2 строение нейрона. Нейроны: классификация, строение, функции. Нейрон. его строение и функции

Она осуществляется по трём основным группам призна­ков: морфологическим, функциональным и биохимическим.

1. Морфологическая классификация нейронов (по особенностям строения). По количеству отростков ней­роны делятся на униполярные (с одним отростком), бипо­лярные (с двумя отростками) , псевдоуниполярные (ложно униполярные), мультиполярные (имеют три и более отрост­ков). (Рис. 8-2). Последних в нервной системе больше всего.

Рис. 8-2. Типы нервных клеток.

1. Униполярный ней­рон.

2. Псевдоуниполярный нейрон.

3. Биполярный нейрон.

4. Мультиполярный нейрон.

В цитоплазме нейронов видны нейрофибриллы.

(По Ю. А. Афанасьеву и др.).

Псевдоуниполярными нейроны называют потому, что отходя от тела, аксон и дендрит вначале плотно прилегают друг к другу, создавая впечатление одного отростка, и лишь потом Т-образно расходятся (к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев). Униполярные нейроны встречаются только в эмбриогенезе. Биполярными нейронами являются биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев. По форме описано до 80 вариантовнейронов: звёздчатые, пирамидальные, гру­шевидные, веретеновидные, паукообразные и др.

2. Функциональная (в зависимости от выполняемой функции и места в рефлекторной дуге):рецепторные, эффек­торные, вставочные и секреторные. Рецепторные (чувстви­тельные, афферентные) нейроны с помощью дендритов вос­принимают воздействия внешней или внутренней среды, ге­нерируют нервный импульс и передают его другим типам нейронов. Они встречаются только в спинальных ганглиях и чувствительных ядрах черепномозговых нервов. Эффектор­ные (эфферентные) нейроны, передают возбуждение на ра­бочие органы (мышцы или железы). Они располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях. Вставочные (ассоциативные) нейронырасполага­ются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС. Секреторные нейроны (нейросекреторные клетки) –это специализирован­ные нейроны, по своей функции напоминающие эндокринные клетки . Они синтезируют и выделяют в кровь нейрогор­моны, расположены в гипоталамической области головного мозга. Они регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

3. Медиаторная (по химической природе выделяемого медиатора):

Холинергические нейроны (медиатор ацетилхолин);

Аминергические (медиаторы – биогенные амины, на­пример норадреналин, серотонин, гистамин);

ГАМКергические (медиатор – гаммааминомасляная кислота);

Аминокислотергические (медиаторы – аминокислоты, такие как глютамин, глицин, аспартат);

Пептидергические (медиаторы – пептиды, например опиоид­ные пептиды, субстанция Р, холецистокинин, и др.);

Пуринергические (медиаторы – пуриновые нуклео­тиды, например аденин) и др.

Внутреннее строение нейронов

Ядро нейрона обычно крупное, округлое, с мелкодис­персным хроматином, 1-3 крупными ядрышками. Это отра­жает высокую интенсивность процессов транскрипции в ядре нейрона.

Клеточная оболочка нейрона способна генерировать и проводить электрические импульсы. Это достигается изме­нением локальной проницаемости её ионных каналов для Na+ и К+, изменением электрического потенциала и быст­рым перемещением его по цитолемме (волна деполяризации, нервный импульс).

В цитоплазме нейронов хорошо развиты все органоиды общего назначения. Митохондрии многочисленны и обеспе­чивают высокие энергетические потребности нейрона, свя­занные со значительной активностью синтетических процес­сов, проведением нервных импульсов, работой ионных насо­сов. Они характеризуются быстрым изнашиванием и обнов­лением (рис 8-3). Комплекс Гольджи очень хорошо развит. Не случайно эта органелла впервые была описана и демонст­рируется в курсе цитологии именно в нейронах. При свето­вой микроскопии он выявляется в виде колечек, нитей, зёр­нышек, расположенных вокруг ядра (диктиосомы). Много­численные лизосомы обеспечивают постоянное интенсивное разрушение изнашиваемых компонентов цитоплазмы ней­рона (аутофагия).

Р
ис. 8-3. Ультрастук­турная орга­низация тела нейрона.

Д. Дендриты. А. Ак­сон.

1. Ядро (ядрышко показано стрелкой).

2. Митохондрии.

3. Комплекс Голь­джи.

4. Хроматофильная субстанция (уча­стки гранулярной цито­плаз­мотической сети).

5. Лизосомы.

6. Аксонный холмик.

7. Нейротру­бочки, нейрофиламенты.

(По В. Л. Быкову).

Для нормального функционирования и обновления структур нейрона в них должен быть хорошо развит бело­ксинтезирующий аппарат (рис. 8-3). Гранулярная цитоплаз­матическая сеть в цитоплазме нейронов образует скопле­ния, которые хорошо окрашиваются основными красителями и видны при световой микроскопии в виде глыбок хромато­фильного вещества (базофильное, или тигровое вещество, субстанция Ниссля). Термин субстанция Ниссля сохра­нился в честь учёного Франца Ниссля, впервые ее описав­шего. Глыбки хроматофильного вещества расположены в пе­рикарионах нейронов и дендритах, но никогда не встреча­ются в аксонах, где белоксинтезирующий аппарат развит слабо (рис. 8-3). При длительном раздражении или повреж­дении нейрона эти скопления гранулярной цитоплазматиче­ской сети распадаются на отдельные элементы, что на свето­оптическом уровне проявляется исчезновением субстанции Ниссля (хроматолиз , тигролиз).

Цитоскелет нейронов хорошо развит, образует трёх­мерную сеть, представленную нейрофиламентами (толщиной 6-10 нм) и нейротрубочками (диаметром 20-30 нм). Нейро­филаменты и нейротрубочки связаны друг с другом попереч­ными мостиками, при фиксации они склеиваются в пучки толщиной 0,5-0,3 мкм, которые окрашиваются солями се­ребра.На светооптическом уровне они описаны под назва­нием нейрофибрилл. Они образуют сеть в перикарионах нейроцитов, а в отростках лежат параллельно (рис. 8-2). Ци­тоскелет поддерживает форму клеток, а также обеспечивает транспортную функцию – участвует в транспорте веществ из перикариона в отростки (аксональный транспорт).

Включения в цитоплазме нейрона представлены липид­ными каплями, гранулами липофусцина – «пигмента старе­ния» – жёлто-бурого цвета липопротеидной природы. Они представляют собой остаточные тельца (телолизосомы) с продуктами непереваренных структур нейрона. По-види­мому, липофусцин может накапливаться и в молодом воз­расте, при интенсивном функционировании и повреждении нейронов. Кроме того, в цитоплазме нейронов черной суб­станции и голубого пятна ствола мозга имеются пигментные включения меланина . Во многих нейронах головного мозга встречаются включения гликогена .

Нейроны не способны к делению, и с возрастом их число постепенно уменьшается вследствие естественной ги­бели. При дегенеративных заболеваниях (болезнь Альцгей­мера, Гентингтона, паркинсонизм) интенсивность апоптоза возрастает и количество нейронов в определённых участках нервной системы резко уменьшается.

Последнее обновление: 10/10/2013

Научно-популярная статья о нервных клетках: строение, сходства и различия нейронов с другими клетками, принцип передачи электрических и химических импульсов.

Нейрон - это нервная клетка, являющаяся основным строительным блоком для нервной системы. Нейроны во многом схожи с другими клетками, но существует одно важное отличие нейрона от других клеток: нейроны специализируются на передаче информации по всему телу.

Эти узкоспециализированные клетки способны на передачу информации и химическим, и электрическим путем. Существует также несколько различных видов нейронов, выполняющих различные функции в человеческом теле.

Сенсорные (чувствительные) нейроны доносят информацию, поступающую из клеток сенсорных рецепторов в мозг. Моторные (двигательные) нейроны передают команды от мозга к мускулам. Интернейроны (вставочные нейроны) способны сообщать информацию между разными нейронами в теле.

Нейроны в сравнении с другими клетками нашего тела

Сходства с другими клетками:

  • Нейроны, как и другие клетки имеют ядро, содержащее генетическую информацию
  • Нейроны и другие клетки окружены оболочкой, которая защищает клетку.
  • В клеточных телах нейронов и других клеток содержатся органеллы, поддерживающие жизнь клетки: митохондрии, аппарат Гольджи и цитоплазма.

Отличия, которые делают нейроны уникальными

В отличии от других клеток, нейроны перестают воспроизводится вскоре после рождения. Поэтому некоторые отделы мозга имеют большее количество нейронов при рождении, чем потом, т. к. нейроны гибнут, но не перемещаются. Несмотря на то, что нейроны не размножаются, учеными было доказано, что новые связи между нейронами появляются в течении всей жизни.

У нейронов есть мембрана, которая создана для того, чтобы посылать информацию в другие клетки. - это особые устройства, передающие и воспринимающие информацию. Межклеточные связи называются синапсами. Нейроны выпускают химические соединения (нейромедиаторы или нейротрансмиттеры) в синапсы, для коммуникации с другими нейронами.

Строение нейрона

Нейрон имеет всего три основные части: аксон, клеточное тело и дендриты. Однако, все нейроны немного различаются по форме, размеру, и характеристиками в зависимости от роли и функции нейрона. У одних нейронов всего несколько ветвей дендритов, другие сильно разветвляются для того, чтобы получать большое количество информации. У одних нейронов короткие аксоны, у других они могут быть достаточно длинными. Самый длинный аксон в человеческом теле тянется от нижней части позвоночника до большого пальца ноги, его длина - приблизительно 0,91 метра (3 фута)!

Больше о строении нейрона

Потенциал действия

Как нейроны посылают и воспринимают информацию? Чтобы нейроны сообщались, им необходимо передавать информацию и в самом нейроне, и от нейрона к следующему нейрону. Для этого процесса используются и электрические сигналы, и химические передатчики.

Дендриты воспринимают информацию от сенсорных рецепторов или других нейронов. Затем эта информация посылается в клеточное тело и на аксон. Как только эта информация покидает аксон, она передвигается по всей длине аксона, с помощью электрического сигнала, называемого потенциал действия.

Связь между синапсами

Сразу как электрический импульс достигает аксона, информация должна быть подана дендритам прилегающего нейрона через синаптическую щель к. В некоторых случаях, электрический сигнал может преодолеть щель между нейронами почти мгновенно и продолжить свое движение.

В других случаях, нейромедиаторам нужно передать информацию от одного нейрона к следующему. Нейромедиаторы - это химические передатчики, которые выпускаются из аксонов для пересечения синаптической щели и достигают рецепторов других нейронов. В процессе, называемом «обратный захват», нейромедиаторы прикрепляются к рецептору и абсорбируются нейроном для повторного использования.

Нейромедиаторы

Это неотъемлемая часть нашего ежедневного функционирования. Пока что точно неизвестно сколько существует нейромедиаторов, но ученые нашли уже более сотни этих химических передатчиков.

Какой эффект каждый из нейромедиаторов оказывает на тело? Что случается, когда болезнь или медицинские препараты сталкиваются с этими химическими передатчиками? Перечислим некоторые главные нейромедиаторы, их известные эффекты и заболевания, связанные с ними.

Мозг состоит из миллиардов нервных клеток, или нейронов. Нейрон состоит из трех основных частей: тело нейрона (сома); дендриты - короткие отростки, которые получают сообщения от других нейронов; аксон - длинное отдельное волокно, которое передает сообщения от сомы к дендритам других нейронов или тканям тела, мышцам. Передача возбуждения от аксона одного нейрона к дендритам другого называется нейропередачей или нейротрансмиссией. Существует большое многообразие нейронов ЦНС. Чаще всего классификация нейронов осуществляется по трем признакам - морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество отростков у нейронов и подразделяет все нейроны на три типа - униполярные, биполярные и мультиполярные.

Униполярные нейроны имеют один отросток. В нервной системе человека и других млекопитающих нейроны этого типа встречаются редко. Биполярные нейроны имеют два отростка - аксон и дендрит, обычно отходящие от противоположных полюсов клетки. В нервной системе человека собственно биполярные нейроны встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Существует разновидность биполярных нейронов - так называемые псевдоуниполярные, или ложно-униполярные нейроны. У них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится на дендрит и аксон. Мультиполярные нейроны имеют один аксон и много (2 и более) дендритов. Они наиболее распространены в нервной системе человека. По форме описано до 60 - 80 разновидностей веретенообразных, звездчатых, корзинчатых, грушевидных и пирамидных клеток.

С точки зрения локализации нейронов, они делятся на центральные (в спинном и головном мозге) и периферические (находящиеся за пределами ЦНС, нейроны вегетативных ганглиев и метасимпатического отдела вегетативной нервной системы).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: афферентные (чувствительные), эфферентные (двигательные) и ассоциативные.

1. Афферентные нейроны (синонимы - чувствительные, рецепторные, центростремительные), как правило, являются ложноуниполярными нервными клетками. Тела этих нейронов располагаются не в ЦНС, а в спинномозговых или чувствительных узлах черепномозговых нервов. Один из отростков, отходящий от тела нервной клетки, следует на периферию, к тому пли иному органу и заканчивается там сенсорным рецептором, который способен трансформировать энергию внешнего стимула (раздражения) в нервный импульс. Второй отросток направляется в ЦНС (спинной мозг) в составе задних корешков спинномозговых нервов или соответствующих чувствительных волокон черепномозговых нервов. Как правило, афферентные нейроны имеют небольшие размеры и хорошо разветвленный на периферии дендрит. Функции афферентных нейронов тесно связаны с функциями сенсорных рецепторов. Таким образом, афферентные нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды

Часть нейронов, принимающих участие в обработке сенсорной информации, которые можно рассматривать как афферентные нейроны высших отделов мозга, принято делить в зависимости от чувствительности к действию раздражителей на моносенсорные, бисенсорные и полисенсорные.

Моносенсорные нейроны располагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя на мономодальные, бимодальные и полимодальные.

Бисенсорные нейроны чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры больших полушарий головного мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны - это чаще всего нейроны ассоциативных зон мозга, они способны реагировать на раздражение разных сенсорных систем.

2. Эфферентные нейроны (двигательные, моторные, секреторные, центробежные, сердечные, сосудодвигательные и пр.) предназначены для передачи информации от ЦНС на периферию, к рабочим органам. По своему строению эфферентные нейроны - это мультиполярные нейроны, аксоны которых продолжаются в виде соматических или вегетативных нервных волокон (периферических нервов) к соответствующим рабочим органам, в том числе к скелетным и гладким мышцам, а также к многочисленным железам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

3. Вставочные нейроны (интернейроны, ассоциативные, осуществляют передачу нервного импульса афферентного (чувствительного) нейрона на эфферентный (двигательный) нейрон. Вставочные нейроны располагаются в пределах серого вещества ЦНС. По своему строению это мультиполярные нейроны. Считается, что в функциональном отношении это наиболее важные нейроны ЦНС, так как на их долю приходится 97 %, а по некоторым данным, - даже 99,98 % от общего числа нейронов ЦНС. Область влияния вставочных нейронов определяется их строением, в том числе длиной аксона и числом коллатералей. По своей функции они могут быть возбуждающими или тормозными. При этом возбуждающие нейроны могут не только передавать информацию с одного нейрона на другой, но и модифицировать передачу возбуждения, в частности, усиливать ее эффективность.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор - ацетилхолин), адренергические (медиатор - норадреналин), серотонинергические (медиатор - серотонин), дофаминергические (медиатор - дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота - ГАМК), пуринергические (медиатор - АТФ и его производные), пептидергические (медиаторы - субстанция Р, энкефалины, эндорфины и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора, а также нейромодуляторы.

Другие виды классификаций нейронов. Нервные клетки разных отделов нервной системы могут быть активными вне воздействия, т. е. обладают свойством автоматии. Их называют фоновоактивными нейронами. Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение, т. е. они не обладают фоновой активностью.

Некоторые нейроны, по причине их особой значимости в деятельности мозга, получили дополнительные названия по имени исследователя, впервые их описавшего. Среди них пирамидные клетки Беца, локализованные в новой коре большого мозга; грушевидные клетки Пуркинье, клетки Гольджи, клетки Лугано (в составе коры мозжечка); тормозные клетки Реншоу (спинной мозг) и ряд других нейронов.

Среди сенсорных нейронов выделяют особую группу, которые получили название нейронов-детекторов. Нейроны-детекторы - это высокоспециализированные нейроны коры и подкорковых образований, способные избирательно реагировать на определенный признак сенсорного сигнала, имеющий поведенческое значение. Такие клетки выделяют в сложном раздражителе его отдельные признаки, что является необходимым этапом для опознания образов. При этом информация об отдельных параметрах стимула кодируется нейроном-детектором в виде потенциалов действия.

В настоящее время нейроны-детекторы выявлены во многих сенсорных системах человека и животных. Начальные этапы их изучения относятся к 60-м годам, когда были впервые идентифицированы ориентационные и дирекционные нейроны в сетчатке лягушки, в зрительной коре кошки, а также в зрительной системе человека (за открытие феномена ориентационной избирательности нейронов зрительной коры кошки Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии). Явление ориентационной чувствительности заключается в том, что нейрон-детектор дает максимальный по частоте и числу импульсов разряд только при определенном положении в рецептивном поле световой полоски или решетки; при другой ориентации полоски, или решетки, клетка не реагирует или отвечает слабо. Это означает, что имеет место острая настройка нейрона-детектора на потенциалы действия, отражающие соответствующий признак предмета. Дирекционные нейроны реагируют только на определенное направление движения стимула (при определенной скорости движения). Помимо ориентационных и дирекционных нейронов в зрительной системе обнаружены детекторы сложных физических явлений, встречающихся в жизни (движущаяся тень человека, циклические движения рук), детекторы приближения-удаления объектов. В новой коре, в базальных ганглиях, в таламусе обнаружены нейроны особо чувствительные к стимулам, сходным с человеческим лицом или какими-то его частями. Ответы этих нейронов регистрируются при любом расположении, размере, цвете «лицевого раздражителя». В зрительной системе выявлены нейроны с возрастающей способностью к обобщению отдельных признаков объектов, а также полимодальные нейроны, обладающие способностью реагировать на стимулы разных сенсорных модальностей (зрительно-слуховые, зрительно-соматосенсорные и т. д.).

Нейроны отличаются большой сложностью строения. Размеры клеток чрезвычайно разнообразны (от 4-6 мкм до 130 мкм). Форма нейрона также очень вариабильна, но всем нервным клеткам свойственны отростки (один или несколько), отходящие от тела. У человека содержится более триллиона (10) нервных клеток.

На строго определенных этапах онтогенеза запрограммирована массовая гибель нейронов центральной и периферической нервной системы. За 1 год жизни погибает около 10 млн. нейронов, а в течение жизни мозг теряет около 0,1 % всех нейронов. Гибель определяет ряд факторов:

    выживают наиболее активно участвующие в межклеточных взаимодействиях нейрона (быстрее растут, имеют больше отростков, больше контактов с клетками – мишенями).

    имеются гены, ответственные за выход между жизнью или смертью.

    сбои в кровоснабжении.

По количеству отростков нейроны делятся на:

      униполярные – одноотростчатые,

      биполярные – двуотростчатые,

      мультиполярные – многоотростчатые.

Среди униполярных нейронов различают истинные униполяры,

лежащие в сетчатке глаза, и ложные униполяры, расположенные в спинномозговых узлах. Ложные униполяры в процессе развития были биполярными клетками, но затем произошло вытягивание части клетки в длинный отросток, который часто делает несколько оборотов вокруг тела и затем Т- образно ветвится.

Отростки нервных клеток отличаются по строению, у каждой нервной клетки есть аксон или нейрит, который идет от тела клетки в виде тяжа, имеющего одинаковую по всей длине толщину. Часто аксоны идут на большие расстояния. По ходу нейрита отходят тонкие веточки – коллатерали. Аксон, передающий отросток и импульс в нем, идет от клетки на периферию. Заканчивается аксон эффектором или двигательным окончанием в мышечной или железистой ткани. Длина аксона может быть более 100 см. В аксоне нет эндоплазматической сети и свободных рибосом, поэтому все белки секретируются в теле, а затем транспортируются по аксону.

Другие отростки начинаются от тела клетки широким основанием и сильно ветвятся. Они называются древовидными отростками или дендритами и являются воспринимающими отростками, в которых импульс распространяется к телу клетки. Дендриты заканчиваются чувствительными нервными окончаниями или рецепторами, специфически воспринимающими раздражения.

Истинные униполярные нейроны имеют только один аксон, а восприятие импульсов осуществляется всей поверхностью клетки. Единственным примером унипотентных клеток у человека являются амокриновые клетки сетчатки.

Биполярные нейроны лежат в сетчатке глаза и имеют аксон и один ветвящийся отросток – дендрит

Многоотросчатые мультиполярные нейроны широко распространены и лежат в спинном и головном мозге, вегетативных нервных узлах и т.д. Эти клетки имеют один аксон и многочисленные ветвящиеся дендриты.

В зависимости от расположения нейроны делятся на центральные, лежащие в головном и спинном мозге, и периферические – это невроны вегетативных ганглий, органных нервных сплетений и спинномозговых узлов.

Нервные клетки тесно взаимодействуют с сосудами. Различают 3 варианта взаимодействия:

Нервные клетки в организме лежат в виде цепей, т.е. одна клетка контактирует с другой и передает на нее свой импульс. Такие цепи клеток называются рефлекторными дугами. В зависимости от положения нейронов в рефлекторной дуге они имеют различную функцию. По функции невроны могут быть чувствительными, двигательными, ассоциативными и вставочными. Между собой или с органом – мишенью нервные клетки взаимодействуют с помощью химических веществ – нейромидиаторов.

Активность нейрона может быть индуцирована импульсом от другого нейрона или быть спонтанной. В этом случае нейрон играет роль пейсмекера (водителя ритма). Такие нейроны имеются в ряде центров, в том числе дыхательном.

Первым воспринимающим нейроном в рефлекторной дуге является чувствительная клетка. Раздражение воспринимается рецептором – чувствительным окончанием, по дендриту импульс достигает тела клетки, а затем передается по аксону на другой нейрон. Команда к действию на рабочий орган передается двигательным или эффекторным нейроном. Эффекторный нейрон может получить импульс непосредственно от чувствительной клетки, тогда рефлекторная дуга будет состоять из двух нейронов.

В более сложных рефлекторных дугах есть среднее звено – вставочный нейрон. Он воспринимает импульс от чувствительной клетки и передает на двигательную.

Иногда несколько клеток с одинаковой функцией (чувствительные или двигательные) объединяются одним нейроном, который концентрирует в себе импульсы с нескольких клеток – это ассоциативные невроны. Эти нейроны передают импульс дальше на вставочные или на эффекторные нейроны.

В теле нейрона у большинства нервных клеток содержится одно ядро. Многоядерные нервные клетки свойственны некоторым периферическим ганглиям вегетативной нервной системы. На гистологических препаратах ядро нервной клетки имеет вид светлого пузырька с четко различимым ядрышком и немногочисленными глыбками хроматина. При электронной микроскопии обнаруживаются те же субмикроскопические компоненты, что и в ядрах других клеток. Ядерная оболочка имеет многочисленные поры. Хроматин распылен. Такая структура ядра характерна для активных в метаболическом отношении ядерных аппаратов.

Ядерная оболочка в процессе эмбриогенеза образует глубокие складки, заходящие в кариоплазму. К моменту рождения складчатость становится значительно меньше. У новорожденного наблюдается уже преобладание объема цитоплазмы над ядром, так как в период эмбриогенеза эти отношения обратные.

Цитоплазма нервной клетки носит название нейроплазмы. В ней располагаются органоиды и включения.

Аппарат Гольджи был впервые обнаружен в нервных клетках. Он имеет вид сложной корзинки, окружающей ядро со всех сторон. Это своеобразный диффузный тип аппарата Гольджи. При электронной микроскопии он состоит из крупных вакуолей, мелких пузырьков и пакетов двойных мембран, образующих анастомозирующую сеть вокруг ядерного аппарата нервной клетки. Однако чаще всего аппарат Гольджи располагается между ядром и местом отхождения аксона – аксонный холмик. Аппарат Гольджи является местом генерации потенциала действия.

Митохондрии имеют вид очень коротких палочек. Они обнаруживаются в теле клетки и во всех отростках. В концевых разветвлениях нервных отростков, т.е. в нервных окончаниях наблюдается их скопление. Ультраструктура митохондрий типична, но их внутренняя мембрана не образует большого количества крист. Они очень чувствительны к гипоксии. Впервые митохондрии описал в мышечных клетках Келликер более 100 лет назад. В некоторых нейронах между кристами митохондрий имеются анастамозы. Количество крист и их общая поверхность прямо связаны с интенсивностью их дыхания. Необычным является накопление митохондрий в нервных окончаниях. В отростках они ориентируются своей продольной осью по ходу отростков.

Клеточный центр в нервных клетках состоит из 2-ух центриолей, окруженных светлой сферой, и выражен в молодых нейронах значительно лучше. В зрелых нейронах клеточный центр обнаруживается с трудом и во взрослом организме центросома претерпевает дегенеративные изменения.

При окрашивании нервных клеток толуоидным синим в цитоплазме обнаруживаются глыбки различных размеров – базофильное вещество, или субстанция Ниссля. Это очень нестойкое вещество: при общей усталости в следствии длительной работы или нервного возбуждения глыбки вещества Ниссля исчезают. Гистохимически в глыбках была обнаружена РНК и гликоген. Электронно-микроскопические исследования показали, что глыбки Ниссля представляют собой эндоплазматическую сеть. На мембранах эндоплазматической сети много рибосом. В нейроплазме так же много и свободных рибосом, образующих розеткообразные скопления. Развитая гранулярная эндоплазматическая сеть обеспечивает синтез большого количества белка. Синтез белка наблюдается только в теле нейрона и в дендритах. Для нервных клеток характерен высокий уровень синтетических процессов и в первую очередь белку и РНК.

В сторону аксона и по аксону наблюдается постоянный ток полужидкого содержимого нейрона, движущегося на периферию нейрита со скоростью 1-10 мм в сутки. Помимо медленного перемещения нейроплазмы обнаружен и быстрый ток (от 100 до 2000 мм в сутки), он имеет универсальный характер. Быстрый ток зависит от процессов окислительного фосфорилирования, наличия кальция и нарушается при разрушении микротрубочек и нейрофиламентов. Быстрым транспортом переносятся холинэстераза, аминокислоты, митохондрии, нуклеотиды. Быстрый транспорт тесно связан с подачей кислорода. Через 10 минут после смерти прекращается движение в периферическом нерве млекопитающих. Для патологии существование аксоплазматического движения имеет значение в том смысле, что по аксону могут распространяться различные инфекционные агенты, как из периферии организма в центральную нервную систему, так и внутри ее. Непрерывный аксоплазматический транспорт является активным процессом, требующим затрат энергии. Некоторые вещества обладают способностью перемещаться по аксону в обратном направлении (ретроградный транспорт) : ацетилхолинэстераза, вирус полиомиэлита, вирус герпеса, столбнячный токсин, который вырабатывается бактериями, попавшими в кожную рану, по аксону достигает центральной нервной системы и вызывает судороги.

У новорожденного нейроплазма бедна глыбками базофильного вещества. С возрастом наблюдается увеличение числа и размеров глыбок.

Специфическими структурами нервных клеток являются также нейрофибриллы и микротрубочки. Нейрофибриллы обнаруживаются в нейронах при фиксации и в теле клетки имеют беспорядочное расположение в виде войлока, а в отростках лежат параллельно друг другу. В живых клетках они были найдены при помощи фазово-контрольной киносъёмки.

При электронной микроскопии в цитоплазме тела и отростков находят гомогенные нити нейропротофибриллы, состоящие из нейрофиламентов. Нейрофиламенты это фибриллярные структуры диаметром от 40 до 100 А. Они состоят из спирально закрученных нитей, представленных белковыми молекулами весом 80000. Нейрофибриллы возникают при пучковой агрегации существующих прижизненно нейропротофибрилл. Одно время нейрофибриллам приписывали функцию проведения импульсов, но оказалось, что после перерезки нервного волокна проводимость сохраняется даже тогда, когда нейрофибриллы уже дегенерируют. Очевидно, основная роль в процессе проведения импульса принадлежит межфибриллярной нейроплазмы. Таким образом, функциональное значение нейрофибрилл не ясно.

Микротрубочки представляют собой цилиндрические образования. Их сердцевина обладает низкой электронной плотностью. Стенки образованы 13 ориентированными продольно фибриллярными субъединицами. Каждая фибрилла в свою очередь состоит из мономеров, которые агрегируют и образуют вытянутую фибриллу. Большинство микротрубочек располагается в отростках продольно. По микротрубочкам осуществляется транспорт веществ (белков, нейромедиаторов), органоидов (митохондрий, везикул), ферменты синтеза медиаторов.

Лизосомы в нервных клетках мелкие, их мало, и структуры их не отличаются от других клеток. Они содержат высоко активную кислую фосфотазу. Лизосомы лежат в основном в теле нервных клеток. При дегенеративных процессах, в нейронах число лизосом возрастает.

В нейроплазме нервных клеток обнаруживаются включения пигмента и гликогена. В нервных клетках находят два вида пигментов – это липофусцин, имеющий бледно-жёлтый или зеленовато-жёлтый цвет, и меланин – пигмент тёмно-бурого или коричневого цвета (например, черное вещество –substantianigraв ножках мозга).

Меланин обнаруживается в клетках очень рано – к концу первого года жизни.Липофусцин

накапливается позднее, но к 30 годам он может быть выявлен почти во всех клетках. Пигменты типа липофусцина играют важную роль в обменных процессах. Пигменты относящиеся к хромотопротеидам, являются катализаторами в окислительно-восстановительных процессах. Они являются древней окислительно-восстановительной системой нейроплазмы.

Гликоген накапливается, в нейроне в период относительного покоя в областях распространения вещества Ниссля. Гликоген содержится в телах и проксимальных отрезках дендритов. Аксоны лишены полисахаридов. В нервных клетках содержатся и ферменты: оксидаза, фосфатаза и холинэстераза. Специфическим белком аксоплазмы является нейромодулин.

Каждая структура в организме человека состоит из специфических тканей, присущих органу или системе. В нервной ткани – нейрон (нейроцит, нерв, неврон, нервное волокно). Что такое нейроны головного мозга? Это структурно-функциональная единица нервной ткани, входящая в состав головного мозга. Кроме анатомического определения нейрона, существует также функциональное – это возбуждающаяся электрическими импульсами клетка, способная к обработке, хранению и передаче на другие нейроны информации с помощью химических и электрических сигналов.

Строение нервной клетки не так сложно, в сравнении со специфическими клетками прочих тканей, также оно определяет её функцию. Нейроцит состоит из тела (другое название – сома), и отростков – аксон и дендрит. Каждый элемент неврона выполняет свою функцию. Сома окружена слоем жирной ткани, пропускающая лишь жирорастворимые вещества. Внутри тела располагается ядро и прочие органеллы: рибосомы, эндоплазматическая сеть и другие.

Кроме собственно нейронов, в головном мозге преобладают следующие клетки, а именно: глиальные клетки. Их часто называют мозговым клеем за их функцию: глия выполняет вспомогательную функцию для нейронов, обеспечивая окружение для них. Глиальная ткань предоставляет возможность нервной ткани регенерации, питания и помогает при создании нервного импульса.

Количество нейронов в головном мозге всегда интересовало исследователей в области нейрофизиологии. Так, численность нервных клеток варьировалось от 14 миллиардов до 100. Последними исследованиями бразильских специалистов выяснилось, что число нейронов составляет в среднем 86 миллиардов клеток.

Отростки

Инструментом в руках нейрона являются отростки, благодаря которым нейрон способен выполнять свою функцию передатчика и хранителя информации. Именно отростки формируют широкую нервную сеть, что позволяет человеческой психике раскрываться во всей ее красе. Бытует миф, будто умственные способности человека зависят от количества нейронов или от веса головного мозга, но это не так: гениями становятся те люди, у которых поля и подполя мозга сильно развиты (больше в несколько раз). За счет этого поля, отвечающие за определенные функции, смогут выполнять эти функции креативнее и быстрее.

Аксон

Аксон – это длинный отросток нейрона, передающий нервные импульсы от сомы нерва к другим таким же клеткам или органам, иннервируемым определенным участком нервного столба. Природа наделила позвоночных животных бонусом – миелиновым волокном, в структуре которого находятся шванновские клетки, между которыми располагаются небольшие пустые участки – перехваты Ранвье. По ним, как по лесенке, нервные импульсы перескакивают от одного участка к другому. Такая структура позволяет в разы ускорить передачу информации (примерно до 100 метров в секунду). Скорость передвижения электрического импульса по волокну, не обладающего миелином, составляет в среднем 2-3 метра в секунду.

Дендриты

Иной вид отростков нервной клетки – дендриты. В отличие от длинного и цельного аксона, дендрит является короткой и разветвленной структурой. Этот отросток не участвует в передачи информации, а только в ее получении. Так, к телу нейрона возбуждение поступает с помощью коротких веток дендритов. Сложность информации, которую дендрит способен получит, определяется его синапсами (специфические нервные рецепторы), а именно его диаметром поверхности. Дендриты, благодаря огромному количеству своих шипиков, способны устанавливать сотни тысяч контактов с другими клетками.

Метаболизм в нейроне

Отличительной особенностью нервных клеток является их обмен веществ. Метаболизм в нейроците выделяется своей высокой скоростью и преобладанием аэробных (основанных на кислороде) процессов. Такая черта клетки объясняется тем, что работа головного мозга чрезвычайно энергоемкая, и его потребность в кислороде велика. Несмотря на то, что вес мозга составляет всего 2% от веса всего тела, его потребление кислорода составляет примерно 46 мл/мин, а это – 25% от общего потребления организма.

Главным источником энергии для ткани мозга, кроме кислорода, является глюкоза , где она проходит сложные биохимические преобразования. В конечном итоге из сахарных соединений высвобождается большое количество энергии. Таким образом, на вопрос о том, как улучшить нейронные связи головного мозга, можно ответить: употреблять продукты, содержащие соединения глюкозы.

Функции нейрона

Несмотря на относительно не сложное строение, нейрон обладает множеством функций, главные из которых следующие:

  • восприятие раздражения;
  • обработка стимула;
  • передача импульса;
  • формирование ответной реакции.

Функционально нейроны подразделяются на три группы:

Афферентные (чувствительные или сенсорные). Нейроны этой группы воспринимают, перерабатывают и отправляют электрические импульсы к центральной нервной системе. Такие клетки анатомически располагаются вне ЦНС, а в спинномозговых нейронных скоплениях (ганглиях), или таких же скоплениях черепно-мозговых нервов.

Посредники (также эти нейроны, не выходящие за пределы спинного и головного мозга, называются вставочными). Предназначение этих клеток заключается в обеспечении контакта между нейроцитами. Они расположены во всех слоях нервной системы.

Эфферентные (двигательные, моторные). Данная категория нервных клеток отвечает за передачу химических импульсов к иннервируемым органам-исполнителям, обеспечивая их работоспособность и задавая их функциональное состояние.

Кроме этого в нервной системе функционально выделяют еще одну группу – тормозящие (отвечают за торможения возбуждения клеток) нервы. Такие клетки противодействуют распространению электрического потенциала.

Классификация нейронов

Нервные клетки разнообразны как таковые, поэтому нейроны можно классифицировать, отталкиваясь от разных их параметров и атрибутов, а именно:

  • Форма тела. В разных отделах мозга располагаются нейроциты разной формы сомы:
    • звездчатые;
    • веретеновидные;
    • пирамидные (клетки Беца).
  • По количеству отростков:
    • униполярные: имеют один отросток;
    • биполярные: на теле располагаются два отростка;
    • мультиполярные: на соме подобных клеток располагаются три или более отростков.
  • Контактные особенности поверхности нейрона:
    • аксо-соматический. В таком случае аксон контактирует с сомой соседней клетки нервной ткани;
    • аксо-дендритический. Данный тип контакта предполагает соединение аксона и дендрита;
    • аксо-аксональный. Аксон одного нейрона имеет связи с аксоном другой нервной клетки.

Виды нейронов

Для того чтоб осуществлять осознанные движения нужно, чтобы импульс, образовавшийся в двигательных извилинах головного мозга смог достичь необходимых мышц. Таким образом, выделяют следующие виды нейронов: центральный мотонейрон и таковой периферический.

Первый вид нервных клеток берет свое начало у передней центральной извилины, расположенной спереди от самой большой борозды мозга – , а именно от пирамидных клеток Беца. Далее аксоны центрального нейрона углубляются в полушария и проходят сквозь внутреннюю капсулу мозга.

Периферические же двигательные нейроциты образованы двигательными нейронами передних рогов спинного мозга. Их аксоны достигают различных образований, таких как сплетения, спинномозговые нервные скопления, и, главное – мышц-исполнителей.

Развитие и рост нейронов

Нервная клетка берет свое начало от клетки-предшественницы. Развиваясь, первые начинают отрастать аксоны, дендриты дозревают несколько позже. Под конец эволюции отростка нейроцита у сомы клетки образуется маленькое уплотнение неправильной формы. Такое образование называется конусом роста. В нем содержатся митохондрии, нейрофиламенты и трубочки. Постепенно созревают рецепторные системы клетки и расширяются синаптические области нейроцита.

Проводящие пути

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Взаимодействие с нейромедиаторами

Нейроны разного местонахождения общаются между собой с помощью электрических импульсов химической природы. Так, что же лежит в основе их образования? Существуют так называемые нейромедиаторы (нейротрансмиттеры) – сложные химические соединения. На поверхности аксона располагается нервный синапс – контактная поверхность. С одной стороны находится пресинаптическая щель, а с другой – постсинаптическая. Между ними находится щель – это и есть синапс. На пресинаптической части рецептора располагаются мешочки (везикулы), содержащие определенное количество нейромедиаторов (квант).

Когда импульс подходит к первой части синапса, инициируется сложный биохимический каскадный механизм, в результате которого мешочки с медиаторами вскрываются, и кванты веществ-посредников плавно вытекают в щель. На этом этапе импульс исчезает, и появляется вновь только тогда, когда нейромедиаторы достигают постсинаптической щели. Тогда снова активируются биохимические процессы с открытиями ворот для медиаторов и те, действуя на мельчайшие рецепторы, преобразуются в электрический импульс, идущий далее в глубины нервных волокон.

Между тем выделяют разные группы этих самых нейромедиаторов, а именно:

  • Тормозные нейромедиаторы – группа веществ, осуществляющие тормозное действие на возбуждение. К ним относят:
    • гамма-аминомасляную кислоту (ГАМК);
    • глицин.
  • Возбуждающие медиаторы:
    • ацетилхолин;
    • дофамин;
    • серотонин;
    • норадреналин;
    • адреналин.

Восстанавливаются ли нервные клетки

Долгое время считалось, что нейроны не способны к делению. Однако такое утверждение, согласно современным исследованиям, оказалось ложным: в некоторых отделах мозга происходит процесс нейрогенеза предшественников нейроцитов. Кроме того, мозговая ткань обладает выдающимися способностями к нейропластичности. Известно множество случаев, когда здоровый участок мозга берет на себя функцию поврежденного.

Многие специалисты в области нейрофизиологии задавались вопросом о том, как восстановить нейроны головного мозга. Свежими исследованиями американских ученых выяснилось: для своевременной и правильной регенерации нейроцитов не нужно употреблять дорогие препараты. Для этого необходимо лишь составить верный режим сна и правильно питаться с включением в диету витаминов группы В и низкокалорийной пищи.

В случае если произойдет нарушение нейронных связей головного мозга, те способны восстановиться. Однако существуют серьезные патологии нервных связей и путей, такие как болезнь двигательного нейрона. Тогда необходимо обращаться к специализированной клинической помощи, где врачи-неврологи смогут выяснить причину патологии и составить правильное лечение.

Люди, ранее употреблявшие или употребляющие алкоголь, часто задают вопрос о том, как восстановить нейроны головного мозга после алкоголя. Специалист бы ответил, что для этого необходимо систематично работать над своим здоровьем. В комплекс мероприятий входит сбалансированное питание, регулярное занятие спортом, умственная деятельность, прогулки и путешествия. Доказано: нейронные связи головного мозга развиваются через изучение и созерцание категорически новой для человека информации.

В условиях перенасыщения лишней информацией, существования рынка фаст-фуда и сидящего образа жизни мозг качественно поддаётся различным повреждениям. Атеросклероз, тромботические образование на сосудах, хронические стрессы, инфекции, – все это – прямая дорога к засорению мозга. Несмотря на это существуют лекарства, восстанавливающие клетки головного мозга. Основная и популярная группа – ноотропы. Препараты данной категории стимулируют обмен веществ в нейроцитах, увеличивают стойкость к кислородной недостаточности и оказывают позитивный эффект на различные психические процессы (память, внимание, мышление). Кроме ноотропов, фармацевтический рынок предлагает препараты, содержащие никотиновую кислоту, укрепляющие стенки сосудов средства и другие. Следует помнить, что восстановление нейронных связей головного мозга при приеме различных препаратов является долгим процессом.

Влияние алкоголя на головной мозг

Алкоголь оказывает негативное влияние на все органы и системы, а особенно – на головной мозг. Этиловый спирт легко проникает сквозь защитные барьеры мозга. Метаболит алкоголя – ацетальдегид – серьезная угроза для нейронов: алькогольдегидрогеназа (фермент, обрабатывающий алкоголь в печени) в процессе переработки организмом тянет на себя больше количество жидкости, включая воду из мозга. Таким образом, алкогольные соединения просто сушат мозг, вытаскивая из него воду, в результате чего структуры мозга атрофируются, и происходит отмирание клеток. В случае одноразового употребления алкоголя такие процессы обратимы, чего нельзя утверждать о хроническом приеме спиртного, когда, кроме органических изменений, формируются устойчивые патохарактерологические черты алкоголика. Больше подробной информации о том, как происходит «Влияние алкоголя на мозг».