Вычисление площадей по формуле пике. Презентация к уроку "нахождение площади фигур" - "формула пика". Нахождение площади поверхности пространственных форм













































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Руководители:

  • Могутова Татьяна Михайловна
  • Дерюшкина Оксана Валерьевна

Девиз проекта:

“Если вы хотите научиться плавать, то смело входите в воду.
а если хотите научиться решать задачи, то решайте их”.
Д. Пойя.

Выбор темы проекта не случаен. Способы нахождения площади многоугольника нарисованного на “клеточках” очень интересная тема.

Мы знаем разные способы выполнения таких заданий: способ сложения, способ вычитания и др.

Нас очень заинтересовала эта тема, мы изучили много литературы и к нашей огромной радости нашли еще один способ, способ не известный по школьной программе, но способ замечательный! Вычисление площади, используя формулу, выведенную австрийским ученым – математиком Георгом Пиком.

Мы решили изучить формулу Пика, при помощи которой выполнять задания на нахождении площади очень легко!

Цель исследования

1. Изучение формулы Пика.

2. Расширение знаний о многообразии задач на клетчатой бумаге, о приёмах и методах решения этих задач.

Задачи:

1. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию

2. Проанализировать и систематизировать полученную информацию

3. Создать электронную презентацию работы для представления собранного материала одноклассникам

4. Сделать выводы по результатам работы.

5. Подобрать наиболее интересные, наглядные примеры.

Методы исследования:

1. Моделирование

2. Построение

3. Анализ и классификация информации

4. Сравнение, обобщение

5. Изучение литературных и Интернет-ресурсов

Георг Пик – австрийский ученый – математик. Пик поступил в университет в Вене в 1875 году. Свою первую работу опубликовал в возрасте 17 лет. Круг его математических интересов был чрезвычайно широк. 67 его работ посвящены многим разделам математики, таким как: линейная алгебра, интегральное исчисление, геометрия, функциональный анализ, теория потенциала.

Широко известная Теорема появилась в сборнике работ Пика в 1899 году.

Теорема привлекла довольно большое внимание и начала вызывать восхищение своей простотой и элегантностью.

Формула Пика, формула вычисления площади многоугольника, изображенного на бумаге в клетку, полезна при решении заданий ЕГЭ и ОГЭ. Именно, поэтому, она нас очень заинтересовала.

Формула Пика - классический результат комбинаторной геометрии и геометрии чисел.

По теореме Пика площадь многоугольника равна:

Г: 2 + В – 1

Г – число узлов решетки на границе многоугольника

В – число узлов решетки внутри многоугольника.

Первым делом мы поставили задачу: изучить, что такое узлы решетки и как правильно вычислять их количество. Оказалось, это очень просто. Приведем несколько примеров.

Пусть дан произвольный треугольник. Узлы на границе изображены оранжевым цветом, узлы внутри изображены синим цветом. Найти узлы и подсчитать их количество очень легко.

В данном случае Г= 15, В = 35

Пример №2 Узлов на границе 18, т.е. Г = 18, узлов внутри 20, В = 20.

И еще один пример. Дан произвольный многоугольник. Считаем узлы на границе. Их 14. Узлом внутри многоугольника 43. Г = 14, В = 43.

С первой задачей мы справились!

Второй этап нашей работы: вычисление площадей многоугольников.

Рассмотрим несколько примеров.

Пример №1.

Г = 14, В = 43, S = + 43 – 1 = 49

Пример №2.

Г = 11, В = 5, S = + 5 – 1 = 9,5

Пример №3.

Г = 15, В = 22, S = + 22 – 1 = 28,5

Пример №4.

Г = 8, В = 16, S = + 16 – 1 = 19

Пример №5

Г = 10, В = 30, S = + 30 – 1 = 34

На рассмотрение пяти примеров мы затратили всего 1-2 минуты. Вычислять площадь по формуле Пика не только быстро, но и очень легко!

Но перед нами встал очень серьезный вопрос:

Можно ли доверять теореме Пика?

Получаются ли одинаковые результаты при вычислении площадей разными способами?

Найдем площади многоугольников по формуле Пика и обычным способом, применяя формулы геометрии и способы достроения или разбиения на части. Вот какие результаты мы получили:

Пример №1.

Вычислим площадь многоугольника по формуле Пика:

Подсчитаем количество узлов на границе и внутри. Г = 3, В = 6.

Вычислим площадь: S = 6 + - 1 = 6,5

Достроим многоугольник до прямоугольника. Площадь прямоугольника равна: 3 * 5 = 15, S? = = 3, S? = = 3 , S = = 2,5

S = 15-3-3-2,5 = 6,5

Результат одинаковый.

Пример №2.

Г = 4, В = 9, S = 9 + - 1 = 10

Достроим до прямоугольника.

Площадь прямоугольника равна: 5 * 4 = 20, S 1 = 2 * 1 = 2, S 2 = = 3,

S = = 2 , S = = 1,5, S = = 2,5

Площадь прямоугольника равна

S = 20 – 2 – 3 – 2 – 1,5 – 2,5 = 10

Мы снова получили одинаковые результаты.

Рассмотрим еще один пример.

Пример №3

Вычислим площадь по формуле Пика.

Г = 5, В = 6, S = 6 + - 1 = 7,5

Вычислим площадь, используя способ достроения.

Площадь прямоугольника равна 5·4 = 20

S 1 = 2 * 1 = 2, S 2 = = 1, S 3 = 2 * 1 = 2, S 4 = = 1, S 5 = = 1, S 6 = = 2,5

S = 20 – 2 -1– 2 – 1 – 1 – 2,5 – 3 = 7,5

Результат одинаковый.

В презентации мы рассмотрели три примера, но на самом деле мы рассмотрели очень много самых разных примеров. Результат всегда был один и тот же: Вычисление площади по формуле Пика и другими способами дает одинаковый результат.

Вывод: формуле Пика можно доверять! Она дает точный результат.

Мы довольны!

И еще один вопрос встал перед нами: какой способ вычисления наиболее рациональный, наиболее удобный для использования?

Чтобы ответить на этот вопрос, достаточно использовать всю предыдущую работу. Но рассмотрим еще три примера, которые окончательно позволят получить ответ на наш вопрос.

Пример №2

Пример №3

При помощи формулы Пика легко вычислить площадь многоугольника даже самой причудливой формы. Рассмотрим пример:

Вывод однозначный: наиболее рациональный способ вычисления площади многоугольника, изображенного на бумаге в клетку: формула Пика!

Предлагаем каждому из вас вычислить площадь многоугольника, используя формулу Пика:

Вычислите количество узлов на границе. Они изображены желтым цветом.

Вычислите количество узлов внутри, красный цвет.

Подставьте в формулу, назовите результат. Вы за одну минуту вычислили площадь.

Итак, формула Пика имеет ряд преимуществ перед другими способами вычисления площадей многоугольников на клетчатой бумаге:

Для вычисления площади многоугольника, нужно знать всего одну формулу:

S = Г:2 + В - 1.

Формула Пика очень проста для запоминания.

Формула Пика очень удобна и проста в применении.

Многоугольник, площадь которого необходимо вычислить, может быть любой, даже самой причудливой формы.

Применяя формулу Пика легко выполнять задание ЕГЭ и ОГЭ.

Приведем несколько примеров вычисления площади из вариантов ЕГЭ – 2015.

Мы решили научить пользоваться формулой Пика учащихся 9 – 11 классов нашей школы. Провели фестиваль “Формула Пика”.

Все учащиеся с большим интересом познакомились с презентацией, научились пользоваться формулой Пика.

За 30 минут практической работы учащиеся выполнили большое количество заданий. Каждый учащийся получил памятку “Формула Пика”.

Мы помогли им в подготовке к ЕГЭ и ОГЭ!

Спустя месяц работы, мы провели опрос учащихся 9–11 классом.

Задали следующие вопросы:

Вопрос №1:

Формула Пика – это рациональный способ вычисления площади многоугольника?

“Да” - 100% учащихся.

Вопрос №2:

Вы пользуетесь формулой Пика?

“Да” – 100% учащихся

Наша работа не прошла даром! Мы довольны!

Презентацию нашего проекта мы разместили в сети Интернет. Много просмотров и скачиваний нашей работы.

Мы оформили альбом “Формула Пика”. Им постоянно, особенно первое время, пользовались учащиеся нашей школы.

Результаты работы над проектом:

В процессе работы над проектом изучили справочную, научно-популярную литературу по теме исследования.

  • Изучили теорему Пика, научились находить площади фигур, изображенных на бумаге в клетку просто и рационально.
  • Расширили свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.
  • Провели для учащихся 9–11 фестиваль “Формула Пика”, научили их находить площадь, использую эту формулу. Подобрали много интересных примеров.
  • Создали электронную презентацию в помощь своим ровесникам.
  • Оформили альбом “Формула Пика”, который постоянно используют учащиеся школы.

Предлагает вам выполнить два задания, чтобы вы убедились в рациональности нашей работы.

Спасибо за внимания!

Эту темa будет интереснa учащимся 10-11 классов в рaмкaх подготовки к ЕГЭ. Формулу Пикa можно применять при вычислении площади фигуры, изобрaжённой на клетчaтой бумаге (это зaдaние предложенно в контрольно-измерительных мaтериaлaх ЕГЭ).

Ход урока

"Предмет математики настолько серьезен,

что полезно не упускать случая

сделать его немного занимательным"

(Б. Паскаль)

Учитель: Есть задачи, которые необыкновенные и не похожи на задачи из школьных учебников? Да, это задачи на клетчатой бумаге. Такие задачи есть в контрольно-измерительных материалах ЕГЭ. В чём же зaключaется особенность тaких задач, кaкие методы и приёмы используются для решения зaдaч нa клетчатой бумaге? Нa этом зaнятии мы исследуем зaдaчи нa клетчaтой бумaге, связaнные с нaхождением площади изображённой фигуры, и научимся вычислять площади многоугольников, нарисованных на клетчатом листке.

Учитель: Объектом исследовaния будут задачи на клетчатой бумаге.

Предметом нашего исследования будут задачи нa вычиcление площади многоугольников на клетчатой бумаге.

И целью исcледования будет формула Пика.

В - количеcтво целочисленных точек внутри многоугольника

Г - количество целочисленных точек на границе многоугольника

Это удобная формула, с помощью которой можно вычислить площадь любого многоугольника без самопересечений с вершинами в узлах клетчатой бумаги.

Кто же такой Пик? Пик Георг Алекcандров (1859-1943 гг.) - австрийский математик. Открыл формулу в 1899 году.

Учитель: Сформулируем гипотезу: площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам геометрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно проcтые сведения, которые нам известны:

Площадь прямоугольника равна произведению смежных сторон.

Площадь прямоугольного треугольника равна половине произведения cторон, образующих прямой угол.

Учитель: Узлы cетки - точки, в которых пересекаются линии сетки.

Внутренние узлы многоугольника - синие. Узлы на границах многоугольника - коричневые.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги.

Учитель: Проведём исследования для треугольника. Сначала посчитаем площадь треугольника по формуле Пика.

В + Г /2 − 1 , где В Г — количество целочиcленных точек на границе многоугольника.

В = 34 , Г = 15 ,

В + Г /2 − 1 = 34 + 15 :2 − 1 = 40, 5 Ответ: 40, 5

Учитель : Теперь посчитаем площадь треугольника по формулам геометрии. Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как cумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Учащиеся выполняют вычисления в тетрадях. Затем проверяют свои результаты с вычислениями на доске.

Учитель: Сравнив результаты исследований, сделайте вывод. Получили, что площадь фигуры, вычисленная по формуле Пика, равна площади фигуры, вычисленной по формулам геометрии. Итак, гипотеза оказалась верной.

Далее учитель предлагает вычислить площадь «своего» произвольного многоугольника по формулам геометрии и по формуле Пика и сравнить полученные результаты. «Поиграть» с формулой Пика можно на сайте математических этюдов.

В заключение статьи предлагается одна из работ по теме «Вычисление площади произвольного многоугольника с помощью формулы Пика» .

Еще п ример:

Площадь многоугольника с целочисленными вершинами равна В + Г /2 − 1 , где В есть количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.

В = 10 , Г = 6 ,

В + Г /2 − 1 = 10 + 6 :2 − 1 = 12 ОТВЕТ: 12

Учитель : Предлагаю вашему вниманию еще решить следующие задачи:

Ответ: 12

Ответ: 13

Ответ: 9

Ответ: 11,5

Ответ: 4

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см ×1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

В Викисловаре есть статья «пика» Пика В военном деле: Пика холодное колющее оружие, разновидность длинного копья. Пикинёры вид пехоты в европейских армиях XVI начала XVIII веков. Пикельхельм (п … Википедия

Теорема Пика (комбинаторная геометрия) - В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

Треугольник - У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Трапеция - У этого термина существуют и другие значения, см. Трапеция (значения). Трапеция (от др. греч. τραπέζιον «столик»; … Википедия

Четырёхугольник - ЧЕТЫРЁХУГОЛЬНИКИ ┌─────────────┼────────────┐ невыпуклый выпуклый самопересекающийся … Википедия

Двуугольник - Правильный двуугольник на поверхности сферы Двуугольник в геометрии это … Википедия

Пятиугольник - Правильный пятиугольник (пентагон) Пятиугольник многоугольник с пятью углами. Также пятиугольником называют всякий предмет такой формы. Сумма внут … Википедия

Шестиугольник - Правильный шестиугольник Шестиугольник многоугольник с шестью углами. Также шестиугольником называют всякий предмет такой формы. Сумма внутренних углов выпуклого шестиугольника р … Википедия

Додекагон - Правильный додекагон Додекагон (греч … Википедия

Прямоугольник - Прямоугольник параллелограмм, у которого все углы прямые (равны 90 градусам). Примечание. В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые. Четвёртый угол (в силу … Википедия

Книги

  • Эффект плато. Как преодолеть застой и двигаться дальше , Салливан Б.. Эффект плато - эта пугающая формула «после каждого успеха приходит застой», понимание того, что ваши усилия больше не приносят результата, - мощный закон природы, который касается каждого из… Купить за 460 руб
  • Математический клуб «Кенгуру». Выпуск № 8. Математика на клетчатой бумаге , . Выпуск посвящен различным задачам и играм, связанным с листом клетчатой бумаги. В частности, в нем подробно рассматривается вычисление площади многоугольника, вершины которого расположены в…

Вычисление площади фигуры.

Метод Пика

Работа обучающейся 5Б класса МБОУ СОШ №23 г. Иркутска

Балсуковой Александры

Руководитель: Ходырева Т.Г.

2014г.

Вычисление площади фигуры. Метод Пика

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : сравнение, обобщение, аналогии, изучение литературы и Интернет-ресурсов, анализ информации.

Цель исследования:

    выбрать главную, интересную, понятную информацию

    Проанализировать и систематизировать полученную информацию

    Найти различные методы и приёмы решения задач на клетчатой бумаге

    проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

    Создать электронную презентацию работы для представления собранного материала

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

(Г. Галилей)

    Актуальность темы

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встает вопрос есть ли задачи, отличные от задач рассмотренных в учебнике. К таким задачам можно отнести задачи на клетчатой бумаге. В чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. На уроке математики учитель познакомила нас с интересным методом вычисления многоугольников. Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

И еще я узнала, что такие задачи рассматриваются в контрольно – измерительных материалах ГИА и ЕГЭ. Поэтому, считаю изучение этого материала полезным для применения его не только в дальнейшем учебном процессе, но и для решения нестандартных олимпиадных задач.

2.Понятие площади

Площадь - численная характеристика двумерной геометрической фигуры, показывающая размер этой фигуры. Исторически вычисление площади называлось . Фигура, имеющая площадь, называется квадрируемой .

Площадь плоской фигуры с точки зрения геометрии

1. Площадь -мера плоской фигуры по отношению к стандартной фигуре, являющейся квадратом со стороной, равной единице длины.

2. Площадь - численная характеристика, приписываемая плоским фигурам определенного класса (например, многоугольникам). Площадь квадрата со стороной, равной единице длины, принимаемая равной единице площади

3. Площадь - положительная величина, численное значение которой обладает следующими свойствами:

Равные фигуры имеют равные площади;

Если фигура разбивается на части, являющиеся простыми фигурами (т.е. те, которые можно разбить на конечное число плоских треугольников), то площадь этой фигуры равна сумме площадей ее частей;

Площадь квадрата со стороной, равной единице измерения, равна единице.

Таким образом, можно сделать вывод, что площадь не является конкретной величиной, а только дает некоторую условную характеристику какой-либо плоской фигуры. Чтобы найти площадь произвольной фигуры, то необходимо определить, сколько квадратов со стороной, равной единице длины, она в себя вмещает. Например, возьмем прямоугольник, в котором квадратный сантиметр укладывается ровно 6 раз. Это означает, что площадь прямоугольника равняется 6 см 2 .

Выбор площади квадрата со стороной, равной единице измерения, в качестве минимальной единицы измерения всех площадей не случаен. Это результат договоренности между людьми, возникший в ходе «естественного» многовекового отбора. Кроме того, были и другие предложения о единице измерения. Так, например, за такую единицу предлагалось взять площадь равностороннего треугольника (т.е. любую плоскую фигуру можно было представить в виде «суммы» некоего числа равносторонних треугольников), что привело бы к изменению численного представления площадей.

Таким образом, формулы для вычисления площадей появились в математике и осознались человеком не сразу-это многих ученых, проживающих в разные эпохи и разных странах. (Ошибочные формулы не находили место в науке и уходили в небытие). Истинные же формулы дополнялись, исправлялись и обосновывались на протяжений тысячелетий, пока не дошли до нас в их современном обличии.

Само же измерение площади состоит в сравнении площади данной фигуры с площадью фигуры, принятой за единицу измерения. В результате сравнения получается некоторое число- численное значение площади данной фигуры. Это число показывает, во сколько раз площадь данной фигуры больше (или меньше) площади фигуры, принятой за единицу измерения площади.

Таким образом, можно сделать вывод, что площадь-это искусственная величина, исторически введенная человеком для измерения некоторого свойства плоской фигуры. Необходимость ввода такой величины обуславливалась возрастающими потребностями в знании того, насколько большая та или иная территория, сколько надо зерна, чтобы засеять поле или вычислить площадь поверхности пола для украшения орнаментной плитки.

    Формула Пика

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью. Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки многоугольника хоть одну общую точку.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

Теорема . Пусть - число целочисленных точек внутри многоугольника, - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика :

Пример. Для многоугольника на рисунке L = 7 (красные точки), 9 (зеленые точки), поэтому S = 7+ 9/2 -1 = 10,5 квадратных единиц.

Теорема Пика - классический результат и .

Площадь треугольника с вершинами в узлах и не содержащего узлов ни внутри, ни на сторонах (кроме вершин), равна 1/2. Этот факт.

3. История

Формула Пика была открыта австрийским математиком Георгом Александром (1859-1942) в г.. В 16 лет Георг закончил школу и поступил в . В 20 лет получил право преподавать физику и математику. В 1884 году Пик уехал в к . Там он познакомился с другим учеником Клейна, . Позже, в 1885 году, он вернулся в , где и прошла оставшаяся часть его научной карьеры.

Георг Пик дружил с Эйнштейном. Пик и Эйнштейн не только имели общие научные интересы, но и страстно увлекались музыкой. Пик, игравший в квартете, который состоял из университетских профессоров, ввёл Эйнштейна в научное и музыкальное общества Праги.

Круг математических интересов Пика был чрезвычайно широк. В частности, им более 50 научных работ. Широкую известность получила открытая им в 1899 году теорема Пика для расчёта площади многоугольника. В Германии эта теорема включена в школьные учебники.

4.Приложения формулы Пика

Формула Пика используется не только для вычисления площадей многоугольников, но и для решения многих задач олимпиадного уровня.

Некоторые примеры использования формулы Пика при решении задач:

1) Шахматный король обошел доску 8 × 8 клеток, побывав на каж-

дом поле ровно один раз и последним ходом вернувшись на исходное

поле. Ломаная, соединяющая последовательно центры полей, которые

проходил король, не имеет самопересечений. Какую площадь может

ограничивать эта ломаная? (Сторона клетки равна 1.)

Из формулы Пика сразу следует, что площадь, ограниченная ло-

маной, равна 64/2 − 1 = 31; здесь узлами решетки служат центры 64

полей и, по условию, все они лежат на границе многоугольника. Таким

образом, хотя таких «траекторий» короля достаточно много, но все они

ограничивают многоугольники равных площадей.

    Задачи из контрольно – измерительных материалов ГИА и ЕГЭ

Задание B3

Найдите площади фигуры, изображенной на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

4.Заключение

В процессе исследования я изучила справочную, научно-популярную литературу. Узнала, что задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

5. Используемая литература:

1.В а с и л ь е в Н. Б. Вокруг формулы Пика // Квант. - 1974. - № 12

2.К о к с е П р а с о л о в В. В. Задачи по планиметрии. - М.: МЦНМО, 2006.т е р Г. С.М. Введение в геометрию. - М.: Наука, 1966

3.Рослова Л.О., Шарыгин И.Ф. Измерения. – М.:Изд. «Открытый мир», 2005.

Интернет – ресурсы :

:

Отзыв на работу

«Вычисление площадей плоских фигур. Метод Пика»

Рассмотрение данной темы позволит повысить познавательную активность обучающегося, который впоследствии на уроках геометрии начнет видеть гармонию чертежа и перестанет воспринимать геометрию (да и математику в целом) как скучную науку.

Отзыв составила учитель математики

Ходырева Татьяна Георгиевна

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S - площадь многоугольника, - число клеток, которые целиком лежат внутри многоугольника, и - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать ниже только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги - в таких, где пересекаются линии сетки. Оказывается, что для таких многоугольников можно указать такую формулу:

где - площадь, r - число узлов, которые лежат строго внутри многоугольника.

Эту формулу называют «формула Пика» - по имени математика, открывшего её в 1899 году.

Простые треугольники

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника. Проделав это, например, для треугольников, изображённых на рисунке 1.34, можно убедиться, что площадь получается всегда равной «полученному» числу - числу вида, где - целое.

Назовём треугольник простым, если ни внутри него, ни на его сторонах нет узлов сетки, за исключением вершин. Все простые треугольники на рис. 1.34 имеют площадь. Мы увидим, что это не случайно.

Задача . Три кузнечика (три точки) в начальный момент времени сидят в трёх вершинах одной клетки, а затем начинают «играть в чехарду»: каждый может прыгнуть через одного из двух других, после чего оказывается в симметричной относительно его точке (рис. 1.35, ясно, что после любого числа таких прыжков кузнечики будут попадать в узлы клетчатой бумаги). В каких тройках точек могут через несколько прыжков оказаться кузнечики?

Назовём треугольник достижимым, если в его вершинах могут одновременно оказаться три кузнечика, которые вначале были в трёх вершинах одной клетки; прыжком будем называть преобразование треугольника, заключающееся в том, что одна из вершин переходит в точку, симметричную относительно любой из двух других вершин (эти две вершины остаются на месте).

Теорема 1 . Следующие три свойства треугольников с вершинами в узлах клетчатой бумаги эквивалентны друг другу:

1) треугольник имеет площадь,

2) треугольник прост,

3) треугольник достижим.

Познакомимся со следующими свойствами простого треугольника, которые и приводят к справедливости данной теоремы.

1. Площадь треугольника при прыжке не меняется.

2. Любой достижимый треугольник имеет площадь.

3. Если достроить простой треугольник АВС до параллелограмма ABCD , то ни внутри, ни на сторонах этого параллелограмма не будет узлов (не считая вершин).

4. Из простого треугольника при прыжке получается простой.

5. Из простого треугольника один из углов - тупой или прямой (причём последний случай возможен только для треугольника, у которого три вершины принадлежат одной клетке, такой простой треугольник - со сторонами 1, 1, будем называть минимальным.)

6. Из любого простого не минимального треугольника можно одним прыжком получить треугольник, у которого наибольшая сторона меньше, чем наибольшая сторона исходного.

7. Любой простой треугольник можно конечным числом прыжков перевести в минимальный.

8. Любой простой треугольник достижим.

9. Любой простой треугольник имеет площадь.

10. Любой треугольник можно разрезать на простые.

11. Площадь любого треугольника равна, причём при любом разрезании его на простые их количество равно m .

12. Любой треугольник площади - простой.

13. Для любых двух узлов А и В решётки, на отрезке между которыми нет других узлов, найдётся узел С такой, что треугольник АВС - простой.

14. Узел С в предыдущем свойстве можно всегда выбрать так, что угол АСВ будет тупым или прямым.

15. Пусть клетчатая плоскость разрезана на равные параллелограммы так, что все узлы являются вершинами параллелограммов. Тогда каждый из треугольников, на которые один из этих параллелограммов разрезается своей диагональю - простой.

16. (Обратное 15). Треугольник АВС - простой тогда и только тогда, когда всевозможные треугольники, полученные из АВС параллельными переносами, переводящими узел А в различные узлы решётки, не накладываются друг на друга.

17. Если решётку - узлы клетчатой бумаги - разбить на четыре подрешётки с клетками (рис. 1.36), то вершины простого треугольника обязательно попадут в три разные подрешётки (все три имеют разные обозначения).

Следующие два свойства дают ответ к задаче о трёх кузнечиках.

18. Три кузнечика могут одновременно попасть в те и только те тройки точек, которые служат вершинами простого треугольника и имеют тот же знак, что и соответствующие вершины начального треугольника.

19. Два кузнечика могут одновременно попасть в те и только те пары узлов соответствующих знаков, на отрезке между которыми нет других узлов.

Триангуляция многоугольника

Мы рассмотрим частный вид многоугольников на клетчатой бумаге, которому в формуле Пика соответствуют значения. Но от этого частного случая можно перейти сразу к самому общему, воспользовавшись теоремой о разрезании на треугольники произвольного многоугольника (клетчатая бумага больше не нужна).

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n - 2 (это разбиение - триангуляция с вершинами в вершинах n -угольника).

б) Пусть на границе многоугольника отмечено r точек (включая все вершины), внутри - ещё i точек. Тогда существует триангуляция с вершинами в отмеченных точках, причём количество треугольников такой триангуляции будет равно.

Разумеется, а) - частный случай б), когда.

Справедливость этой теоремы следует из следующих утверждений.

1) Из вершины наибольшего угла n -угольника () всегда можно провести диагональ, целиком лежащую внутри многоугольника.

2) Если n -угольник разрезан диагональю на р -угольник и q -угольник, то.

3) Сумма углов n -угольника равна.

4) Любой n -угольник можно разрезать диагоналями на треугольника.

5) Для любого треугольника, внутри и на границе которого отмечены несколько точек (в том числе и все три его вершины), существует триангуляция с вершинами в отмеченных точках.

6) То же самое верно и для любого n -угольника.

7) Число треугольников триангуляции равно, где i и r - количество отмечены несколько точек соответственно внутри и на границе многоугольника. Назовём разбиение n -угольника на несколько многоугольников правильным, если каждая вершина одного из многоугольников разбиения служит вершиной всех других многоугольников разбиения, которым она принадлежит. 8) Если из вершин k -угольников, на которые разбит правильным образом n -угольник, i вершин лежат внутри и r - на границе n -угольника, то количество k -угольников равно

9) Если точек плоскости и отрезков с концами в этих точках образуют многоугольник, правильно разбитый на многоугольников, то (рис. 1.38)

Из теорем 1 и 2 и вытекает формула Пика:

1.5 Теорема Пифагора о сумме площадей квадратов, построенных на катетах прямоугольного треугольника

Теорема . Сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе этого треугольника.Доказательство. Пусть АВС (рис. 1.39) - прямоугольный треугольник, а BDEA , AFGE и BCKH - квадраты, построенные на его катетах и гипотенузе; требуется доказать, что сумма площадей двух первых квадратов равна площади третьего квадрата.

Проведём ВС . Тогда квадрат BCKH разделится на два прямоугольника. Докажем, что прямоугольник BLMH равновелик квадрату BDEA , а прямоугольник LCKM равновелик квадрату AFGC .

Проведём вспомогательные прямые DC и АН . Рассмотрим треугольники DCB и ABH . Треугольник DCB , имеющий основание BD , общее с квадратом BDEA , а высоту СN , равную высоте АВ этого квадрата, равновелик половине квадрата. Треугольник АВН , имеющий основание ВН , общее с прямоугольником BLMH , и высоту АР , равную высоте BL этого прямоугольника, равновелик его половине. Сравнивая эти два треугольника между собой, находим, что у них BD = ВА и ВС = ВН (как стороны квадрата);

Сверх того, DCB = АВН , т. к. каждый из этих углов состоит из общей части - АВС и прямого угла. Значит, треугольники АВН и ВСD равны. Отсюда следует, что прямоугольник BLMN равновелик квадрату BDEA . Точно также доказывается, что прямоугольник LGKM равновелик квадрату AFGC . Отсюда следует, что квадрат ВСКН равновелик сумме квадратов BDEA и AFGC .