Площадь фигуры ограниченной 3 линиями онлайн. Примеры. Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y)

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Находим точки пересечения заданных линий. Для этого решаем систему уравнений:

Для нахождения абсцисс точек пересечения заданных линий решаем уравнение:

Находим: x 1 = -2, x 2 = 4.

Итак, данные линии, представляющие собой параболу и прямую, пересекаются в точках A (-2; 0), B (4; 6).

Эти линии образуют замкнутую фигуру, площадь которой вычисляем по указанной выше формуле:

По формуле Ньютона-Лейбница находим:

Найти площадь области, ограниченной эллипсом .

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t , dx = a cos t dt . Новые пределы интегрирования t = α и t = β определяются из уравнений 0 = a sin t , a = a sin t . Можно положить α = 0 и β = π /2.

Находим одну четвертую искомой площади

Отсюда S = πab .

Найти площадь фигуры, ограниченной линиями y = - x 2 + x + 4 и y = - x + 1.

Решение.

Найдем точки пересечения линий y = -x 2 + x + 4, y = -x + 1, приравнивая ординаты линий: -x 2 + x + 4 = -x + 1 или x 2 - 2x - 3 = 0. Находим корни x 1 = -1, x 2 = 3 и соответствующие им ординаты y 1 = 2, y 2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x 2 + 1 и прямой x + y = 3.

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x 1 = -2 и x 2 = 1.

Полагая y 2 = 3 - x и y 1 = x 2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r 2 = a 2 cos 2 φ .

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f (φ ) и двумя полярными радиусами φ 1 = ʅ и φ 2 = ʆ , выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2 .

Вычислить длину дуги астроиды x 2/3 + y 2/3 = a 2/3 .

Решение.

Запишем уравнение астроиды в виде

(x 1/3) 2 + (y 1/3) 2 = (a 1/3) 2 .

Положим x 1/3 = a 1/3 cos t , y 1/3 = a 1/3 sin t .

Отсюда получаем параметрические уравнения астроиды

x = a cos 3 t , y = a sin 3 t , (*)

где 0 ≤ t ≤ 2π .

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L , соответствующую изменению параметра t от 0 до π /2.

Получаем

dx = -3a cos 2 t sin t dt , dy = 3a sin 2 t cos t dt .

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π /2, получаем

Отсюда L = 6a .

Найти площадь, ограниченную спиралью Архимеда r = и двумя радиусами-векторами, которые соответствуют полярным углам φ 1 и φ 2 (φ 1 < φ 2 ).

Решение.

Площадь, ограниченная кривой r = f (φ ) вычисляется по формуле , где α и β - пределы изменения полярного угла.

Таким образом, получаем

(*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ 1 = 0; φ 2 = 2π ):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ 1 = 2π ; φ 2 = 4π ):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x 2 и x = y 2 .

Решение.

Решим систему уравнений

и получим x 1 = 0, x 2 = 1, y 1 = 0, y 2 = 1, откуда точки пересечения кривых O (0; 0), B (1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA :

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) ; б) .

Решение.

а) На отрезке функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x , находим

б) На отрезке , функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок разделить на два и [π , 2π ], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [π , 2π ] площадь берется со знаком минус.

В итоге, искомая площадь равна

Определить объем тела, ограниченного поверхностью, полученной от вращения эллипса вокруг большой оси a .

Решение.

Учитывая, что эллипс симметричен относительно осей координат, то достаточно найти объем, образованный вращением вокруг оси Ox площади OAB , равной одной четверти площади эллипса, и полученный результат удвоить.

Обозначим объем тела вращения через V x ; тогда на основании формулы имеем , где 0 и a - абсциссы точек B и A . Из уравнения эллипса находим . Отсюда

Таким образом, искомый объем равен . (При вращении эллипса вокруг малой оси b , объем тела равен )

Найти площадь, ограниченную параболами y 2 = 2 px и x 2 = 2 py .

Решение.

Сначала найдем координаты точек пересечения парабол, чтобы определить отрезок интегрирования. Преобразуя исходные уравнения, получаем и . Приравнивая эти значения, получим или x 4 - 8p 3 x = 0.

x 4 - 8p 3 x = x (x 3 - 8p 3) = x (x - 2p )(x 2 + 2px + 4p 2) = 0.

Находим корни уравнений:

Учитывая то факт, что точка A пересечения парабол находится в первой четверти, то пределы интегрирования x = 0 и x = 2p .

Искомую площадь находим по формуле

В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.


Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".

Мы разобрались с нахождением площади криволинейной трапеции G . Вот полученные формулы:
для непрерывной и неотрицательной функции y=f(x) на отрезке ,
для непрерывной и неположительной функции y=f(x) на отрезке .

Однако при решении задач на нахождение площади очень часто приходится иметь дело с более сложными фигурами.

В этой статье мы поговорим о вычислении площади фигур, границы которых заданы функциями в явном виде, то есть, как y=f(x) или x=g(y) , и подробно разберем решение характерных примеров.

Навигация по странице.

Формула для вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y) .

Теорема.

Пусть функции и определены и непрерывны на отрезке , причем для любого значения x из . Тогда площадь фигуры G , ограниченной линиями x=a , x=b , и вычисляется по формуле .

Аналогичная формула справедлива для площади фигуры, ограниченной линиями y=c , y=d , и : .

Доказательство.

Покажем справедливость формулы для трех случаев:

В первом случае, когда обе функции неотрицательные, в силу свойства аддитивности площади сумма площади исходной фигуры G и криволинейной трапеции равна площади фигуры . Следовательно,

Поэтому, . Последний переход возможен в силу третьего свойства определенного интеграла .

Аналогично, во втором случае справедливо равенство . Вот графическая иллюстрация:

В третьем случае, когда обе функции неположительные, имеем . Проиллюстрируем это:

Теперь можно переходить к общему случаю, когда функции и пересекают ось Ox .

Обозначим точки пересечения . Эти точки разбивают отрезок на n частей , где . Фигуру G можно представить объединением фигур . Очевидно, что на своем интервале попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как

Следовательно,

Последний переход справедлив в силу пятого свойства определенного интеграла.

Графическая иллюстрация общего случая.

Таким образом, формула доказана.

Пришло время перейти к решению примеров на нахождение площади фигур, ограниченных линиями y=f(x) и x=g(y) .

Примеры вычисления площади фигуры, ограниченной линиями y=f(x) или x=g(y) .

Решение каждой задачи будем начинать с построения фигуры на плоскости. Это нам позволит сложную фигуру представить как объединение более простых фигур. При затруднениях с построением обращайтесь к статьям: ; и .

Пример.

Вычислить площадь фигуры, ограниченной параболой и прямыми , x=1 , x=4 .

Решение.

Построим эти линии на плоскости.

Всюду на отрезке график параболы выше прямой . Поэтому, применяем полученную ранее формулу для площади и вычисляем определенный интеграл по формуле Ньютона-Лейбница :

Немного усложним пример.

Пример.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

В чем здесь отличие от предыдущих примеров? Ранее у нас всегда были две прямых, параллельных оси абсцисс, а сейчас только одна x=7 . Сразу возникает вопрос: где взять второй предел интегрирования? Давайте для этого взглянем на чертеж.

Стало понятно, что нижним пределом интегрирования при нахождении площади фигуры является абсцисса точки пересечения графика прямой y=x и полу параболы . Эту абсциссу найдем из равенства:

Следовательно, абсциссой точки пересечения является x=2 .

Обратите внимание.

В нашем примере и по чертежу видно, что линии и y=x пересекаются в точке (2;2) и предыдущие вычисления кажутся излишними. Но в других случаях все может быть не так очевидно. Поэтому рекомендуем всегда аналитически вычислять абсциссы и ординаты точек пересечения линий.

Очевидно, график функции y=x расположен выше графика функции на интервале . Применяем формулу для вычисления площади:

Еще усложним задание.

Пример.

Вычислить площадь фигуры, ограниченной графиками функций и .

Решение.

Построим график обратной пропорциональности и параболы .

Прежде чем применять формулу для нахождения площади фигуры, нам нужно определиться с пределами интегрирования. Для этого найдем абсциссы точек пересечения линий, приравняв выражения и .

При отличных от нуля значениях x равенство эквивалентно уравнению третьей степени с целыми коэффициентами. Можете обратиться к разделу чтобы вспомнить алгоритм его решения.

Легко проверить, что x=1 является корнем этого уравнения: .

Разделив выражение на двучлен x-1 , имеем:

Таким образом, оставшиеся корни находятся из уравнения :

Теперь из чертежа стало видно, что фигура G заключена выше синей и ниже красной линии на интервале . Таким образом, искомая площадь будет равна

Рассмотрим еще один характерный пример.

Пример.

Вычислить площадь фигуры, ограниченной кривыми и осью абсцисс.

Решение.

Сделаем чертеж.

Это обычная степенная функция с показателем одна треть, график функции можно получить из графика отобразив его симметрично относительно оси абсцисс и подняв на единицу вверх.

Найдем точки пересечения всех линий.

Ось абсцисс имеет уравнение y=0 .

Графики функций и y=0 пересекаются в точке (0;0) так как x=0 является единственным действительным корнем уравнения .

Графики функций и y=0 пересекаются в точке (2;0) , так как x=2 является единственным корнем уравнения .

Графики функций и пересекаются в точке (1;1) , так как x=1 является единственным корнем уравнения . Это утверждение не совсем очевидно, но - функция строго возрастающая, а - строго убывающая, поэтому, уравнение имеет не более одного корня.

Единственное замечание: в этом случае для нахождения площади придется использовать формулу вида . То есть, ограничивающие линии нужно представить в виде функций от аргумента y , а черной линией .

Определим точки пересечения линий.

Начнем с графиков функций и :

Найдем точку пересечения графиков функций и :

Осталось найти точку пересечения прямых и :


Как видите, значения совпадают.

Подведем итог.

Мы разобрали все наиболее часто встречающиеся случаи нахождения площади фигуры, ограниченной явно заданными линиями. Для этого нужно уметь строить линии на плоскости, находить точки пересечения линий и применять формулу для нахождения площади, что подразумевает наличие навыков вычисления определенных интегралов.

Начинаем рассматривать собственно процесс вычисления двойного интеграла и знакомиться с его геометрическим смыслом.

Двойной интеграл численно равен площади плоской фигуры (области интегрирования). Это простейший вид двойного интеграла, когда функция двух переменных равна единице: .

Сначала рассмотрим задачу в общем виде. Сейчас вы немало удивитесь, насколько всё действительно просто! Вычислим площадь плоской фигуры , ограниченной линиями . Для определённости считаем, что на отрезке . Площадь данной фигуры численно равна:

Изобразим область на чертеже:

Выберем первый способ обхода области:

Таким образом:

И сразу важный технический приём: повторные интегралы можно считать по отдельности . Сначала внутренний интеграл, затем – внешний интеграл. Данный способ настоятельно рекомендую начинающим в теме чайникам.

1) Вычислим внутренний интеграл, при этом интегрирование проводится по переменной «игрек»:

Неопределённый интеграл тут простейший, и далее используется банальная формула Ньютона-Лейбница, с той лишь разницей, что пределами интегрирования являются не числа, а функции . Сначала подставили в «игрек» (первообразную функцию) верхний предел, затем – нижний предел

2) Результат, полученный в первом пункте необходимо подставить во внешний интеграл:

Более компактная запись всего решения выглядит так:

Полученная формула – это в точности рабочая формула для вычисления площади плоской фигуры с помощью «обычного» определённого интеграла! Смотрите урок Вычисление площади с помощью определенного интеграла , там она на каждом шагу!

То есть, задача вычисления площади с помощью двойного интеграла мало чем отличается от задачи нахождения площади с помощью определённого интеграла! Фактически это одно и тоже!

Соответственно, никаких трудностей возникнуть не должно! Я рассмотрю не очень много примеров, так как вы, по сути, неоднократно сталкивались с данной задачей.

Пример 9

Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Здесь и далее я не буду останавливаться на том, как выполнять обход области, поскольку в первом параграфе были приведены очень подробные разъяснения.

Таким образом:

Как я уже отмечал, начинающим лучше вычислять повторные интегралы по отдельности, этого же метода буду придерживаться и я:

1) Сначала с помощью формулы Ньютона-Лейбница разбираемся с внутренним интегралом:

2) Результат, полученный на первом шаге, подставляем во внешний интеграл:

Пункт 2 – фактически нахождение площади плоской фигуры с помощью определённого интеграла.

Ответ:

Вот такая вот глупая и наивная задача.

Любопытный пример для самостоятельного решения:

Пример 10

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями , ,

Примерный образец чистового оформления решения в конце урока.

В Примерах 9-10 значительно выгоднее использовать первый способ обхода области, любознательные читатели, кстати, могут изменить порядок обхода и вычислить площади вторым способом. Если не допустите ошибку, то, естественно, получатся те же самые значения площадей.

Но в ряде случаев более эффективен второй способ обхода области, и в заключение курса молодого ботана рассмотрим ещё пару примеров на эту тему:

Пример 11

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями ,

Решение: нас с нетерпением ждут две параболы с бзиком, которые лежат на боку. Улыбаться не нужно, похожие вещи в кратных интегралах встречаются частенько.

Как проще всего сделать чертёж?

Представим параболу в виде двух функций:
– верхняя ветвь и – нижняя ветвь.

Аналогично, представим параболу в виде верхней и нижней ветвей.

Площадь фигуры вычислим с помощью двойного интеграла по формуле:

Что будет, если мы выберем первый способ обхода области? Во-первых, данную область придётся разделить на две части. А во-вторых, мы будем наблюдать сию печальную картину: . Интегралы, конечно, не сверхсложного уровня, но… существует старая математическая присказка: кто с корнями дружен, тому зачёт не нужен.

Поэтому из недоразумения, которое дано в условии, выразим обратные функции:

Обратные функции в данном примере обладают тем преимуществом, что задают сразу всю параболу целиком без всяких там листьев, желудей веток и корней.

Согласно второму способу, обход области будет следующим:

Таким образом:

Как говорится, ощутите разницу.

1) Расправляемся с внутренним интегралом:

Результат подставляем во внешний интеграл:

Интегрирование по переменной «игрек» не должно смущать, была бы буква «зю» – замечательно бы проинтегрировалось и по ней. Хотя кто прочитал второй параграф урока Как вычислить объем тела вращения , тот уже не испытывает ни малейшей неловкости с интегрированием по «игрек».

Также обратите внимание на первый шаг: подынтегральная функция является чётной, а отрезок интегрирования симметричен относительно нуля. Поэтому отрезок можно споловинить, а результат – удвоить. Данный приём подробно закомментирован на уроке Эффективные методы вычисления определённого интеграла .

Что добавить…. Всё!

Ответ:

Для проверки своей технике интегрирования можете попробовать вычислить . Ответ должен получиться точно таким же.

Пример 12

С помощью двойного интеграла, вычислить площадь плоской фигуры , ограниченной линиями

Это пример для самостоятельного решения. Интересно отметить, что если вы попробуете использовать первый способ обхода области, то фигуру придётся разделить уже не на две, а на три части! И, соответственно, получится три пары повторных интегралов. Бывает и такое.

Мастер класс подошел к завершению, и пора переходить на гроссмейстерский уровень – Как вычислить двойной интеграл? Примеры решений . Постараюсь во второй статье так не маньячить =)

Желаю успехов!

Решения и ответы:

Пример 2: Решение: Изобразим область на чертеже:

Выберем следующий порядок обхода области:

Таким образом:
Перейдём к обратным функциям:


Таким образом:
Ответ:

Пример 4: Решение: Перейдём к прямым функциям:


Выполним чертёж:

Изменим порядок обхода области:

Ответ:

Порядок обхода области:

Таким образом:

1)
2)

Ответ:









Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Ключевые слова: интеграл, криволинейная трапеция, площадь фигур, ограниченных лилиями

Оборудование : маркерная доска, компьютер, мультимедиа-проектор

Тип урока : урок-лекция

Цели урока :

  • воспитательные: формировать культуру умственного труда, создавать для каждого ученика ситуацию успеха, формировать положительную мотивацию к учению; развивать умение говорить и слушать других.
  • развивающие: формирование самостоятельности мышления ученика по применению знаний в различных ситуациях, умения анализировать и делать выводы, развитие логики, развитие умения правильно ставить вопросы и находить на них ответы. Совершенствование формирования вычислительных, расчётных навыков, развитие мышления учащихся в ходе выполнения предложенных заданий, развитие алгоритмической культуры.
  • образовательные : сформировать понятия о криволинейной трапеции, об интеграле, овладеть навыками вычисления площадей плоских фигур

Метод обучения: объяснительно-иллюстративный.

Ход урока

В предыдущих классах мы научились вычислять площади фигур, границами которых являются ломаные. В математике существуют методы, позволяющие вычислять площади фигур, ограниченных кривыми. Такие фигуры называются криволинейными трапециями, и вычисляют их площадь с помощью первообразных.

Криволинейная трапеция (слайд 1 )

Криволинейной трапецией называется фигура, ограниченная графиком функции , (щ.м. ), прямыми x = a и x = b и осью абсцисс

Различные виды криволинейных трапеций (слайд 2)

Рассматриваем различные виды криволинейных трапеций и замечаем: одна из прямых вырождена в точку, роль ограничивающей функции играет прямая

Площадь криволинейной трапеции (слайд 3)

Зафиксируем левый конец промежутка а, а правый х будем менять, т. е., мы двигаем правую стенку криволинейной трапеции и получаем меняющуюся фигуру. Площадь переменной криволинейной трапеции, ограниченной графиком функции , является первообразной F для функции f

И на отрезке [a; b ] площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3 )

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b ]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5) . Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b ], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b ] на n частей точками х 0 =а, х1,… ,хn = b. Длину k- го обозначим через хk = xk – xk-1 . Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м .)

Суммы вида называются интегральными суммами для функции f . (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b ] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5 )

2. Составить интегралы по чертежу (проверяем по слайду 6 )

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7 )

Нахождение площадей плоских фигур (слайд 8 )

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.) . Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  • Построить графики функций
  • Спроецировать точки пересечения графиков на ось абсцисс
  • Заштриховать фигуру, полученную при пересечении графиков
  • Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  • Вычислить площадь каждой из них
  • Найти разность или сумму площадей
  • Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

    Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

    Список литературы

  • Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  • Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  • Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  • Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  • Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.