Что называется активным центром фермента. Конспекты к гос экзаменам для студентов биологов. Свойства активных центров ферментов

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты ) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент , и небелковую часть – кофактор . Примером сложных ферментов являются сукцинатдегидрогеназа (содержит ФАД), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем), лактатдегидрогеназа (содержит Zn 2+), амилаза (содержит Ca2+ ).

Кофактор , в свою очередь, может называться коферментом (НАД+ , НАДФ+ , ФМН, ФАД, биотин) или простетической группой (гем, олигосахариды, ионы металлов Fe2+ , Mg2+ , Ca2+ , Zn2+ ).

Деление на коферменты и простетические группы не всегда однозначно:
если связь кофактора с белком прочная, то в этом случае говорят о наличии простетической группы ,
но если в качестве кофактора выступает производное витамина - то его называют коферментом , независимо от прочности связи.

Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении.

Как многие белки, ферменты могут быть мономерами , т.е. состоять из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Структурно-функциональная организация ферментов

В составе фермента выделяют области, выполняющие различную функцию:

1. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи. В активном центре выделяют два участка:

  • якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
  • каталитический – непосредственно отвечает за осуществление реакции.
Схема строения ферментов

У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.

У сложных ферментов в активном центре обязательно расположены функциональные группы кофактора.

Схема формирования сложного фермента

2. Аллостерический центр (allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции.

Аллостерические ферменты являются полимерными белками, активный и регуляторный центры находятся в разных субъединицах.

Схема строения аллостерического фермента

В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество (см "Регуляция активности ферментов ").

Изоферменты

Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента, но катализирующие одну и ту же реакцию . Изоферменты отличаются сродством к субстрату, максимальной скоростью катализируемой реакции, чувствительностью к ингибиторам и активаторам, условиями работы (оптимум pH и температуры).

Как правило, изоферменты имеют четвертичную структуру, т.е. состоят из двух или более субъединиц. Например, димерный фермент креатинкиназа (КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 (КК-1) состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 (КК-2) – по одной М- и В-субъединице, активна в миокарде, креатинкиназа-3 (КК-3) содержит две М-субъединицы, специфична для скелетной мышцы.

Также существует пять изоферментов лактатдегидрогеназы (роль ЛДГ) – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ. heart – сердце) и М (англ. muscle – мышца). Лактатдегидрогеназы типов 1 (Н 4) и 2 (H 3 M 1) присутствуют в тканях с аэробным обменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (H 1 M 3) и ЛДГ-5 (М 4) находятся в тканях, склонных к анаэробному обмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточным типом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (H 2 M 2).

Еще одним примером изоферментов является группа гексокиназ , которые присоединяют фосфатную группу к моносахаридам гексозам и вовлекают их в реакции клеточного метаболизма. Из четырех изоферментов выделяется гексокиназа IV (глюкокиназа ), которая отличается от остальных изоферментов высокой специфичностью к глюкозе, низким сродством к ней и нечувствительностью к ингибированию продуктом реакции.

Мультиферментные комплексы

В мультиферментном комплексе несколько ферментов прочно связаны между собой в единый комплекс и осуществляют ряд последовательных реакций, в которых продукт реакции непосредственно передается на следующий фермент и является только его субстратом. Возникает туннельный эффект , т.е. субстрат попадает в созданный ферментами "туннель". В результате промежуточные метаболиты избегают контакта с окружающей средой, снижается время их перехода к следующему активному центру и значительно ускоряется скорость реакции.

) и катализирующие конкретные реакции. Такая способность возникает в результате формирования промежуточного продукта при связывании антитела с антигеном (имитация переходного комплекса E-X ферментативной реакции).

Активный центр фермента - это участок, который связывает субстраты (и простетическую группу, если она есть) и в котором содержатся аминокислотные остатки, непосредственно участвующие в образовании или разрыве химических связей. Такие остатки называют каталитическими группами. Несмотря на огромное разнообразие структуры ферментов, их специфичности и механизма каталитического действия, все же можно сделать ряд обобщений в отношении свойств активных центров.

1. На активный центр приходится относительно малая часть общего объема фермента. Большая часть аминокислотных остатков в молекуле фермента не контактирует с субстратом. Остается загадкой,

Рис. 6.9. Скорость ферментативной реакции как функция концентрации субстрата.

Рис. 6.10. Взаимодействие субстратов с ферментами согласно модели ключ-замок. Активный центр фермента сам по себе комплементарен по форме субстрату.

почему размер ферментов так велик. Почти все ферменты содержат более 100 аминокислотных остатков и имеют массу свыше 10 к Да, а диаметр - свыше 25 А.

2. Активный центр - трехмерное образование. Другими словами, это не точка, не линия и даже не плоскость, а сложная трехмерная структура, в формировании которой участвуют группы, принадлежащие разным частям линейной последовательности аминокислот. Действительно, как мы уже видели на примере гемоглобина и миоглобина, взаимодействие между аминокислотными остатками, расположенными далеко друг от друга в линейной последовательности, нередко сильнее, чем взаимодействие между соседними (в последовательности) остатками аминокислот. В лизоциме - ферменте, который мы рассмотрим подробно в следующей главе, основные группы активного центра представлены аминокислотными остатками, занимающими 35, 52, 62, 63 и 101-е положения в линейной последовательности из 129 аминокислот.

3. Субстраты относительно слабо связываются с ферментами. Константы равновесия -комплексов обычно лежат в пределах от до что соответствует свободным энергиям взаимодействия от - 3 до - 12 ккал/моль. Сравним эти величины с силой ковалентных связей, составляющей от - 50 до - 110 ккал/моль.

4. Активный центр имеет форму узкого углубления или щели. Во всех ферментах с изученной структурой связывание субстратов происходит в таком углублении или щели, куда нет доступа воде, за исключением тех случаев, когда вода является одним из реагирующих веществ. В этом углублении присутствует несколько полярных аминокислотных остатков, необходимых для связывания и катализа. Неполярный характер всей области в целом способствует связыванию субстрата. Кроме того, щелевидная форма активного центра создает микроокружение, в котором отдельные полярные остатки приобретают особые свойства, существенно важные для катализа.

5. Специфичность связывания зависит от строго определенного расположения атомов в активном центре. Субстрат входит в активный центр, только если он соответствует ему по форме. В 1890 г. Эмиль Фишер (Е. Fischer) использовал сравнение с ключом и замком (рис. 6.10), которое оказалось по существу правильным и исключительно плодотворным представлением о стереоспецифичности катализа. Однако, как показывают работы последних лет, активные центры некоторых ферментов не являются жесткой структурой, их форма модифицируется при связывании субстратов. В этих ферментах форма активного центра становится комплементарной форме субстрата

Рис. 6.11. Взаимодействие субстратов с ферментами согласно модели индуцированного соответстия. При связывании субстрата происходит изменение формы фермента. Активный центр фермента только после присоединения субстрата становится комплементарным ему по форме.

Рис. 6.12. График зависимости скорости реакции V от концентрации субстрата для фермента, подчиняющегося кинетике Михаэлиса - Ментен (Ктах-максимальная скорость, - константа Михаэлиса).

только после связывания субстрата. Такой процесс динамического узнавания называют индукцией соответствия (рис. 6.11). Кроме того, некоторые ферменты предпочтительно связывают субстрат в напряженной («искаженной») форме, соответствующей переходному состоянию.

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый “активный центр” фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность !

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр . Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора ), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами ), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.



Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрат. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).

Ферментами называются белки, обладающие каталитическими свойствами. В природе существуют как простые, так и сложные ферменты. Первые целиком представлены полипептидными цепями и при гидролизе распа­даются исключительно на аминокислоты. Такими ферментами (простые белки) являются гидролитические ферменты, в частности пепсин, трипсин, папаин, уреаза, лизоцим, рибонуклеаза, фосфатаза и др. Большинство природных ферментов относится к классу сложных белков, содержащих, помимо полипептидных цепей, какой-либо небелковый компонент (кофак­тор), присутствие которого является абсолютно необходимым для ката­литической активности. Кофакторы могут иметь различную химическую природу и различаться по прочности связи с полипептидной цепью. К основным свойствам ферментов как биокатализаторов относят: 1.Высокая активность. 2. Специфичность – способность катализировать превращение субстрата или одного типа связи. Высокая специфичность обусловлена кон­формационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурной организацией активного центра, который состоит из субстратсвязывающего участка(отвечает зв связывание субстрата) и каталитического участка(отвечает за выбор пути хим. превращения субстрата).Различают такие виды специфичности: 1)абсолютная субстратная -ферменты действуют только на 1-н определенный субстрат. Пример, уреаза, сукцинатДГ. 2)групповая специфичность - фермент действует на 1 тип связей(напр., пептидную, эфирную, гликозидную). Пример, липазы, фосфатазы, гексокиназы. 3) стереоспецифичность – фермент действует на 1-н вид оптического изомера и не действует на другой. Она обеспечена цис- и трансизомерией. Например, дрожжи сбраживают D- глюкозу, и не действуют на L- глюкозу.4) каталитическая специфичность – фермент катализирует превращение присоединенного субстрата по одному из возможных путей. 3. Термолабильность . Чем выше Т°, тем медленнее протекает реакция.(З-н Ван Гоффа). Для показателя возрастания скорости химической реакции используют температурный коэффициент ВанзГоффа Q 10 , который указывает на возрастание скорости реакции при повышении Т° на 10°С. Оптимум температуры для ферментов 37-40°, высокая активность 50-60°, выше этого показателя происходит денатурация, ниже 20°-ингибирование. При ингибировании и денатурации сильно снижается ферментативная активность. 4. Зависимость активности ферментов от pH. Каждый фермент проявляет максималь­ную активность при определенном значенииpH. Это значение называется оптимальным pH (для ферментов от 6 до 8). При pH оптимуме между ферментом и субстратом существует наилучшая пространственная и электростатическая комплементарность, которая обеспечи­вает их связывание, образование фермент – субстратного комплекса и дальнейшего его превращения.

Активный центр ф – область молекулы фермента, в которой происходит связывание и превращение субстрата. В простых ферментах активный центр формируется за счет аминокислотных остатков. В формировании актив центра сложных ферментов принимают участие не только аминокислотные остатки, но и небелковая часть (кофермент, простет группа). В активном центре различают каталитический центр, непосредственно вступающий в хим взаимодействие с субстратом, и субстрат-связывающий центр, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом. Актив центр преимущественно располагается в углублении белковой молекулы. Строение актив центра обуславливает специфичность ферментов – способность катализировать превращение одного субстрата (или группы близкородственных суб-тов) или одного типа связи. Субстратсвязывающий участок активного центра определяет абсолютную и групповую субстратную специфичность, стереоспецифичность, каталитический участок определяет специфичность пути превращения.

Любые воздействия, приводящие к нарушению третичной структуры, приводят к искажению или разрушению структуры актив центра и соответственно потере ферментов каталитических свойств. Если удается восстановить нативную трехмерную структуру белка-фермента, то восстанавливается и его каталитическая активность.

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).