, весь мир тоже создан каким-нибудь богом.
Если сделать обзор жизни одной из самых древних цивилизации, проживающей некогда на территории Междуречья (современные земли Ирака, Ирана, Сирии, Турции), то можно на примере антагонистов добра и зла – Ахурамазды и Ахримана увидеть, что именно эти боги, согласно древним письменным источникам, являются непосредственными творцами Вселенной. Каждый древний народ связывал образование космического пространства с деятельностью какого-нибудь божества (чаще всего верховного).Великие мыслители древности пытались понять происхождение Вселенной, они понимали, что боги не имеют к ней абсолютно никакого отношения. Космологией занимался Аристотель, который пытался доказать, что Вселенная имеет собственную эволюцию. На Востоке всем известно имя врача Авиценны, но не только медицина довлела над его пытливым разумом. Авиценна был одним из первых исследователей, который попытался при помощи разума и собственной логики опровергнуть божественное образование Вселенной.
2. Время неумолимо движется вперед, а вместе с ним происходит стремительное развитие человеческой мысли. Исследователи Средневековья (те люди, которые прятались от Святой Инквизиции) и Нового времени, идя наперекор авторитарной религиозной власти, доказали не только, что из себя представляет планета Земля, но и заложили методики астрологического исследования, а немного позже и астрофизиеского.Над вопросами космогонии ломали свои светлые головы многие философы, среди которых следует выделить француза Рене Декарта. Декарт предпринял попытку при помощи теории разобраться в происхождении небесных тел, объединив при этом все математические, физические и биологические знания, которыми обладал этот талантливый человек. Успехов он на своем поприще не добился.
3. Вплоть до начала XX века люди считали, что Вселенная четких границ в ни пространстве, ни во времени не имеет, да к тому же в добавок к этому является статичной и однородной.О том, что космическое пространство безгранично посмел высказаться Исаак Ньютон. Немецкий философ Эммануил Кант прислушался к его доводам и на основе ньютоновских рассуждений выдвинул собственную теорию, о том, что Вселенная не имеет своего времени и совсем не имеет начала. Все процессы, имевшие место быть во Вселенной, он относил к законам механики.

Свою теорию Кант развивал, подкрепив знаниями из биологии. Ученый говорил о том, что в просторах Вселенной может существовать огромное количество возможностей, которые дают жизнь биологическому продукту. Подобным утверждением позднее заинтересуется не менее знаменитый ученый – Чарльз Дарвин.

Кант создал свою теорию, опираясь на опыт исследователей-астрономов, являющихся практически его современниками. Она считалась единственной верной и непоколебимой вплоть до того момента, покуда не возникла теория Большого взрыва.

4. Автор знаменитой теории относительности Альберт Эйнштейн тоже не остался в стороне от проблематики сотворения Вселенной. В 1917 году он представил обществу свой проект.Эйнштейн также думал, что Вселенная стационарна, он стремился доказать, что космическое безграничное пространство не должно ни сжиматься, ни расширяться. Однако его собственные мысли шли наперекор его главному труду (теории относительности), согласно которому Вселенная одновременно у Эйнштейна и расширялась, и сжималась.

Ученый поспешил установить, что Вселенная является статической, это он обосновал тем, что космическая сила отталкивания влияет на уравновешивание притяжения звезд и тем самым прекращает движение небесных тел в пространстве.

У Эйнштейна Вселенная обладала конечными размерами, однако четких границ он вместе с этим не устанавливал: это становится возможным лишь в случае искривления пространства.
5. Отдельной теорией сотворения Вселенной стоит Креационизм. Она в свою очередь основана на том, что человечество и Вселенная основаны творцом. Конечно же, речь идет о христианской догматике.Теория эта возникла в XIX веке, ее сторонники утверждали, что создание космического пространства записано в Ветхом Завете. В это время в единое научное течение складывались знания из области биологии, физики, астрономии. Теория эволюции Дарвина занимала весомое место в жизни общества. Вследствие этого наука пошла против религии: знания против божественной концепции сотворения мира. Креационизм стал своеобразным протестом против новшества. Консервативные христиане выступали против научных открытий.
Креационизм был известен публике в виде двух направлений:

    Младоземельный (буквалистский). Бог трудился над созданием мира ровно 6 дней, как это указано в Библии. Они утверждают, что мир был создан около 6 000 лет назад.

    Староземельный (метафорический). Описанные в Библии 6 дней – есть не что иначе, как метафора, которая была понятна исключительно лишь людям, жившим в глубокой древности. На самом деле такое христианское понятие, как «день» может не включать в себя установленные 24 часа, оно сосредоточено в неопределенном отрезке времени (то есть не имеющим фиксированных четких границ), который в свою очередь может исчисляться миллионами лет.

Староземельный креационизм принимает некоторые научные идеи и открытия, его последователи соглашаются с астрофизическим возрастом небесных тел, но существование теории эволюции вместе с естественным отбором они напрочь отрицают, утверждая, что только лишь Бог может оказывать влияние на появление и исчезновение биологических видов.

Итог

История создания Вселенной на протяжении всего человеческого существования не раз претерпевала изменения, которые диктовались религиозными верованиями или научными исследованиями.На сегодняшний день существует одна версия, удовлетворяющая ученые умы. Теория Большого взрыва является наиболее удачным вариантом, точно описывающим, как именно происходило рождение безграничного пространства, какие эпохи оно проживало. На ее основе ученые прогнозируют дальнейшее развитие Вселенной.

Однако, как показывает предыдущий опыт, не всегда теория, даже если она и весьма популярна в человеческом обществе, верна. Наука на одном месте не стоит, она постоянно прогрессирует, находя все новые и новые источники пополнения знаний.

Не исключено, что однажды в научной среде появится очередной физик, космолог или астроном, который представит свою собственную теорию сотворения Вселенной, которая, быть может, окажется вернее, чем теория Большого взрыва.

Вселенная – это все то, что существует в физическом плане. Это и законы, и пространство, и время, и материя. Но есть и другое значение вселенной – мир, космос. Считается, что мир существует на протяжении около 14 миллиардов лет. Но ряд ученых не согласен с этим мнением, они говорят о том, что Вселенная существовала, и будет существовать вечно.

Из чего состоит Вселенная: её основные признаки.

На что похожа Вселенная? Это пространство, наполненное особое клочкообразной губкообразной структурой, расширяющееся в пространстве. Стены структуры выполнены из галактик, расположенных на очень большом расстоянии друг от друга – млн. световых лет. Галактики в свою очередь состоят из звёзд.

Факт расширения Вселенной дает возможность говорить о том, что она могла быть рождена в результате Большого взрыва. При помощи WMAP был определен ее приблизительный возраст – 14 млрд. лет. Конечная Вселенная или нет, пока не установлено. Но если принимать во внимание факт, что скорость света конечна, то и Вселенная конечна. Предполагается, что до её границы лежит расстояние, равное 93 млрд. световых лет.

Форма Вселенной необычна. Человечество ещё не нашло такой трёхмерной фигуры, которая могла бы описать её. Дело в том, что до сих пор неясно, является ли мир плоским или нет. Но есть мнение, что он приближен к форме плоскости с включениями пространственно-временных искажений.

Неясно и то, является ли Вселенная множественно-соединенной. Но, если исходить из теории Большого Взрыва, она может иметь ограничения в пространстве, оставаясь пространственно неограниченной. Чтобы было понятно, о чём идёт речь, представьте сферу. Её площадь ограничена, но поверхность сферы границ не имеет.

Исторические модели понимания Вселенной.

Судьба Вселенной и её строение интересовало человечество с древних времен. В Древней Греции предполагали, что в центре мира находится Земля, а вокруг нее вращаются другие планеты и Солнце. А Вселенная, состоящая из звезд, тоже вращается вокруг Земли.

Популярным было и учение Демокрита. Суть его заключалась в том, что Вселенная включает в себя множественные миры, и многие из них обитаемы – в них живут пришельцы .

Затем, благодаря наблюдениям за силой тяжести, была создана гелиоцентрическая модель мира. Дальнейшее изучение астрологии привело к тому, что был открыт и изучен Млечный путь. Современная космология занимается изучением расположения галактик в мире и их спектров. Исходя из последних данных, можно говорить о том, что Вселенная пронизана космическими струнами, состоящими из вакуума. Они опутывают наш мир как паутина.

Семья и дом — женский журнал Owoman.ru » Энциклопедия для ребенка от А до Я

Что такое Вселенная?

Вселенная — это пространство, включающее в себя абсолютно все: Солнце, планеты, нашу Галактику, миллиарды других галактик Ученых полагают, что начало Вселенной положил взрыв колоссальной силы, получивший название Большого нарыва, который произошел 15 млрд. лет назад. Тогда-то и родилась материя, энергия, пространство и время. Вселенная на раннем этапе развития имела вид невероятно горячего и плотного шара, который стал стремительно расширяться и положил начало всему. Во Вселенной все постоянно меняется, рождаются и умирают звезды, а сама Вселенная продолжает расширяться во внешнее пространство.

Глядя в прошлое

Галактику, которая находится от нас на расстоянии 5 млрд. световых лет, астрономы такой, какой она была 5. Следовательно, изучение чрезвычайно удаленных объектов дает нам возможность увидеть Вселенную намного моложе, чем она есть сейчас.

Наиболее удаленные объекты, которые когда-либо удавалось наблюдать, — это новорожденные галактики или галактики, все еще находящиеся в стадии формирования. Информацию, поступающую к нам с еще более далеких расстояний и соответствующую еще более древним временам, астрономы могут только в виде слабых радиоволн, которые приходят изо всех уголков космоса. Это дают о себе знать остывшие остатки огненного шара, который взорвался во время Большого взрыва.

Что такое Галактика?

Галактика — огромное скопление звезд, удерживаемых силой тяготения. Солнце — лишь одна из 200 млрд. звезд галактики Млечный Путь, в которую входит Земля.

Вероятно, галактик во Вселенной более миллиарда. По структуре они делятся на 3 основных типа: спиральные, эллиптические и неправильные.

Ядро

Центральную часть галактики называют ядром. Здесь звезды расположены плотнее друг к другу, чем на окраинах. Современные считают, что в центре крупных, гик находятся большие черные дыры. Вероятно, черная дыра есть и в центре нашей галактики.

Световые годы

Галактики удалены друг от друга на огромные расстояния. Туманность Андромеды — ближайшая к Млечному Пути крупная галактика — находится примерно в 2 млн. световых лет от Земли. Это самый далекий объект, который можно разглядеть невооруженным глазом.

Скопления галактик

Галактики образуют во Вселенной скопления, которые входят в сверхскопления.

Туманность Андромеды крупнейшие члены небольшого скопления примерно 30 галактик, называемого Местным скоплением галактик. Оно, в свою очередь, составляет небольшую часть Местного сверхскопления.

Галактики с активными ядрами

Галактики могут излучать самое разное количество энергии. Так называемые галактики с активными ядрами излучают намного больше энергии, чем способны дать составляющие их звезды. Полагают, что источником дополнительной энергии служит материя, попадающая в черную дыру, которая находится в центре такой галактики.

Эллиптические гиганты

Эллиптические галактики сферической или овальной формы содержат мало газа и пыли. Они бывают разных размеров — от гигантских до карликовых. Эллиптические гиганты могут включать до 10 трлн. звезд; это крупнейшие из всех известных галактик.

Млечный путь

Млечный Путь — большая спиральная галактика диаметром около 100 тыс. световых лет (световой год равен 9,46 трлн км). Ее возраст — около 14 млрд лет, а один оборот она совершает за 225 млн лет. Как и все спиральные галактики, она содержит газ и пыль, из которых образуются новые звезды. Плотное ядро — старейшая часть галактики, где уже не осталось газа для формирования новых звезд.

ВСЕЛЕННАЯ (от греч. «ойкумена» – населенная, обитаемая земля) – «все существующее», «всеобъемлющее мировое целое», «тотальность всех вещей»; смысл этих терминов многозначен и определяется концептуальным контекстом. Можно выделить по крайней мере три уровня понятия «Вселенная».

1. Вселенная как философская идея имеет смысл, близкий понятию «универсум», или «мир»: «материальный мир», «сотворенное бытие» и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.

2. Вселенная в физической космологии, или Вселенная как целое, – объект космологических экстраполяций. В традиционном смысле – всеобъемлющая, неограниченная и принципиально единственная физическая система («Вселенная издана в одном экземпляре» – А.Пуанкаре); материальный мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала. Такое понимание Вселенной как целого обосновывалось по-разному: 1) ссылкой на «презумпцию экстраполи-руемости»: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически – Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала образ Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной. Общепринято, что бесконечная гомогенная Вселенная Ньютона «разрушила» античный космос. Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга. Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.

В неклассической, релятивистской космологии была впервые построена теория Вселенной. Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т.е.

имела начало. А.А.Фридман считал, что мир, или Вселенная как объект космологии, «бесконечно уже и меньше мира-вселенной философа». Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный момент расширения Метагалактики рассматривался как абсолютное «начало всего», с креационистской точки зрения – как «сотворение мира». Некоторые космологи-релятивисты, считая принцип единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику – лишь как ограниченную часть Вселенной.

Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира. В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился антропный принцип в космологии.

Современный подход к интерпретации Вселенной как целого основывается, во-первых, на разграничении философской идеи мира и Вселенной как объекта космологии; во-вторых, это понятие релятивизируется, т.е. его объем соотносится с определенной ступенью познания, космологической теорией или моделью – в чисто лингвистическом (безотносительно к их объектному статусу) или же в объектном смысле. Вселенная интерпретировалась, напр., как «наибольшее множество событий, к которому могут быть применены наши физические законы, экстраполированные тем или иным образом» или «могли бы считаться физически связанными с нами» (Г.Бонди).

Развитием этого подхода явилась концепция, согласно которой Вселенная в космологии – это «все существующее» не в каком-то абсолютном смысле, а лишь с точки зрения данной космологической теории, т.е. физическая система наибольшего масштаба и порядка, существование которой вытекает из определенной системы физического знания. Это относительная и преходящая граница познанного мегамира, определяемая возможностями экстраполяции системы физического знания. Под Вселенной как целым не во всех случаях подразумевается один и тот же «оригинал». Напротив, разные теории могут иметь в качестве своего объекта неодинаковые оригиналы, т.е. физические системы разного порядка и масштаба структурной иерархии. Но все претензии на репрезентацию всеобъемлющего мирового целого в абсолютном смысле остаются бездоказательными. При интерпретации Вселенной в космологии следует проводить различие между потенциально и актуально существующим. То, что сегодня считается несуществующим, завтра может вступить в сферу научного исследования, окажется существующим (с точки зрения физики) и будет включено в наше понимание Вселенной. Так, если теория расширяющейся Вселенной описывала по сути нашу Метагалактику, то наиболее популярная в современной космологии теория инфляционной («раздувающейся») Вселенной вводит понятие о множестве «других вселенных» (или, в терминах эмпирического языка, внеметагалак-тических объектов) с качественно различными свойствами. Инфляционная теория признает, т.о., мегаскопическое нарушение принципа единообразия Вселенной и вводит дополнительный ему по смыслу принцип бесконечного многообразия Вселенной. Тотальность этих вселенных И.С.Шкловский предложил назвать «Метавселенной». Инфляционная космология в специфической форме возрождает, т.о., идею бесконечности Вселенной (Метавселенной) как ее бесконечного многообразия. Объекты, подобные Метагалактике, в инфляционной космологии часто называют «минивселенными». Минивселенные возникают путем спонтанных флуктуаций физического вакуума. Из этой точки зрения вытекает, что начальный момент расширения нашей Вселенной, Метагалактики не обязательно должен считаться абсолютным началом всего. Это лишь начальный момент эволюции и самоорганизации одной из космических систем. В некоторых вариантах квантовой космологии понятие Вселенной тесно увязывается с существованием наблюдателя («принцип соучастия»). «Порождая на некотором ограниченном этапе своего существования наблюдателей-участников, не приобретает ли, в свою очередь, Вселенная посредством их наблюдений ту осязаемость, которую мы называем реальностью? Не есть ли это механизм существования?» (А.Дж.Уилер). Смысл понятия Вселенной и в этом случае определяется теорией, основанной на различении потенциального и актуального существования Вселенной как целого в свете квантового принципа.

3. Вселенная в астрономии (наблюдаемая, или астрономическая Вселенная) – область мира, охваченная наблюдениями, а сейчас отчасти и космическими экспериментами, т.е. «все существующее» с точки зрения имеющихся в астрономии наблюдательных средств и методов исследования. Астрономическая Вселенная представляет собой иерархию космических систем возрастающего масштаба и порядка сложности, которые последовательно открывались и исследовались наукой. Это – Солнечная система, наша звездная система, Галактика (существование которой было доказано В.Гершелем в 18 в.), Метагалактика, открытая Э.Хабблом в 1920-х гг. В настоящее время наблюдению доступны объекты Вселенной, удаленные от нас на расстоянии ок. 9–12 млрд световых лет.

На протяжении всей истории астрономии вплоть до 2-й пол. 20 в. в астрономической Вселенной были известны одни и те же типы небесных тел: планеты, звезды, газопылевое вещество. Современная астрономия открыла принципиально новые, ранее не известные типы небесных тел, в т.ч. сверхплотные объекты в ядрах галактик (возможно, представляющие собой черные дыры). Многие состояния небесных тел в астрономической Вселенной оказались резко нестационарными, неустойчивыми, т.е. находящимися в точках бифуркации. Предполагается, что подавляющая часть (до 90–95%) вещества астрономической Вселенной сосредоточена в невидимых, пока ненаблюдаемых формах («скрытая масса»).

Литература:

1. Фридман А.А. Избр. труды. М., 1965;

2. Бесконечность и Вселенная. М., 1970;

3. Вселенная, астрономия, философия. М, 1988;

4. Астрономия и современная картина мира. М., 1996;

5. Bondy H. Cosmology. Cambr., 1952;

6. Munitz M. Space, Time and Creation. N.Y., 1965.

В.В.Казютинский

Слово вселенная

Слово вселенная английскими буквами(транслитом) — vselennaya

Слово вселенная состоит из 9 букв: а в е е л н н с я

Значения слова вселенная. Что такое вселенная?

Вселенная

ВСЕЛЕННАЯ (от греч. “ойкумена” - населенная, обитаемая земля) -“все существующее”, “всеобъемлющее мировое целое”, “тотальность всех вещей”; смысл этих терминов многозначен и определяется концептуальным контекстом.

Философская энциклопедия

Вселе́нная - строго не определяемое понятие астрономии и философии. Оно делится на две принципиально отличающиеся сущности: умозрительную (философскую) и материальную, доступную наблюдениям в настоящее время или в обозримом будущем.

ru.wikipedia.org

Вселенная Весь материальный мир, безграничный в пространстве и развивающийся во времени. Когда говорят о Вселенной, обычно понимают под этим словом окружающий нас макромир - небесные тела, их системы, космическое пространство и все то…

Словарь по астрономии

Вселенная — всё сущее, что было, есть и будет. Понятие, не имеющее научного определения. Вселенная в эмоциональном плане есть нечто загадочное, могущественное, необъятное, непостижимое, ни с чем несравнимое и не укладывающееся в сознании…

Вселенная — всё сущее, что было, есть и будет. Понятие, не имеющее научного определения. Вселенная в эмоциональном плане есть нечто загадочное, могущественное, вселяющее мистическое чувство, так как она не имеет ни начала, ни конца, ни пределов.

Жмуров В.А. Большой толковый словарь терминов по психиатрии

Барионная асимметрия Вселенной

Барионная асимметрия Вселенной — экстраполяция на Вселенную в целом наблюдаемого преобладания вещества над антивеществом в нашем локальном скоплении галактик.

БАРИОННАЯ АСИММЕТРИЯ ВСЕЛЕННОЙ — экстраполяция на Вселенную в целом наблюдаемого преобладания вещества над антивеществом в нашем локальном скоплении галактик.

Барио́нная асимметри́я Вселе́нной - наблюдаемое преобладание в видимой части Вселенной вещества над антивеществом.

Этот наблюдательный факт не может быть объяснён ни в рамках Стандартной модели…

ru.wikipedia.org

Крупномасштабная структура Вселенной

Крупномасштабная структура Вселенной в космологии - структура распределения материи на самых больших наблюдаемых масштабах. Уже в начале XX века было известно, что звёзды группируются в звёздные скопления, которые, в свою очередь, образуют галактики.

ru.wikipedia.org

КРУПНОМАСШТАБНАЯ СТРУКТУРА ВСЕЛЕННОЙ — термин, введённый для обозначения строения Вселенной в масштабах от неск. Мпк до нсск. сотен Мпк (в первую очередь пространственного распределения галактик, их скоплений и сверхскоплений; рис.).

Физическая энциклопедия. — 1988

КРУПНОМАСШТАБНАЯ СТРУКТУРА ВСЕЛЕННОЙ – структура, образуемая гигантскими звездными островами – галактиками и их системами на различных пространственных масштабах.

Энциклопедия Кругосвет

Модель горячей Вселенной

Модель горячей Вселенной. Предполагает, что на ранних стадиях расширения Вселенная характеризовалась не только высокой плотностью, по и высокой темп-рой вещества.

Астрономический глоссарий "Астронет"

Теория горячей Вселенной - современная теория физических процессов в расширяющейся Вселенной, согласно которой в прошлом Вселенная имела значительно б?льшую, чем сейчас, плотность вещества и очень высокую температуру.

Матвеева Е.Ю.

Концепции современного естествознания. — Новосибирск, 2007

Моде́ль горя́чей Вселе́нной - космологическая модель, в которой эволюция Вселенной начинается с состояния плотной горячей плазмы, состоящей из элементарных частиц, и протекает при дальнейшем адиабатическом космологическом расширении.

ru.wikipedia.org

Расширение Вселенной

Расширение Вселенной - явление, состоящее в почти однородном и изотропном расширении космического пространства в масштабах всей Вселенной. Экспериментально расширение Вселенной проявляется в виде выполнения закона Хаббла…

ru.wikipedia.org

Расширение Вселенной Анализируя результаты наблюдений галактик и реликтового излучения, астрономы пришли к выводу, что распределение вещества во Вселенной (область исследуемого пространства превышала 100 Мпс в поперечнике) является однородным и…

Словарь по астрономии

Расширение Вселенной. Увеличение средних расстояний между галактиками или их скоплениями. Проявляется в том, что далекие галактики обладают красными смещениями, свидетельствующими об их удалении от наблюдателя…

Астрономический глоссарий "Астронет"

Русский язык

Вселе́нн/ая, -ой.

Морфемно-орфографический словарь. - 2002

Тепловая смерть Вселенной

Тепловая смерть - термин, описывающий конечное состояние любой замкнутой термодинамической системы, и Вселенной в частности. При этом никакого направленного обмена энергией наблюдаться не будет, так как все виды энергии перейдут в тепловую.

ru.wikipedia.org

"Тепловая смерть" Вселенной, ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, которая равномерно распределится по веществу Вселенной…

БСЭ. - 1969-1978

"ТЕПЛОВАЯ СМЕРТЬ" ВСЕЛЕННОЙ — гипотеза, выдвинутая Р. Клаузиусом (R. Clausius, 1865) как-экстраполя-ция второго начала термодинамики на всю Вселенную.

Физическая энциклопедия. — 1988

Энтропия Вселенной

ЭНТРОПИЯ ВСЕЛЕННОЙ -величина, характеризующая степень неупорядоченности и тепловое состояние Вселенной. Количественно оценить полную Э. В. как энтропию Клаузиуса (см. Энтропия)нельзя, поскольку Вселенная не является термодинамич. системой.

Физическая энциклопедия. — 1988

Энтропия Вселенной - величина, характеризующая степень неупорядоченности и тепловое состояние Вселенной. Классическое определение энтропии и способ ее вычисления не подходят для Вселенной…

ru.wikipedia.org

Примеры употребления слова вселенная

В некоторых сериях Star Trek появляется альтернативная вселенная, параллельная реальной.

Разумнее представить, что вселенная состоит из почти всех локальных мирозданий.

Чайковского состоится концерт Х Международного музыкального фестиваля "Вселенная звука".

Что же это за вселенная такая, и почему нам может быть любопытно ее посетить?

Рядом с тобой Вселенная скорбит от собственного несовершенства!

Согласно современным научным представлениям, наша Вселенная образовалась примерно 13,7 млрд лет назад.

Изучение вселенной.. 3

Образование Вселенной.. 4

Эволюция Вселенной.. 5

Галактики и структура Вселенной.. 5

Классификация галактик.. 6

Структура Вселенной. 8

Заключение.. 10

Введение

Многие религии, такие как, Еврейская, Христианская и Исламская, считали, что Вселенная создалась Богом и довольно недавно. Например, епископ Ушер вычислил дату в четыре тысячи четыреста лет для создания Вселенной, прибавляя возраст людей в Ветхом Завете. Фактически, дата библейского создания не так далека от даты конца последнего Ледникового периода, когда появился первый современный человек.

С другой стороны, некоторые люди, например, греческий философ Аристотель, Декарт, Ньютон, Галилей предпочли верить в то, что Вселенная, существовала, и должна была существовать всегда, то есть вечно и бесконечно. А в 1781 философ Иммануил Кант написал необычную и очень неясную работу «Критика Чистого Разума». В ней он привел одинаково правильные доводы, что Вселенная имела начало, и что его не было. Никто в семнадцатых, восемнадцатых, девятнадцатых или ранних двадцатых столетиях, не считал, что Вселенная могла развиваться со временем. Ньютон и Эйнштейн оба пропустили шанс предсказания, что Вселенная могла бы или сокращаться, или расширяться.

Изучение вселенной

Великий немецкий ученый, философ Иммануил Кант (1724-1804) создал первую универсальную концепцию эволюционирующей Вселенной, обогатив картину ее ровной структуры, и представлял Вселенную бесконечной в особом смысле. Он обосновал возможности и значительную вероятность возникновения такой Вселенной исключительно под действием механических сил притяжения и отталкивания. Кант попытался выяснить дальнейшую судьбу этой Вселенной на всех ее масштабных уровнях, начиная с планетной системы и кончая миром туманности.

Впервые принципиально новые космологические следствия общей теории относительности раскрыл выдающийся математик и физик – теоретик Александр Фридман (1888-1925 гг.). Выступив в 1922-24 гг. он раскритиковал выводы Эйнштейна о том, что Вселенная конечна и имеет форму четырехмерного цилиндра. Эйнштейн сделал свой вывод, исходя из предположения о стационарности Вселенной, но Фридман показал необоснованность его исходного постулата.

Фридман привел две модели Вселенной.

Вскоре эти модели нашли удивительно точное подтверждение в непосредственных наблюдениях движений далёких галактик в эффекте «красного смещения» в их спектрах.

Этим Фридман доказал, что вещество во Вселенной не может находиться в покое. Своими выводами Фридман теоретически способствовал открытию необходимости глобальной эволюции Вселенной.

Образование Вселенной

Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

Существует несколько теории эволюции. Теория пульсирующей Вселенной утверждает, что наш мир произошел в результате гигантского взрыва. Но расширение Вселенной не будет продолжаться вечно, т.к. его остановит гравитация.

По этой теории наша Вселенная расширяется на протяжении 18 млрд. лет со времени взрыва. В будущем расширение полностью замедлится, и произойдет остановка. А затем Вселенная начнёт сжиматься до тех пор, пока вещество опять не сожмется и произойдет новый взрыв.

Теория стационарного взрыва: согласно ей Вселенная не имеет ни начала, ни конца. Она все время пребывает в одном и том же состоянии. Постоянно идет образование нового водоворота, чтобы возместить вещество удаляющимися галактиками. Вот по этой причине Вселенная всегда одинакова, но если Вселенная, начало которой положил взрыв, будет расширяться до бесконечности, то она постепенно охладится и совсем угаснет.

Но пока ни одна из этих теорий не доказана, т.к. на данный момент не существует ни каких точных доказательств хотя бы одной из них.

Однако стоит отметить и еще одну теорию (принцип).

Антропный (человеческий) принцип первым сформулировал в 1960 году Иглис Г.И. , но он является как бы неофициальным его автором. А официальным автором был ученый по фамилии Картер.

Антропный принцип утверждает, что Вселенная такая, какая она есть потому, что есть наблюдатель или же он должен появиться на определенном этапе развития. В доказательство создатели этой теории приводят очень интересные факты. Это критичность фундаментальных констант и совпадение больших чисел. Получается, что они полностью взаимосвязаны и их малейшее изменение приведет к полному хаосу. То, что такое явное совпадение и даже можно сказать закономерность существует, дает этой, безусловно интересной теории шансы на жизнь.

Эволюция Вселенной

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И всё же исследования, проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

Галактики и структура Вселенной

Галактики стали предметом космогонических исследований с 20-х годов нашего века, когда была надежно установлена их действительная природа. И оказалось, что это не туманности, т.е. не облака газа и пыли, находящиеся неподалеку от нас, а огромные звездные миры, лежащие на очень больших расстояниях от нас. Открытия и исследования в области космологии прояснили в последние десятилетия многое из того, что касается предыстории галактик и звезд, физического состояния разряженного вещества, из которого они формировались в очень далекие времена. В основе всей современной космологии лежит одна фундаментальная идея — идея гравитационной неустойчивости. Вещество не может оставаться однородно рассеянным в пространстве, ибо взаимное притяжение всех частиц вещества стремится создать в нем сгущения тех или иных масштабов и масс. В ранней Вселенной гравитационная неустойчивость усиливала первоначально очень слабые нерегулярности в распределении и движении вещества и в определенную эпоху привела к возникновению сильных неоднородностей: «блинов» — протоскоплений.

Распад слоев протоскоплений на отдельные сгущения тоже происходил, по-видимому, из-за гравитационной неустойчивости, и это дало начало протогалактикам. Многие из них оказывались быстро вращающимися благодаря завихренному состоянию вещества, из которого они формировались. Фрагментация протогалактических облаков в результате их гравитационной неустойчивости вела к возникновению первых звезд, и облака превращались в звездные системы — галактики. Протогалактики, у которые обладали быстрым вращением превращались, в Спиральные галактики, у которых же вращение было медленное или вовсе отсутствовало, превращались в эллиптические или неправильные галактики. Параллельно с этим процессом происходило формирование крупномасштабной структуры Вселенной — возникали сверхскопления галактик, которые, соединяясь своими краями, образовывали подобие пчелиных сот.

Классификация галактик

Эдвин Пауэлла Хаббл (1889-1953), выдающийся американский астроном – наблюдатель, избрал самый простой метод классификации галактик по внешнему виду.

И нужно сказать, что хотя в последствии другими исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по-прежнему остаётся основой классификации галактик.

В 20-30 гг. XX века Хаббл разработал основы структурной классификации галактик — гигантских звездных систем, согласно которой различают три класса галактик.

Спиральные галактики

Спиральные галактики «spiral» — характерны двумя сравнительно яркими ветвями, расположенными по спирали. Ветви выходят либо из яркого ядра (обозначаются — S), либо из концов светлой перемычки, пересекающей ядро (обозначаются — SB).

Спиральные галактики являются, может быть, даже самыми живописными объектами во Вселенной. Как правило, у галактики имеются две спиральные ветви, берущие начало в противоположных точках ядра, развивающиеся сходным симметричным образом и теряющиеся в противоположных областях периферии. Однако известны примеры большего, чем двух числа спиральных ветвей в галактике. В других случаях спирали две, но они неравны — одна значительно более развита, чем вторая. В спиральных галактиках поглощающее свет пылевое вещество имеется в большем количестве. Оно составляет от нескольких тысячных до сотой доли полной их массы. Вследствие концентрации пылевого вещества к экваториальной плоскости, оно образует темную полосу у галактик, повернутых к нам ребром и имеющих вид веретена.

Представитель — галактика М82 в созвездии Б. Медведицы, не имеет четких очертаний, и состоит в основном из горячих голубых звезд и разогретых ими газовых облаков. М82 находится от нас на расстоянии 6.5 миллионов световых лет. Возможно, около миллиона лет тому назад в центральной ее части произошел мощный взрыв, в результате которого она приобрела сегодняшнюю форму.

Эллиптические галактики

Эллиптические галактики «elliptical» (обозначаются — Е) — имеющие форму эллипсоидов. Эллиптические галактики внешне невыразительные. Они имеют вид гладких эллипсов или кругов с постепенным круговым уменьшением яркости от центра к периферии. Космической пыли в них, как правило, нет, чем они отличаются от спиральных галактик, в которых поглощающее свет пылевое вещество имеется в большом количестве. Внешне эллиптические галактики отличаются друг от друга в основном одной чертой – большим или меньшим сжатием.

Что такое Вселенная?

И.Л.Генкин

«… там, за горизонтом.»

Р.Рождественский

Вселенная, мир, космос — что означают эти слова? Не синонимы ли это? Конечно же, синонимы. Но, как и большинство синонимов, область их употребления неодинакова или не всегда одинакова, а потому у каждого имеются свои дополнительные оттенки. Ниже мы будем говорить о сути терминов, и это является главной целью написания данной статьи, но сначала все же стоит немного углубиться в происхождение слов.

В газетах можно прочесть об открытии и работе совещания по мировым ценам на нефть, но было бы странно, если бы обсуждались «вселенские» цены. С другой стороны, в тех же газетах можно встретить эти синонимы в связи с определенными церковными проблемами. Из перечисленных, слово мир употребляется наиболее широко и чаще всего в чисто земных, даже житейских смыслах. Так, выражение «во всем мире» эквивалентно другому — «на всем белом свете» . Кстати, в английском языке Новый свет (т. е. Америка) пишется the New World, т. е. Новый Мир, а «тот свет» — the next or the other world, т. е. «мир иной» , как иногда говорим и мы. Ниже нам еще придется обращаться к словарям, поскольку личные симпатии или взгляды авторов кому-то могут показаться неубедительными.

Слово мир употребляется также в смысле «совокупность, область интересов или изучения» . Так, мы говорим «мир элементарных частиц» , «мир фантазий» , «мир занимательных фактов» . Из этих выражений первое имеет уже не бытовой, а научный оттенок. В физике различают понятия микромир и макромир — соответственно как область физических исследований микрочастиц и привычных нам объектов природы, с которыми обычно сталкивается человек. В последние десятилетия широко употребляется термин мегамир для удаленных от нас объектов физического мира, недоступных прямому физическому эксперименту, но изучаемых лишь с помощью наблюдений (с соответствующей теоретической интерпретацией, которая, естественно, необходима и при изучении объектов микро- и макромира). Можно представить себе, что в сверхбольших масштабах астрофизики столкнутся с принципиально новыми физичеcкими законами, или необычными проявлениями старых, или же, наконец, с мирами иных пространственно-временных соотношений (размерностью, топологическими свойствами и т. п.). Для такого гипотетического мира уже готово несколько названий (инфрамир, Метавселенная). Нам кажется наиболее подходящим термин К.Х.Рахматулина гипермир, поскольку он стоит этимологически и системно как раз в ряду других подобных понятий. Соответственно, для мира сверхмалых масштабов Рахматулин предлагает термин гипомир, в котором можно себе представить неметрическое пространство, квантованное время и т. п. особенности, которые пока не обнаружены, но о возможности существования которых говорят не так уж и редко. Добавим, что сами понятия «малое» и «большое» тоже требуют здесь анализа, поскольку в неметрических пространствах они могут иметь другой смысл или не иметь его вообще!

Будем считать (за невозможностью сделать сейчас что-то другое), что с термином мир мы разобрались. Слово «вселенная» возникло как калька греческого термина «ойкумена» , т. е. заселенная земля (вспомним народную песню «Всю-то я вселенную проехал»). Уже здесь видна его первоначальная равнозначность выражению «весь свет» или «мир» . Но такое понимание вселенной давно устарело. Любопытно, что Советский энциклопедический словарь (СЭС) и английская энциклопедия Хатчинсона для термина «вселенная» дают дословно совпадающие определения — «весь существующий материальный мир…» Можно привести для сравнения немецкий эквивалент das Weltall, чешский Vesmir и др. Но вообще в европейских языках дополнительно и преимущественно используют латинский термин «универсум» , тоже означающий «все сущее» . Отметим нюанс. Как астрономический объект в последние годы слово Вселенная пишут с большой буквы. Вслед за А.М.Мостепаненко, А.Турсуновым и другими мы под Вселенной будем понимать совокупность физических и астрономических уровней организации материи, так сказать, физический «срез» мира. За словом же «мир» оставим скорее философское значение, включающее и другие возможные «срезы» .

Обратим внимание на слово «существующий» в определении вселенной (или Вселенной). Казалось бы, это слово должно быть всем понятным, если использовано в определении основного термина.

На самом деле мы здесь встречаемся с очередными «сепульками» *. Углубление в этимологию и онтологию приводят нас к выходу на более сложные понятия — «бытие» , «объективная реальность» , «материя» и т. д. Проблеме существования посвящена обширная литература (Например ). Мы также посвятим этой проблеме оставшуюся часть статьи. Однако пока вернемся к терминологии, имея в виду, что мы не разъяснили понятие «космос» . В греческом языке это слово означало порядок, красивый строй и т. д. Закономерное движение светил входило в это понятие. Таким образом, с одной стороны, космос противопоставлялся хаосу, с другой — плохо устроенной Земле. Впоследствии греческий космос стал считаться эквивалентом латинского «универсум» . В античной философии использовался также термин макрокосм как эквивалент универсума и микрокосм (не микромир!) — для человека как отражения символа макрокосма Вселенной. Подробное рассмотрение увело бы нас слишком далеко от целей и темы настоящей статьи. Интересующихся можно отослать к книге А.Турсунова и специальным философским изданиям (статья и др.).

Вопрос о существовании тесно связан с вопросом о познаваемости. Существуют даже специальные теории познания — гносеология или эпистемология. Мы разделяем точку зрения, согласно которой разум может с течением времени, в принципе, познать любые, пока еще не познанные вещи и явления. Но чей разум? Представим себе часть Вселенной, с которой мы не можем обмениваться информацией в силу каких-то ограничений на распространение сигналов. В тех частях Вселенной могут жить разумные, познающие мир существа. Но мы никогда не получим сведений от этой части мира, и сам вопрос о ее существовании или несуществовании не может быть решен всей мощью разума нашей части Вселенной. Здесь в принципе не работает критерий истины — практика наших возможностей.

В качестве простейшего примера напомним о мирах иного, чем наш, числа измерений. Для наглядности можно воспользоваться неоднократно применявшимся А.Пуанкаре рассмотрением двумерного мира, населенного разумными двумерными существами. Такой мир мог бы существовать (только в воображении) независимо от дополнительного, им недоступного, третьего пространственного измерения. Например, сила взаимодействия между двумя электронами, находящимися в плоскости, убывала бы обратно пропорционально первой степени расстояния, если бы третьего измерения не было и весь пучок силовых линий был сосредоточен в плоскости. В случае реального существования третьего измерения сила притяжения в плоскости была бы лишь некоторой проекцией закона Кулона на плоскость. Очевидно и мы, трехмерные существа, из факта существования закона Кулона можем сказать, что иных пространственных измерений (макроскопических!) нет.

Эти рассуждения Пуанкаре достаточно много критиковались , поскольку можно себе представить и более сложные геометрию и физику, в которых дальнодействующие силы проявляют себя лишь в подпространстве трех измерений, в других же проявляют себя как-то иначе или совсем не проявляют. Есть даже пример, подтверждающий такую возможность. Силы между кварками не убывают при их растаскивании (по некоторым данным даже растут!), что означает одномерность пучка силовых линий. Разумеется, этот пример не очень убедителен. Не исключено, что в случае с кварками мы вторгаемся в гипомир с его совсем иными, пока совершенно неизвестными нам закономерностями. Тем не менее, возможность нестандартных ситуаций, о которых Пуанкаре лишь подозревал, сейчас достаточно вероятна.

Возвращаясь к двумерным существам в стандартном макроскопическом подходе, подчеркнем принципиальную невозможность установить физическими приборами их связь с жителями параллельной плоскости. Двумерные существа, будучи соответствующим образом искривленными, могли бы жить на искривленной поверхности, например на сфере, центр которой недоступен для наблюдений их двумерными приборами. Они могли бы построить модель Вселенной как целого, безграничную, но конечную, т. е. содержащую конечное количество квадратных километров. Модель охватывала бы все, доступное их чувствам и физическим приборам, но с точки зрения сверхнаблюдателя их мир — лишь часть чего-то более обширного. Очевидно, вопрос, интересующий «двумерок» , состоит в том, можно ли считать внутренность сферы с центром и охватывающее сферу внешнее пространство реально существующими, если до сих пор они себя никак не проявляли в сферическом мире и, может быть, никогда и не проявят? Нарисованная картина без особых проблем может быть перенесена и на трехмерные сферы, находящиеся в пустом (а пустом ли?) неискривленном (или даже искривленном) пространстве большего числа измерений.

Как известно, масса и электрический заряд полностью замкнутого трехмерного мира равны нулю для гипотетического внешнего наблюдателя, находящегося в другом трехмерном подпространстве. Это значит, что находящиеся в многомерном пространстве трехмерные сферы, населенные подобными нам разумными существами, не только не имеют возможности связаться друг с другом, но с точки зрения многомерного наблюдателя вообще не взаимодействуют — во всяком случае, с помощью сил гравитации или электромагнитных.

Еще раз скажем, что замкнутые миры вполне реальны для своих жителей. Но имеем ли мы право считать их существующими, реальными для нас, если они, по существу, «вымышлены» . Возможность таких домыслов безгранична. Принцип «бритвы Оккама» диктует нам остановиться и не заниматься химерами нашего воображения. Но… джин сомнений выпущен из бутылки и загнать его туда обратно можно лишь с помощью хитрости. Кажется, мы не достаточно хитры, чтобы это сделать, и не достаточно умны, чтобы решить вопрос окончательно. И природа самого мира может быть такой, что мы, в принципе, в этом отношении не поумнеем, поскольку всегда останемся трехмерными.

В принципе, есть возможность узнать о существовании таких миров случайно, если при относительном движении и (или) расширении произойдет их столкновение и взаимное проникновение. Мы не знаем, возможно ли это в принципе (известно, что два электрона не могут столкнуться так, чтобы произошло их разрушение). Но если объединение двух пространств произойдет, это приведет, как минимум, к нарушению закона сохранения энергии в каждой из частей в макроскопических масштабах. Появление дополнительных масс вещества «ниоткуда» (и внезапно!) может привести к самым неожиданным следствиям в зависимости от масштабов и места явления. Вспоминаются идеи Джинса о поступлении вещества в центры галактик из миров других измерений и гипотеза Хойла о возникновении в нашей Вселенной «из ничего одного атома водорода в кубическом метре за 10 6 лет» . Хойловское «из ничего» могло бы быть завуалированным «из другой вселенной» , трехмерное пространство которой практически соприкасается с нашим пространством.

Космология Хойла, кажется, не подтверждается данными наблюдений. Но это могло бы быть и не так? Все же пока честнее будет сказать, что достаточных свидетельств нарушения законов сохранения мы не имеем…

Выше была рассмотрена ситуация с гипотетическими пространственными измерениями (макроскопическими), поскольку проблема числа измерений в микромире сейчас актуальна, широко обсуждается, но пока окончательно не решена. Рассмотрим более простую задачу об устройстве нашего трехмерного пространства. В настоящее время разработано большое число моделей Вселенной как целого. Напомним о том, что в 1917 году В. де Ситтер построил стационарную, но нестатическую модель Вселенной, которая, как оказалось, может описывать ситуацию в нестационарном мире. Считают, что до фридмановской стадии расширения была кратковременная (может быть, и не одна) стадия сверхбыстрого «раздувания» , причем свойства мира в это время лучше всего описываются именно де-ситтеровской моделью. Топологические особенности при расширении не изменяются, поэтому данная модель может иметь отношение и к ситуации нынешнего дня.

В модели де Ситтера свойства пространства остаются одинаковыми с течением времени, но находящиеся в нем галактики разбегаются под действием дополнительных космологических сил. Модель устроена так, что темп течения времени зависит от расстояния до наблюдателя. В наиболее удаленных точках время вообще останавливает свой ход — там находится горизонт видимости, который лучи света преодолеть не могут (с нашей точки зрения). Локально скорость света везде и всегда одинакова и равна 300 000 км/с. Что находится за горизонтом? Де Ситтер считал свою модель эллиптической. В этом случае горизонт — это наиболее удаленная от нас поверхность. Сейчас в космологии обычно рассматривают сферическую топологию. У трехмерной сферы в четырехмерном пространстве нет наиболее удаленной поверхности, но есть наиболее удаленная точка на расстоянии R, где R — радиус кривизны.

Расстояние до горизонта вдвое меньше. Таким образом, горизонт, как экватор, делит сферическое пространство на две части, мегадубликаты друг друга. Объем каждой из частей равен 2 R 3 .

Не нужно думать, что на горизонте имеется какая-то физическая особенность. Находящийся там наблюдатель определит свой горизонт как поверхность, проходящую через нас. Наше время покажется ему остановившимся: вселенная де Ситтера однородна и изотропна и из любого места выглядит одинаково. Удаляясь от нас, житель горизонта попадет в недоступную нашему изучению половину сферического мира. Если же мир эллиптичен, наблюдатель, пройдя горизонт, начнет к нам приближаться. Локальные метрические свойства ("метрика») обоих миров совершенно одинаковы, но глобальные ("топология»), как видим, совершенно различны. На обычной двумерной сфере связка меридианов в районе одного полюса повторяет картину вблизи другого. В эллиптической геометрии меридианы пересекаются только один раз, расходясь веером в разные стороны. Каждый меридиан (вдвое более короткий, чем на сфере при том же R) имеет свою наиболее удаленную точку, совокупность которых образует наиболее удаленную окружность — экватор. Трехмерную аналогию построить и представить труднее, но теоретический анализ эллиптического мира в ряде отношений проще, чем сферического. Мнение самого де Ситтера об эллиптичности своей модели мира, по существу, основано именно на соображениях простоты. В действительности мы вновь столкнулись с проблемой выбора при отсутствии реальных механизмов или физических способов решения задачи!

Однако проблема оказалась еще запутаннее. Для описания раздувания Вселенной в дофридмановскую эру вводят нестационарную, сопутствующую разбегающемуся веществу (в эту эпоху ни галактик, ни звезд еще не было) систему отсчета. В этой системе пространство оказывается бесконечным, хотя целиком заключено внутри горизонта мира де Ситтера! Этот результат был получен в 1959 г. А.Л.Зельмановым задолго до появления теории раздувания. Очевидно, с точки зрения движущихся наблюдателей говорить о пространстве «за горизонтом» не имеет смысла! И все же: что там за бесконечностью, куда отодвигается де-ситтеровский горизонт в сопутствующих координатах? (В сопутствующих координатах есть свой горизонт, но смысл его несколько иной, чем у де-ситтеровского).

Сходная ситуация с горизонтом проявляется в популярной сейчас проблеме черных дыр (ЧД). Коллапс массивных звезд, неизбежно наступающий после исчерпания в них ядерных источников энергии, приводит к появлению объекта сверхвысокой плотности, в окрестностях которого напряженность гравитационнного поля невероятно велика. Она вообще стремится к бесконечности, если радиус звезды приближается к некоторому критическому значению, т. н. гравитационному радиусу (r g). Согласно общей теории относительности (ОТО), на сфере радиуса r g время с точки зрения удаленного неподвижного наблюдателя останавливается. Соответственно, останавливаются все другие физические процессы. Коллапсирующая звезда как бы застывает на этой стадии сжатия. Ее поверхность становится невидимой по причине того, что кванты уходящего света формально имеют «нулевую энергию» , что соответствует волнам бесконечно большой длины. Такая поверхность является горизонтом видимости или горизонтом событий (эти два понятия в данном случае совпадают; в ОТО эта поверхность называется также — иногда, но весьма неудачно — сферой Шварцшильда), а в целом область под горизонтом и является черной дырой. Квантовые эффекты, на существенную роль которых обратил внимание С.Хокинг, приводят к появлению слабого излучения и потока частиц от ЧД, так что не так уж она и невидима. По-видимому, квантовое дрожание поверхности ЧД может привести к захвату вещества в непосредственной окрестности от горизонта, в результате чего внешний наблюдатель вместо застывшей звезды «увидит» лишь голый горизонт. Такой (пока гипотетический) объект тоже называют ЧД. В определенном смысле он является аналогом материальной точки ньютоновской физики и, как в последней, можно поставить вопрос о его реальном существовании. Теоретически конструкция с горизонтом, находящимся в пустом пространстве и окружающем некоторую массу в точке r=0, в ОТО изучена, за исключением «самой малости» — не только физического, но и чисто механического состояния движения самого центрального объекта.

Замедление, а потом и остановка падения вещества звезды отсутствуют для свободно падающего наблюдателя. Он и его окружение за конечное собственное время достигают горизонта. Если падение началось с расстояния 1,5r g , то его продолжительность равна приблизительно 2r g /c.

Другими словами, средняя скорость движения составляет четверть скорости света. А непосредственно к сфере наблюдатель подлетает как раз со скоростью света, если падает с достаточно большого расстояния.

Что произойдет с наблюдателем после пересечения горизонта? Ответ на этот вопрос зависит от верности или неверности наших представлений о структуре внутренностей черной дыры. К сожалению, нам здесь не обойтись без небольшого экскурса в область используемых координатных систем. Чаще других в литературе встречается координатная система, которую мы будем называть стандартной, где за основу берется условие, чтобы любая сфера, описанная вокруг центрального (притом единственного в достаточно большой окрестности) сферически симметричного тела или материальной точки, имела величину поверхности, равную 4r 2 , как в эвклидовой геометрии. Из-за кривизны пространства радиальное расстояние r не является действительным расстоянием до центра симметрии. Это, как говорят, просто некоторая координата, дающая возможность операций с различно расположенными геометрическими и физическими объектами. Реальное расстояние может быть определено с помощью несколько громоздкой процедуры. А именно: измеряют время распространения света от одной точки до другой и обратно, после чего полусумму этих времен умножают на скорость распространения сигнала, т. е. света. Учитывается, если нужно, кривизна пространства на всем пути движения светового сигнала. Очевидно, указанная процедура возможна лишь в стационарных системах отсчета. В нестационарных же понятие об определенном расстоянии между телами теряет четкий смысл. В нашем случае с единичной сферически-симметричной массой система стандартных координат стационарна. Но любая точка внутри горизонта событий не может послать сигнал наружу. Поэтому процедура измерения расстояний до точек внутри черной дыры неизбежно связана с какими-то дополнительными допущениями, в частности, она зависит от интерпретации наблюдений. В теоретических исследованиях реальное, инвариантное относительно преобразований координат, радиальное расстояние определяют, умножая величину r на некоторый метрический фактор. При этом оказывается, что dl>r 2 -r 1 , если точки находятся вне горизонта. Внутри горизонта в стандартных координатах метрический фактор оказывается величиной мнимой, что выражает факт отсутствия реальной процедуры измерения там длин (как, впрочем, и времен). Можно определить расстояние внешнего наблюдателя от горизонта, но не от центра симметрии. Тем не менее, формально радиальная координата отсчитывается от центра, где она равна нулю, до r g =2GM/c 2 на горизонте. Время падения наблюдателя, измеренное по часам, падающим вместе с ним, равно приблизительно r g /c.

Помимо стандартных широко используют так называемые изотропные координаты. Их продолжение внутрь таково, что при движении к центру величина поверхности сфер не уменьшается, а увеличивается. Горизонт при этом является сферой с минимальной величиной поверхности. Вообще область r < r g в этой координатной системе оказывается определенном смысле вывернутым дубликатом области r>r g .

Попадая внутрь сферы радиуса r g (который численно здесь вчетверо меньше, т. е. равен GM/2c 2), падающее тело начинает двигаться с замедлением, затем останавливается, не достигнув точки r=0, и начинает двигаться обратно. После вторичного пересечения сферы тело падает не в прежнее внешнее пространство, а в новый лист многосвязного пространства. Трудно понять причины такого поведения, не очень верится в многосвязность пространства. Тем не менее, решение найдено, и оно совсем не похоже на решение в стандартных координатах. Существует метрика Пенлеве, в которой вообще нет координат, меньших некоторого r min , в том числе — соответствующих внутренности горизонта. Как и в космологии, ОТО дает нам здесь целый набор решений, удовлетворяющих уравнениям поля, но смысл их не очевиден. Может быть, некоторые из решений попросту нефизичны. Может быть, все решения или несколько описывают разные возможные физические реальности. Уравнения Эйнштейна записаны так, что они справедливы в любой координатной системе. Но все ли системы действительно имеют смысл? В ньютоновской физике и эвклидовой геометрии такие вопросы почти не возникают. Все же нам хотелось бы продемонстрировать на простых примерах возможность нестандартных ситуаций. Рассмотрим обычные полярные координаты (r, v). Оставив угловую v неизменной, заменим радиальную на новую. Пусть r 1 =r+ln(r-1). При больших r и r 1 логарифмом можно пренебречь, так что обе координаты близки друг другу. При r=1,28 имеем начало координат новой системы, r 1 =0. А в интервале 1

Древние представления о вселенной Назовите основные газодобывающие базы страны

– бесконечное пространство, возникшее из Большого Взрыва: определение, как устроена, происхождение, эволюция, объекты космоса, исследование Вселенной.

Вселенная – это огромнейшее и неисследованное место. Важно понимать, что на изучение конкретной темы или даже вопроса могут уходить десятки, а то и сотни лет. Существует миллион различных направлений, включающих сотни ответвлений. Чтобы вас не ошарашил такой информационный массив, мы предлагаем список тем, которые раскрывают информацию о Вселенной.

Некоторые думают, что Вселенная закончится взрывом. Она будет сокращаться, пока не вернется в исходную точку. За этим последует новый Большой Взрыв и образуется следующая Вселенная. Это основа циклической версии.

Большая часть научного сообщества соглашается с тем, что Вселенная плоская. Это основание базируется на показаниях прибора WMAP (изучение реликтового излучения). Но есть и те, кто не согласен. Не будем забывать, что не так давно все свято верили в плоскость Земли, так что в таких вопросах всегда остаются сомнения.

Конечно, вышеописанные сведения – всего лишь кратчайшее изложение, а вот детали вы узнаете по ссылкам. Каждая статья раскрывает интересующий вопрос и излагает все на понятном языке. Поэтому вам не придется тратить всю жизнь на изучение Вселенной, ведь ученые предоставили вам готовые сведения. Вы сможете больше узнать о Солнечной системе с описанием, характеристикой и качественными фото планет, а также изучить звезды, галактики, экзопланеты, туманности, звездные скопления, пульсары, квазары, черные дыры, созвездия, темную энергию и темную материю. Нужно лишь перейти по заинтересовавшей ссылке.

Строение Вселенной

Так что же такое Вселенная?

Некоторые даже не понимают, насколько сложным и масштабным выглядит вопрос: «Что такое Вселенная?». Можно потратить десятилетия на исследования и рассекретить лишь верхушку айсберга. Возможно, мы говорим не просто об огромном мире, но бесконечном. Поэтому нужно быть энтузиастом своего дела, чтобы погрузиться во все эти загадки, на расшифровку которых может уйти вся жизнь.

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала. Но исследования выдвигают множество теорий и пазл за пазлом собирают картинку.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели все известные живые существа, планеты ( , и ) и .

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все». В современном понятии вмешают все, что существует во Вселенной – наша система, и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Иерархическое формирование галактик во Вселенной

Астрофизик Ольга Сильченко о свойствах темной материи, веществе в ранней Вселенной и реликтовом фоне:

Материя и антиматерия во Вселенной

изик Валерий Рубаков о ранней Вселенной, стабильности вещества и барионном заряде:

Происхождение Вселенной

Как появился космос и все, что мы знаем? Вселенная берет свое начало 13.8 лет назад с Большого Взрыва. Это не единственное предположение (теория колеблющейся Вселенной или устойчивого состояния), но только ему удается объяснить появление всей материи, физических законов и прочих формирований. Теория также способна рассказать, почему происходит расширение, что такое реликтовое излучение и прочие известные явления.

Теория Большого Взрыва: сингулярность – стартовая точка, с последующим расширением

Ученые начали рассматривать Вселенную с настоящего момента и постепенно возвращались к стартовой точке. Отсюда выплыло предположение, что все началось с бесконечной плотности и исчисляемого времени, запустивших процесс расширения. После первого этапа температурные показатели упали, что помогло сформироваться субатомным частицам, а после них – простые атомы. Позже гигантские облака этих формирований соединились с гравитационными силами, порождая звезды и галактики.

Официальный возраст Вселенной – 13.8 миллиардов лет. Проводя тесты с ускорителями частиц, теоретическими принципами, а также исследуя небесные объекты, ученым удалось воссоздать этапы событий, чтобы вернуть нас с современности в мгновение начала всего.

Но наиболее отдаленный период Вселенной (от 10 43 до 10 11 секунд) все еще вызывает споры. Стоит учитывать, что современные физические законы к тому времени еще не применимы, поэтому никто не может понять, как повела себя Вселенная. Но все же есть сторонники некоторых теорий, которые помогли выделить главные временные промежутки вселенской эволюции: сингулярность, инфляция и охлаждение.

Сингулярность (эпоха Планка) – самый ранний период Вселенной. На этом этапе материя была собрана в одной точке бесконечной плоскости, где царствовали экстремальные температурные режимы. В физическом плане доминирует исключительно сила гравитации.

Это время длилось от 0 до 10 43 секунд. Свое второе название эпоха получила в честь Планка, потому что лишь эта обсерватория способна проникнуть в такой промежуток. Вселенная была лишенной устойчивости, потому что вещество было не просто невероятно накаленным, но и сверхплотным. По мере расширения и снижения накаленности, возникли физические законы. С 10 43 до 10 36 секунды запустился температурный переход.

Начали выделяться фундаментальные силы, отвечающие за вселенские механизмы. Первой была гравитация, затем электромагнетизм и первая ядерная сила. С 10 32 и до сегодня длится инфляция. Моделирование демонстрирует, что Вселенная была наполнена однородной энергией с высокой плотностью. Расширение заставило ее терять температуру.

Это началось с 10 37 секунд, когда выделение сил привело к экспоненциальному росту. В этот промежуток стартует барионегез – гипотетическое событие, характеризующееся настолько высокими температурными показателями, что случайные движения частиц осуществлялись на релятивистских скоростях. При столкновениях они создавались и уничтожались. Полагают, что именно из-за этого материя преобладает над антиматерией.

Когда инфляция подошла к концу, пространство представляло собою кварк-глюонную плазменную структуру и прочие элементарные частички. С остыванием материя сливалась и формировала новые структуры. Период охлаждения наступил с уменьшением температуры и плотности. В этом процессе элементарные частички и фундаментальные силы приобрели современный вид.

Есть мнение, что через 10 11 секунд энергия стремительно снизилась. Еще спустя 10 6 секунд кварки и глюоны объединились в барионы, что привело к их переизбытку. Температура больше не достигала необходимой отметки, поэтому у протонов-антипротонов исчезла возможность формировать новые пары. Произошла массовая аннигиляция, оставившая лишь 10 10 изначального их количества. То же самое случилось и для электронов и протонов спустя секунду.

Оставшиеся протоны, электроны и нейтроны оставались статичными, поэтому вселенская плотность обеспечивалась только фотонами и нейтрино. Прошло еще несколько минут, и начался нуклеосинтез.

Температура остановилась на отметке в миллиард кельвинов, а плотность уменьшилась. Поэтому протоны и нейтроны начали сливаться, формируя изотоп водорода (дейтерий) и атомы гелия. Но большая часть протонов все же оставалась «одиночной».

Проходит 379000 лет и электроны, объединенные с ядрами водорода, создали атомы, а отделенное излучение продолжило расширяться. Сейчас мы знаем его как реликтовое (древнейший вселенский свет). По мере расширения, его плотность и энергия терялись. Современная температура – 2.7260 ± 0,0013 К (-270,424 °C) и плотность энергии 0,25 эВ/см 3 . Вы можете посмотреть в любую сторону и повсюду натолкнетесь на остатки этого излучения.

Вселенная до горячей стадии

Физик Валерий Рубаков о реликтовом излучении, зарождении неоднородностей и гравитационных волнах:

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты. Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Ранняя Вселенная

Физик Валерий Рубаков о расширении Вселенной, Большом взрыве и инфляционной модели:

Инфляционная стадия ранней Вселенной

Физик Алексей Старобинский о самой ранней стадии развития Вселенной, пространстве де Ситтера и метрике пространства-времени:

Если говорить о деталях процесса, то они зависят количества и разновидности материи. Можно выделить 4 типа темной: холодная, теплая, горячая и барионная. Из них стандартной считается Лямбда-CDM (холодная темная материя). В ней частички перемещаются со скоростью, уступающей скорости света.

Она составляет 23% вселенской материи, а барионная достигает лишь 4.6%. Лямбда дает отсылку к космологической константе, созданной Альбертом Эйнштейном. Она доказывала, что равновесие массы-энергии остается в статике.

Конечно, черные дыры стали бы притягиваться, порождая настоящих гигантских монстров. Средняя температура пространства достигла бы абсолютного нуля, и черные дыры испарились. Энтропия вырастет до такой степени, что запустит сценарий тепловой смерти, когда уже просто невозможно извлечь никакой организованной формы энергии.

Есть также теория фантомных энергий. Она полагает, что галактические скопления, планеты, звезды, ядра и даже материя разорвутся из-за расширения. Такой исход называют Большим разрывом.

История изучения Вселенной

Если говорить в общем, то природу вещей изучают еще с начала времен. Наиболее ранние известия о Вселенной представлены в мифах и передавались устно. По большей части все начинается с момента творения, за которое ответственен Бог или боги.

Астрономия появилась в Древнем Вавилоне. Созвездия и календари фигурируют у них еще 2000 лет до н.э. Более того, им даже удалось создать предсказания на последующую тысячу лет. Греческие и индийские ученые подходили к вопросам Вселенной с философской стороны, сосредотачиваясь не на божественном вмешательстве, а на причине и следствии. Можно вспомнить Фалеса и Анаксимандра, утверждавших, что все появилось из первозданной материи.

Эмпедокл (5-й век до н.э.) стал первым в западном мире, кто предположил, что Вселенная представлена землей, воздухом, водой и огнем. Эта система стала очень популярной среди философов, так как сильно походила на китайскую: металл, дерево, вода, огонь и земля.

Только с Демокритом приходит теория о неразделимых частицах (атомов), из которых и состоит пространство. Ее продолжил философ из Индии по имени Канада, считавший, что свет и тепло являются одним веществом, просто представленным в разных формах. Буддийский философ Дигнана еще более продвинулся, заявив, что вся материя – энергия.

Идея о конечности времени вошла в христианство, иудаизм и ислам. Они верили, что у Вселенной есть начало и конец. Космология продолжала развиваться, и греки выдвигают геоцентрическую модель, которая гласит, что в центре всего стоит Земля, вокруг которой вращаются небесные тела. Детальнее всего это описано в «Альмагесте» Птолемеем. Это станет каноном и продлится до Средневековья.

Еще до периода научной революции (16-18 века) появлялись ученые, считавшие, что в основе всего должна стоять гелиоцентрическая модель, где в центре нашей системы расположено Солнце. Среди них фигурируют Аристарх Самосский (310-230 гг. до н.э.) и Селевк (190-150 гг. до н.э.).

Хотя в индийские, персидские и арабские философы развивали идеи Птолемея, находились и революционеры. Например, Ас-Сиджизи или Ариабхата. В 16-м веке появляется Николай Коперник. Его заслуга в том, что он выдвинул концепцию гелиоцентрической модели и обосновал доказательства ее верности. Они основывались на 7 принципах:

  • Небесные тела не совершают вращение вокруг одной точки.
  • Луна вращается вокруг Земли, а все сферы совершают оборот вокруг Солнца, расположенного возле вселенского центра.
  • Дистанция Земля-Солнце – это лишь незначительная часть расстояния от Солнца к другим звездам, поэтому мы не видим параллакс.
  • Звезды пребывают в неподвижном состоянии – кажущееся движение вызвано земным осевым вращением.
  • Земля двигается по орбитальному пути, поэтому кажется, что Солнце мигрирует.
  • У Земли наблюдается больше одного движения.
  • Орбитальный земной проход создает впечатление, что другие планеты движутся в обратном направлении.

Более расширенная версия его идей появилась в 1532 году, когда дописал «О вращении небесных сфер». В рукописи фигурировали те же аргументы, но уже подкрепленные научными доводами и примерами. Но автор переживал, что его начнут преследовать со стороны церкви и работа увидела свет лишь в 1542 году после его смерти.

За его идеи взялись ученые 16-17-х веков. Особой заслуги достоин Галилео Галилей. При помощи своего нового изобретение (телескоп) он впервые взглянул на Луну, Солнце и Юпитер, которые не вписывались в геоцентрическую модель, зато соответствовали гелиоцентрической.

В начале 17-го века его записи опубликовали. Интересными были наблюдения кратерной поверхности Луны, а также детализация крупнейших спутников Юпитера и выявление солнечных пятен. Не обошел он стороною и Млечный Путь, который до этого считался туманностью. Галилей увидел, что перед ним множество плотно расположенных звезд.

В 1632 году он выступил за гелиоцентрическую модель в трактате «Диалог о двух системах мира». Его аргументы разбили верования Птолемея и Аристотеля. Дальнейшему укреплению способствовала теория Иоганна Кеплера об эллиптических орбитах планет. Дальше появляется Исаак Ньютон, создавший теорию всемирного тяготения. В трактате 1687 года он описал три закона движения:

  • При наблюдении в инерциальной системе, объект пребывает в покое или двигается с постоянной скоростью, пока на него не повлияет внешняя сила.
  • Векторная сумма внешних сил (F) равняется массе (m) объекта, умноженной на вектор ускорения (a): F = ma.
  • Когда первое тело прикладывает силу ко второму, то второе одновременно прикладывает силу, равную по величине и противоположную по направлению к первому.

Все вместе эти принципы описывали связь между объектом, воздействующими силами и движением. Это стало основой для классической механики. С их помощью Ньютон определил массы планет, выравнивание Земли на полюсах и выпуклость на экваторе, а также то, что сила тяжести между Солнцем и Луной создает приливы на Земле.

Следующий прорыв произошел в 1755 году. Иммануил Кант выдвигает идею, что Млечный Путь – огромная звездная коллекция, скрепленная общей гравитацией. Звезды вращаются, формируя сплющенный диск, а Солнечная система расположена внутри него.

В 1785 году Уильям Гершель хотел вычислить форму галактики, но он не догадался, что большая ее часть скрыта за пылью и газом. Пришлось ждать 20-го века и появления Эйнштейна с его Специальной и Общей теориями относительности. Началось с того, что он просто хотел решить законы ньютоновской механики законами электромагнетизма. В 1905 году появилась Специальная теория относительности.

Она утверждала, что скорость света одинакова для всех инерциальных систем координат. Но это вступало в противоречие с предыдущим мнением (свет, проходящий сквозь движущуюся среду, будет следовать вдоль среды, то есть, скорость света равняется сумме скорости прохода сквозь среду и скорость самой среды).

Получается, что эта теория сделала так, что среда вообще оказалась лишней. В 1907-1911х гг. Эйнштейн думал, как применить теорию к гравитационным полям. В итоге, он создал Общую теорию относительности (время относится к наблюдателю и зависит от его расположения в гравитационном поле).

Здесь же появляется принцип эквивалентности – гравитационная масса равняется инерционной массе. Он также предсказал замедление гравитационного времени, существование черных дыр и расширение Вселенной.

В 1915 году появляется радиус Шварцшильда – точка, в которой масса сферы будет так сильно сжата, что скорость ухода с поверхности приравнивается к скорости света (является результатом решения уравнение поля Эйнштейна). В 1931 году Субраманьян Чандрасекар использовал наработки Эйнштейна, чтобы понять, что если масса не вращающегося тела вырожденного электрона выше определенной отметки, то оно само рухнет.

Племя бошонго в центральной Африке верит, что издревле была только темнота, вода и великий бог Бумба. Однажды Бумбу так болел, что его вырвало. И так появилось Солнце. Оно высушило часть великого Океана, освободив заточенную под его водами землю. Наконец, Бумбу вырвало луной, звездами, а затем на свет появились некоторые животные. Первым стал леопард, за ним - крокодил, черепаха и, наконец, человек. Сегодня же мы поговорим о том, что такое Вселенная в современном представлении.

Расшифровка понятия

Вселенная - грандиозное, непостижимых размеров пространство, заполненное квазарами, пульсарами, черными дырами, галактиками и материей. Все эти компоненты находятся в постоянном взаимодействии и формируют наше мироздание в том виде, каким мы его себе представляем. Нередко звезды во Вселенной находятся не поодиночке, а в составе грандиозных скоплений. В некоторых из них может быть несколько сотен, а то и тысяч такого рода объектов. Астрономы говорят, что небольшие и средние скопления («лягушачья икра») образовались совсем недавно. А вот шаровидные образования - древние и очень древние, «помнящие» еще первичный космос. Вселенная таких образований содержит много.

Общие сведения о строении

Звезды и планеты образуют галактики. Вопреки распространенному мнению, системы галактик чрезвычайно подвижны и практически все время перемещаются в пространстве. Звезды - также величина непостоянная. Они зарождаются и погибают, превращаясь в пульсары и черные дыры. Наше Солнце - звезда «среднего пошиба». Живут такие (по меркам Вселенной) очень мало, не более 10-15 миллиардов лет. Конечно же, во Вселенной существуют миллиарды светил, по своим параметрам напоминающим наше солнце, и столько же систем, походящих на Солнечную. В частности, поблизости от нас располагается Туманность Андромеды.

Вот что такое Вселенная. Но все далеко не так просто, так как существует грандиозное количество тайн и противоречий, ответов на которые пока что нет.

Некоторые проблемы и противоречия теорий

Мифы древних народов о создании всего сущего, как многие другие до и после них, пытаются ответить на вопросы, которые всех нас интересуют. Почему мы здесь, откуда взялись планеты Вселенной? Откуда мы произошли? Конечно, более-менее внятные ответы мы начинаем получать только сейчас, когда наши технологии достигли определенного прогресса. Впрочем, за всю историю человека нередко встречались те представители людского племени, которые сопротивлялись идее того, что Вселенная вообще имела начало.

Аристотель и Кант

Например, Аристотель, самый известный из греческих философов, полагал, что "происхождение Вселенной" - термин неправильный, так как существовала она всегда. Что-то вечное более совершенно, чем что-то создаваемое. Мотивация для веры в вечность Вселенной была проста: Аристотель не желал признавать существование какого-то божества, которое бы могло ее создать. Разумеется, его противники в полемических спорах как раз-таки приводили пример создания Вселенной как свидетельство существования высшего разума. Канту долгое время не давал покоя один вопрос: «Что было перед тем, как возникла Вселенная?» Он чувствовал, что все теории, которые существовали на то время, имели множество логических противоречий. Ученым была разработана так называемая антитеза, которую до сих пор используют некоторые модели Вселенной. Вот ее положения:

  • Если Вселенная имела начало, то почему она выжидала вечность перед своим возникновением?
  • Если Вселенная вечна, то почему в ней вообще существует время; для чего вообще нужно отмерять вечность?

Конечно, для своего времени он задавал более чем правильные вопросы. Вот только сегодня они несколько устарели, но некоторые ученые, к величайшему сожалению, продолжают руководствоваться именно ими в своих исследованиях. Конец метаниям Канта (точнее, его продолжателей) положила теория Эйнштейна, проливающая свет на строение Вселенной. Чем же она так поразила научное сообщество?

Точка зрения Эйнштейна

В его теории относительности пространство и время больше не были Абсолютными, привязанными к какой-то точке отсчета. Он предположил, что они способны к динамическому развитию, которое определяется энергией во Вселенной. Время по Эйнштейну настолько неопределенно, что нет особой необходимости в его определении. Это походило бы на выяснение направления к югу от Южного полюса. Довольно бессмысленное занятие. Любое так называемое «начало» Вселенной было бы искусственно в том смысле, что можно было бы попытаться рассуждать о более «ранних» временах. Проще говоря, это проблема не столько физическая, сколько глубоко философская. Сегодня ее решением занимаются лучшие умы человечества, которые неустанно думают про образование первичных объектов в космическом пространстве.

Сегодня наиболее распространен позитивистский подход. Проще говоря, мы осмысляем само строение Вселенной так, как можем его представить. Ни у кого не получится спросить, является ли используемая модель истинной, нет ли других вариантов. Ее можно считать удачной, если она достаточно изящна и органически включает в себя все накопленные наблюдения. К сожалению, мы (скорее всего) неправильно интерпретируем некоторые факты, пользуясь искусственно созданными математическими моделями, что в дальнейшем приводит к искажению фактов об окружающем нас мире. Думая о том, что такое Вселенная, мы упускаем из виду миллионы фактов, которые пока еще попросту не открыты.

Современные сведения о возникновении Вселенной

«Средневековье Вселенной» — эра темноты, существовавшей перед появлением первых звезд и галактик.

Именно в те загадочные времена образовались первые тяжелые элементы, из которых созданы мы и весь окружающий нас мир. Теперь исследователи разрабатывают первичные модели Вселенной и методы для исследования тех явлений, которые происходили в то время. Современные астрономы говорят, что Вселенной примерно 13,7 миллиардов лет. Перед возникновением Вселенной космос был столь горячим, что все существовавшие атомы были разделены на положительно заряженные ядра и отрицательно заряженные электроны. Эти ионы блокировали весь свет, не давая ему распространяться. Царила Тьма, конца и края которой не было.

Первый свет

Спустя приблизительно 400 000 лет после Большого взрыва пространство остыло достаточно, чтобы разрозненные частицы смогли объединиться в атомы, образовав планеты Вселенной и... первый свет в космосе, отголоски которого до сих пор известны нам в качестве «светового горизонта». Что было до Большого взрыва, мы до сих пор не знаем. Возможно, тогда существовала какая-то иная Вселенная. Быть может, не было ничего. Великое Ничто… Именно на этом варианте настаивают многие философы и астрофизики.

Текущие модели предполагают, что первые галактики Вселенной начали формироваться спустя приблизительно 100 миллионов лет после Большого взрыва, положив начало нашему мирозданию. Процесс формирования галактик и звезд постепенно продолжался, пока большая часть водорода и гелия не была включена в состав новых солнц.

Тайны, ждущие своего исследователя

Существует много вопросов, ответить на которые могло бы помочь исследование первоначально происходивших процессов. Например, когда и как возникли чудовищно большие черные дыры, замеченные в сердцах фактически всех больших скоплений? Сегодня известно, что Млечный путь имеет черную дыру, вес которой составляет приблизительно 4 миллиона масс нашего Солнца, а некоторые древние галактики Вселенной имеют в своем составе черные дыры, размеры которых вообще сложно представить. Наиболее огромным является образование в системе ULAS J1120+0641. Ее черная дыра имеет вес, в 2 миллиарда раз превышающий массу нашего светила. Эта галактика возникла спустя только 770 миллионов лет после Большого взрыва.

В этом и заключается главная загадка: согласно современным представлениям, столь массивные образования просто бы не успели возникнуть. Так как они сформировались? Каковы «семена» этих черных дыр?

Темная материя

Наконец, темная материя, из которой, по мнению многих исследователей, на 80% состоит космос, Вселенная, до сих пор является «темной лошадкой». Мы до сих пор не знаем, какова природа темной материи. В частности, вызывает много вопросов ее строение и взаимодействие тех элементарных частиц, из которых состоит это таинственное вещество. Сегодня мы предполагаем, что ее составные части друг с другом практически не взаимодействуют, в то время как результаты наблюдений за некоторыми галактиками этому тезису противоречат.

О проблеме происхождения звезд

Другая проблема - вопрос о том, на что походили первые звезды, из которых образована звездная Вселенная. В условиях невероятного тепла и при чудовищном давлении в ядрах этих солнц относительно простые элементы, такие как водород и гелий, преобразовывались, в частности, в углерод, на котором основана наша жизнь. В настоящее время ученые считают, что самые первые звезды были во много раз больше солнца. Возможно, они жили всего пару сотен миллионов лет, а то и меньше (вероятно, именно так и образовались первые черные дыры).

Впрочем, некоторые из «старожилов» вполне могут существовать и в современном космосе. Они наверняка были очень бедны в отношении тяжелых элементов. Быть может, некоторые из этих образований могут до сих пор «скрываться» в ореоле Млечного пути. Эта тайна также до сих пор не открыта. С такими казусами приходится встречаться всякий раз, отвечая на вопрос: «Так что такое Вселенная?» Для исследования первых дней после ее возникновения чрезвычайно важен поиск наиболее ранних звезд и галактик. Естественно, что наиболее древними наверняка являются те объекты, которые располагаются на самом краю светового горизонта. Проблема только в том, что до тех мест могут дотянуться только наиболее мощные и сложные телескопы.

Огромные надежды исследователи возлагают на космический телескоп Джеймса Уэбба. Этот инструмент призван дать ученым ценнейшие сведения о первом поколении галактик, которые сформировались сразу после Большого взрыва. Изображений этих объектов в приемлемом качестве практически нет, так что великие открытия все еще впереди.

Удивительное «светило»

Все галактики распространяют свет. Какие-то образования светят сильно, какие-то отличаются умеренным «освещением». Но существует самая яркая галактика во вселенной, интенсивность свечения которой не похожа ни на что другое. Ее имя - WISE J224607.57-052635.0. Располагается эта «лампочка» на расстоянии целых 12,5 миллиардов световых лет от Солнечной системы, а светит она, как 300 триллионов Солнц разом. Заметим, что подобных образований на сегодняшний день существует около 20, причем не следует забывать о понятии «светового горизонта».

Проще говоря, со своего места мы видим только те объекты, образование которых произошло около 13 миллиардов лет тому назад. Дальние области недоступны взору наших телескопов просто потому, что свет оттуда банально не успел дойти. Так что в тех краях наверняка существует что-то аналогичное. Вот какая самая яркая галактика во Вселенной (точнее, в ее видимой части).