Ni химия. Где в промышленности используется никель. Недостаток никеля в организме

Никель – пластичный металл серебристо-белого цвета с характерным блеском. Относится к тяжелым цветным металлам. Никель ценная легирующая добавка. В природе в чистом виде никель не встречается, обычно входит в состав руд. Чистый никель (Nickel/Никель), Nickel 200 и Nickel 201 , добывают путем специальных технологий.

В соединении с другими металлами никель способен образовывать твердые и прочные никелевые сплавы:

  • никель-медный сплав (Monel/Монель) – сплав на медной основе с никелем в качестве легирующей добавки. В составе обычно до 67% никеля и до 38% меди. К этой группе сплавов относят: Monel 400 , Monel 401, Monel 404, Monel R-405 , Monel K-500 и др.
  • никель-хромовый сплав (Inconel/Инконель) – аустенитный жаропрочный сплав. К этой группе относят: Inconel 600 , Inconel 601 , Inconel 617 , Inconel 625 , Inconel 690 , Inconel 718 , Inconel 725 , Inconel X-750 и др.
  • никель-железо-хромовый сплав (Inconloy/Инколой) – возможно добавление в сплав молибдена, меди, титана. К этой группе относят: Incoloy 20, Incoloy 800 , Incoloy 800H , Incoloy 800HT , Incoloy 825 , Incoloy 925 и др.
  • никель-молибденовый сплав (Hastelloy/Хастеллой) – возможно присутствие в составе хрома, железа и углерода. К этой группе относят: Hastelloy C-4 , Hastelloy C-22 , Hastelloy C-276 , Hastelloy B-2 и др.

Свойства никеля

Никель – ферромагнетик, точка Кюри – 358°C, температура плавления – 1455°C, температура кипения – 2730-2915°C. Плотность – 8,9 г/см 3 , коэффициент теплового расширения -13,5∙10 −6 K −1. На воздухе компактный никель – стабилен, а высокодисперсный – пирофорен.

Никель обладает такими свойствами, как:

  • пластичность и ковкость;
  • прочность при высоких температурных режимах;
  • устойчивость к окислению в воде и на воздухе;
  • твердость и достаточная вязкость;
  • высокая коррозионная стойкость;
  • ферромагнетик;
  • хороший катализатор;
  • хорошо полируется.

Поверхность никеля покрыта тонким слоем оксида NiO, защищающим металл от окисления.

Преимущества и недостатки

Главные плюсы никеля и сплавов - жаропрочность, жаростойкость и повышенная механическая прочность (давление до 440 МПа). К достоинствам также можно отнести эксплуатацию в раскаленных концентрированных щелочных и кислотных растворах. Помимо этого никель способен сохранять магнитные свойства при пониженных температурах.

Главным недостатком никеля является значительное снижение показателей термоЭДС при быстром охлаждении после отжига (до 600°C). Также к минусам никеля можно отнести тот факт, что в природе чистый никель не встречается. Его получают путем дорогих технологий, что сказывается на его стоимости.

Область применения

Основная сфера применения никеля – металлургия. В ней он задействован в производстве высоколегированных нержавеющих сталей. Добавляя в расплав железа никель, металлурги получают прочные и пластичные сплавы, которые обладают повышенной коррозионной стойкостью и устойчивостью к высоким температурам. Стоит отметить, что никелевые сплавы сохраняют свои качества при многократном длительном нагревании.

Благодаря этим свойствам нержавеющая и термостойкая никелевая сталь применяется:

  • в пищевой и химической промышленности;
  • в нефтехимической промышленности и строительстве;
  • в медицине и фармацевтике;
  • в авиа- и машиностроении;
  • в изготовлении подводных кабелей;
  • в изготовлении нагревательных элементов промышленного оборудования;
  • в производстве постоянных магнитов;
  • в производстве станков и специального оборудования;
  • в изготовлении интерьерных элементов зданий;
  • в мебельной промышленности;
  • в изготовлении бытовых приборов и домашней утвари;

Благодаря своей пластичности и легкости в ковке из никеля получают очень тонкие изделия, например, полосы, ленты и листы из никеля. Также никель активно используют в производстве проволоки и прутков.

(в скобках указаны координац. числа) Ni 2+ 0,069 нм (4), 0,077 нм (5), 0,083 нм (6).

Среднее содержание никеля в земной коре 8-10 -3 % по массе, в океанов 0,002 мг/л. Известно ок. 50 никеля, из них важнейшие: пентландит (Fe,Ni) 9 S 8 , миллерит NiS, гарниерит (Ni,Mg) 3 Si 4 O 10 (OH) 10 . 4H 2 O, ревдинскит (не-пуит) (Ni,Mg) 3 Si 2 O 5 (OH) 4 , никелин NiAs, аннабергит Ni 3 (AsO 4) 2 8Н 2 О. В основном никель добывают из сульфидных медно-никелевых (Канада, Австралия, Юж. Африка) и из силикатно-окисленных (Новая Каледония, Куба, Филиппины, Индонезия и др.). Мировые запасы никеля на суше оцениваются в 70 млн. т.

Свойства. Никель-серебристо-белый . Кристаллич. решетка гранецентрир. кубическая, а = 0,35238 нм, z = 4, пространств. группа Рт3т. Т. пл. 1455 °С. т. кип. 2900 °С; плота. 8,90 г/см 3 ; C 0 p 26,l Дж/( . К); DH 0 пл 17,5 кДж/ , DH 0 исп 370кДж/ ; S 0 298 29,9 ДжДмоль К); ур-ние температурной зависимости для твердого никеля lgp(гПа) = 13,369-23013/T+0,520lgT+0,395T (298-1728К), для жидкого lgp(гПа)=11,742-20830/T+ 0,618 lg Т (1728- 3170 К); температурный коэф. линейного расширения 13,5 . 10 -6 К -1 (273-373 К); 94,1 Вт/(м х х К) при 273 К, 90,9 Вт/(м. К) при 298 К; g 1,74 Н/м (1520 °С); r 7,5 10 -8 Ом м, температурный коэф. r 6,75 . 10 -3 К -1 (298-398 К); , 631 К. Модуль упругости 196-210 ГПа; s раст 280-720 МПа; относит. удлинение 40-50%; по Бринеллю (отожженного) 700-1000 МПа. Чистый никель- весьма пластичный , хорошо обрабатывается в холодном и горячем состоянии, поддается прокатке, волочению, ковке.

Н икель химически малоактивен, но тонкодисперсный , полученный соединений никеля при низких т-рах, пирофорен. Стандартный Ni 0 /Ni 2+ - 0,23 В. При обычных т-рах никель на покрывается тонкой . Не взаимод. с и влагой . При нагр. никеля с пов-сти начинается при ~ 800 °С. С соляной, серной, фосфорной, фтористоводородной к-тами никель реагирует очень медленно. Практически на него не действуют уксусная и др. орг. к-ты, особенно в отсутствие . Хорошо реагирует с разб. HNO 3 , конц. HNO 3 пассивируется. Р-ры и и , а также жидкий NH 3 на никель не действуют. Водные р-ры NH 3 в присут. коррелируют никель.

Н икель в дисперсном состоянии обладает большой каталитич. в р-циях , . Используют либо скелетный никель (никель Ренея), получаемый сплавлением с Аl или Si с послед. , либо никель на .

Н икель поглощает Н 2 и образует с ним твердые р-ры. NiH 2 (устойчив ниже 0°С) и более стабильный NiH получены косвенными путями. почти не поглощается никелем вплоть до 1400 °С, р-римость N 2 в 0,07% при 450 °С. Компактный никель не реагирует с NH 3 , дисперсный при 300-450 °С образует с ним н и т р и д Ni 3 N.

Расплавленный никель растворяет С с образованием к а р б и д а Ni 3 C, к-рый при разлагается с выделением ; Ni 3 C в виде серо-черного (разлагается при ~ 450°С) получают науглероживанием никеля в СО при 250-400 °С. Дисперсный никель с СО дает летучий Ni(CO) 4 . При сплавлении с Si образует с и л и ц и д ы; Ni 5 Si 2 , Ni 2 Si и NiSi плавятся конгруэнтно соотв. при 1282, 1318 и 992 °С, Ni 3 Si и NiSi 2 -инконг-руэнтно соотв. при 1165 и 1125°С, Ni 3 Si 2 разлагается, не плавясь, при 845 °С. При сплавлении с В дает б о р и д ы: Ni 3 B (т. пл. 1175°С), Ni 2 B (1240 °С), Ni 3 B 2 (1163°C), Ni 4 B 3 (1580 °С), NiB 12 (2320 °С), NiB (разлагается при 1600 °С). С Se никель образует с е л е н и д ы: NiSe (т. пл. 980 °С), Ni 3 Se 2 и NiSe 2 (разлагаются соотв. при 800 и 850 °С), Ni 6 Se 5 и Ni 21 Se 20 (существуют только в твердом состоянии). При сплавлении никеля с Те получают т е л л у р и д ы: NiTe и NiTe 2 (между ними образуется, по-видимому, широкая область твердых р-ров) и др.

А р с е н а т Ni 3 (AsO 4) 2 . 8H 2 O-зеленые ; р-римость в 0,022%; к-тами разлагается; выше 200 °С обезвоживается, при ~ 1000°С разлагается; получения твердого .

С и л и к а т Ni 2 SiO 4 -светло-зеленые с ромбич. решеткой; плотн. 4,85 г/см 3 ; разлагается, не плавясь, при 1545°С; в не раств.; минер. к-тами медленно разлагается при нагревании. А л ю м и н а т NiAl 2 O 4 (никелевая шпи-нель)-голубые с кубич. решеткой; т. пл. 2110°С; плотн. 4,50 г/см 3 ; не раств. в ; медленно разлагается к-тами; .

Важнейшие комплексные соед. никеля-а м м и н ы. Наиб. характерны гексааммины и акватетраммины с соотв. 2+ и 2+ . Это голубые или фиолетовые кристаллич. в-ва, обычно раств. в , в р-рах ярко-синего цвета; при кипячении р-ров и при действии к-т разлагаются; образуются в р-рах при аммиачной переработке никелевых и кобальтовых .

В комплексах Ni(III) и Ni(IV) координац. число никеля равно 6. Примеры-фиолетовый K 3 и красный K 2 , образующиеся при действии F 2 на смеси NiCl 2 и КСl; сильные . Из др. типов известны гетеро-поликислот, напр. (NH 4) 6 H 7 . 5H 2 O, большое число внутрикомплексных соед. Ni(II). См. также Никель-органические соединения.

Получение. перерабатывают пиро- и гидромстал-лургич. путем. Для силикатно-окисленных (не поддаются обогащению) используют либо восстановит. плавку с получением ферроникеля, к-рый далее подвергают продувке в конвертере с целью и обогащения, либо плавку на штейн с серосодержащими (FeS 2 или CaSO 4). Полученный штейн продувают в конвертере для удаления Fe, а затем дробят и обжигают, из образовавшегося NiO восстановит. плавкой получают металлический никель. Никелевые концентраты, получаемые при обогащении сульфидных , плавят на штейн с послед. продувкой в конвертере. Из медно-никелевого штейна после его медленного охлаждения выделяют концентрат Ni 3 S 2 , к-рый, аналогично штейнам из окисленных , обжигают и восстанавливают.

Один из путей гидропереработки окисленных руд-восстановление или смесью Н 2 и N 2 с послед. р-ром NH 3 и СО 2 с продувкой . Р-р очищают от Со . При разложении р-ра с отгонкой NH 3 осаждается гидроксо-карбонат никеля, к-рый либо прокаливают и из образовавшегося NiO восстановит. плавкой получают никель, либо повторно раств. в р-ре NH 3 и после отгонки NH 3 из пульпы Н 2 получают никель. Др. путь - окисленной серной к-той в . Из образовавшегося р-ра после его очистки и никель осаждают под и полученный концентрат NiS перерабатывают подобно штейнам.

Гидропереработка сульфидных никелевых материалов (концентратов, штейнов) сводится к автоклавному окислит. либо р-рами NH 3 (при низком содержании Со), либо H 2 SO 4 . Из аммиачных р-ров после отделения CuS никель осаждают под . Для разделения Ni, Со и Сu из аммиачных р-ров применяют также экстракц. способы с использованием, в первую очередь, хелатообразу-ющих экстрагентов.

Автоклавное окислитю с получением сульфатных р-ров применяют как к обогащенным материалам (штейнам) с переводом никеля и др. в р-р, так и к бедным пирротииовым Fe 7 S 8 концентратам. В последнем случае окисляется преим. пирротин, что позволяет выделить элементарную S и сульфидный концентрат, переплавляемый далее на никелевый штейн.

Никель (хим. элемент) Никель (лат. Niccolum), Ni, химический элемент первой триады VIII группы периодической системы Менделеева, атомный номер 28, атомная масса 58,70; серебристо-белый металл, ковкий и пластичный. Природный Н. состоит из смеси пяти стабильных изотопов: 58 Ni (67,76%), 60 Ni (26,16%), 61 Ni (1,25%), 63 Ni (3,66%), 64 Ni (1,16%).

Историческая справка. Металл в нечистом виде впервые получил в 1751 шведский химик А. Кронстедт , предложивший и название элемента. Значительно более чистый металл получил в 1804 немецкий химик И. Рихтер. Название «Н.» происходит от минерала купферникеля (NiAs), известного уже в 17 в. и часто вводившего в заблуждение горняков внешним сходством с медными рудами (нем. Kupfer ‒ медь, Nickel ‒ горный дух, якобы подсовывавший горнякам вместо руды пустую породу). С середины 18 в. Н. применялся лишь как составная часть сплавов, по внешности похожих на серебро. Широкое развитие никелевой промышленности в конце 19 в. связано с нахождением крупных месторождений никелевых руд в Новой Каледонии и в Канаде и открытием «облагораживающего» его влияния на свойства сталей.

Распространение в природе. Н. ‒ элемент земных глубин (в ультраосновных породах мантии его 0,2% по массе). Существует гипотеза, что земное ядро состоит из никелистого железа; в соответствии с этим среднее содержание Н. в земле в целом по оценке около 3%. В земной коре, где Н. 5,8×10-3 %, он также тяготеет к более глубокой, так называемой базальтовой оболочке. Ni в земной коре ‒ спутник Fe и Mg, что объясняется сходством их валентности (II) и ионных радиусов; в минералы двухвалентных железа и магния Н. входит в виде изоморфной примеси. Собственных минералов Н. известно 53; большинство из них образовалось при высоких температурах и давлениях, при застывании магмы или из горячих водных растворов. Месторождения Н. связаны с процессами в магме и коре выветривания. Промышленные месторождения Н. (сульфидные руды) обычно сложены минералами Н. и меди (см. Никелевые руды ). На земной поверхности, в биосфере Н. ‒ сравнительно слабый мигрант. Его относительно мало в поверхностных водах, в живом веществе. В районах, где преобладают ультраосновные породы, почва и растения обогащены никелем.

Физические и химические свойства. При обычных условиях Н. существует в виде b-модификации, имеющей гранецентрированную кубическую решётку (a = 3,5236). Но Н., подвергнутый катодному распылению в атмосфере H2 , образует a-модификацию, имеющую гексагональную решётку плотнейшей упаковки (а = 2,65 , с = 4,32), которая при нагревании выше 200 °С переходит в кубическую. Компактный кубический Н. имеет плотность 8,9 г/см3 (20 °С), атомный радиус 1,24 , ионные радиусы: Ni2+ 0,79 , Ni3+ 0,72 ; tпл 1453 °С; tkип около 3000 °С; удельная теплоёмкость при 20 °С 0,440 кдж/ (кг·К ) ; температурный коэффициент линейного расширения 13,310-6 (0‒100 °С); теплопроводность при 25 °С 90,1 вмl (м·K ); то же при 500 °С 60,01 вм/ (м·К ) . Удельное электросопротивление при 20 °С 68,4 ном·м, т. е. 6,84 мком·см; температурный коэффициент электросопротивления 6,8×10-3 (0‒100 °С).

Н. ‒ ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400‒500 Мн/м2 (т. е. 40‒50 кгс/мм2 ), предел упругости 80 Мн/м2 , предел текучести 120 Мн/м2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м2 ; твёрдость по Бринеллю 600‒800 Мн/м2 . В температурном интервале от 0 до 631 К (верхняя граница соответствует Кюри точке ) Н. ферромагнитен. Ферромагнетизм Н. обусловлен особенностями строения внешних электронных оболочек (3d8 4s2 ) его атомов. Н. вместе с Fe (3d6 4s2 ) и Со (3d7 4s2 ), также ферромагнетиками, относится к элементам с недостроенной 3d-электронной оболочкой (к переходным 3d-металлам). Электроны недостроенной оболочки создают нескомпенсированный спиновый магнитный момент, эффективное значение которого для атомов Н. составляет 6 mБ , где mБ ‒ Бора магнетон . Положительное значение обменного взаимодействия в кристаллах Н. приводит к параллельной ориентации атомных магнитных моментов, т. е. к ферромагнетизму. По той же причине сплавы и ряд соединений Н. (окислы, галогениды и др.) магнитоупорядочены (обладают ферро-, реже ферримагнитной структурой, см. Магнитная структура ). Н. входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой , монель-металл , инвар и др.).

В химическом отношении Ni сходен с Fe и Со, но также и с Cu и благородными металлами. В соединениях проявляет переменную валентность (чаще всего 2-валентен). Н. ‒ металл средней активности, Поглощает (особенно в мелкораздробленном состоянии) большие количества газов (H2 , CO и др.); насыщение Н. газами ухудшает его механические свойства. Взаимодействие с кислородом начинается при 500 °С; в мелкодисперсном состоянии Н. пирофорен ‒ на воздухе самовоспламеняется. Из окислов наиболее важна закись NiO ‒ зеленоватые кристаллы, практически нерастворимые в воде (минерал бунзенит). Гидроокись выпадает из растворов никелевых солей при прибавлении щелочей в виде объёмистого осадка яблочно-зелёного цвета. При нагревании Н. соединяется с галогенами, образуя NiX2 . Сгорая в парах серы, даёт сульфид, близкий по составу к Ni3 S2 . Моносульфид NiS может быть получен нагреванием NiO с серой.

С азотом Н. не реагирует даже при высоких температурах (до 1400 °С). Растворимость азота в твёрдом Н. приблизительно 0,07% по массе (при 445 °С). Нитрид Ni3 N может быть получен пропусканием NH3 над NiF2 , NiBr2 или порошком металла при 445 °С. Под действием паров фосфора при высокой температуре образуется фосфид Ni3 P2 в виде серой массы. В системе Ni ‒ As установлено существование трёх арсенидов: Ni5 As2 , Ni3 As (минерал маухерит) и NiAs. Структурой никель-арсенидного типа (в которой атомы As образуют плотнейшую гексагональную упаковку, все октаэдрические пустоты которой заняты атомами Ni) обладают многие металлиды . Неустойчивый карбид Ni3 C может быть получен медленным (сотни часов) науглероживанием (цементацией) порошка Н. в атмосфере CO при 300 °С. В жидком состоянии Н. растворяет заметное количество С, выпадающего при охлаждении в виде графита. При выделении графита Н. теряет ковкость и способность обрабатываться давлением.

В ряду напряжений Ni стоит правее Fe (их нормальные потенциалы соответственно ‒0,44 в и ‒0,24 в ) и поэтому медленнее, чем Fe, растворяется в разбавленных кислотах. По отношению к воде Н. устойчив. Органические кислоты действуют на Н. лишь после длительного соприкосновения с ним. Серная и соляная кислоты медленно растворяют Н.; разбавленная азотная ‒ очень легко; концентрированная HNO3 пассивирует Н., однако в меньшей степени, чем железо.

При взаимодействии с кислотами образуются соли 2-валентного Ni. Почти все соли Ni (II) и сильных кислот хорошо растворимы в воде, растворы их вследствие гидролиза имеют кислую реакцию. Труднорастворимы соли таких сравнительно слабых кислот, как угольная и фосфорная. Большинство солей Н. разлагается при прокаливании (600‒800 °С). Одна из наиболее употребительных солей ‒ сульфат NiSO4 кристаллизуется из растворов в виде изумруднозелёных кристаллов NiSO4 ×7H2 O ‒ никелевого купороса. Сильные щёлочи на Н. не действуют, но он растворяется в аммиачных растворах в присутствии (NH4 )2 CO3 с образованием растворимых аммиакатов , окрашенных в интенсивно-синий цвет; для большинства из них характерно наличие комплексов 2 + и . На избирательном образовании аммиакатов основываются гидрометаллургические методы извлечения Н. из руд. NaOCI и NaOBr осаждают из растворов солей Ni (II), гидроокись Ni (OH)3 чёрного цвета. В комплексных соединениях Ni, в отличие от Со, обычно 2-валентен. Комплексное соединение Ni с диметилглиоксимом (C4 H7 O2 N)2 Ni служит для аналитического определения Ni.

При повышенных температурах Н. взаимодействует с окислами азота, SO2 и NH3 . При действии CO на его тонкоизмельчённый порошок при нагревании образуется карбонил Ni (CO)4 (см. Карбонилы металлов ). Термической диссоциацией карбонила получают наиболее чистый Н.

Получение. Около 80% Н. от общего его производства (без СССР) получают из сульфидных медно-никелевых руд. После селективного обогащения методом флотации из руды выделяют медный, никелевый и пирротиновый концентраты. Никелевый рудный концентрат в смеси с флюсами плавят в электрических шахтах или отражательных печах с целью отделения пустой породы и извлечения Н. в сульфидный расплав (штейн), содержащий 10‒15% Ni. Обычно электроплавке (основной метод плавки в СССР) предшествуют частичный окислительный обжиг и окускование концентрата. Наряду с Ni в штейн переходят часть Fe, Со и практически полностью Сu и благородные металлы. После отделения Fe окислением (продувкой жидкого штейна в конвертерах) получают сплав сульфидов Cu и Ni ‒ файнштейн, который медленно охлаждают, тонко измельчают и направляют на флотацию для разделения Cu, и Ni. Никелевый концентрат обжигают в кипящем слое до NiO. Металл получают восстановлением NiO в электрических дуговых печах. Из чернового Н. отливают аноды и рафинируют электролитически. Содержание примесей в электролитном Н. (марка 110) 0,01%.

Для разделения Cu и Ni используют также т. н. карбонильный процесс, основанный на обратимости реакции:

Получение карбонила проводят при 100‒200 атм и при 200‒250 °С, а его разложение ‒ без доступа воздуха при атмосферном давлении и около 200 °С. Разложение Ni (CO)4 используют также для получения никелевых покрытий и изготовления различных изделий (разложение на нагретой матрице).

В современных «автогенных» процессах плавка осуществляется за счёт тепла, выделяющегося при окислении сульфидов воздухом, обогащенным кислородом. Это позволяет отказаться от углеродистого топлива, получить газы, богатые SO2 , пригодные для производства серной кислоты или элементарной серы, а также резко повысить экономичность процесса. Наиболее совершенно и перспективно окисление жидких сульфидов. Всё более распространяются процессы, основанные на обработке никелевых концентратов растворами кислот или аммиака в присутствии кислорода при повышенных температурах и давлении (автоклавные процессы). Обычно Н. переводят в раствор, из которого выделяют его в виде богатого сульфидного концентрата или металлического порошка (восстановлением водородом под давлением).

Из силикатных (окисленных) руд Н. также может быть сконцентрирован в штейне при введении в шихту плавки флюсов ‒ гипса или пирита. Восстановительно-сульфидирующую плавку проводят обычно в шахтных печах; образующийся штейн содержит 16‒20% Ni, 16‒18% S, остальное ‒ Fe. Технология извлечения Н. из штейна аналогична описанной выше, за исключением того, что операция отделения Cu часто выпадает. При малом содержании в окисленных рудах Со их целесообразно подвергать восстановительной плавке с получением ферроникеля, направляемого на производство стали. Для извлечения Н. из окисленных руд применяют также гидрометаллургические методы ‒ аммиачное выщелачивание предварительно восстановленной руды, сернокислотное автоклавное выщелачивание и др.

Применение. Подавляющая часть Ni используется для получения сплавов с др. металлами (Fe, Сг, Cu и др.), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы (см. Никелевые сплавы ). Сплавы Н. используются в конструкциях атомных реакторов.

Значительное количество Н. расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий Н. в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Н. ‒ весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.

Переработка руд Н. сопровождается выделением ядовитых газов, содержащих SO2 и нередко As2 O3 . Очень токсична CO, применяемая при рафинировании Н. карбонильным методом; весьма ядовит и легко летуч Ni (CO)4 . Смесь его с воздухом при 60 °С взрывается. Меры борьбы: герметичность аппаратуры, усиленная вентиляция.

А. В. Ванюков.


Никель в организме является необходимым микроэлементом . Среднее содержание его в растениях 5,0·10-5 % на сырое вещество, в организме наземных животных 1,0×10-5 %, в морских ‒ 1,6×10-5 %. В животном организме Н. обнаружен в печени, коже и эндокринных железах; накапливается в ороговевших тканях (особенно в перьях). Физиологическая роль Н. изучена недостаточно. Установлено, что Н. активирует фермент аргиназу, влияет на окислительные процессы; у растений принимает участие в ряде ферментативных реакций (карбоксилирование, гидролиз пептидных связей и др.). На обогащенных Н. почвах содержание его в растениях может повыситься в 30 раз и более, что приводит к эндемическим заболеваниям (у растений ‒ уродливые формы, у животных ‒ заболевания глаз, связанные с повышенным накоплением Н. в роговице: кератиты, кератоконъюнктивиты).

И. Ф. Грибовская.


Рипан Р., Четяну И., Неорганическая химия , т. 2 ‒ Металлы , пер. с рум., М., 1972, с. 581‒614; Справочник металлурга по цветным металлам, т. 2 ‒

Характеризуется отличной коррозионной стойкостью, высокой прочностью, эстетической привлекательностью и способностью принимать любую заданную ему форму. Благодаря своим свойствам этот . Более 60% никеля идет на производство нержавеющей стали.

С участием никеля строят дома, выполняют интересный архитектурный дизайн, делают отделку стен и изготавливают водосточные трубы. Никель присутствует в нашей жизни повсеместно. Поэтому сегодня мы рассмотрим его состав, структуру и свойства никеля.

Никель имеет белый цвет с серебристым оттенком. Этот металл часто сочетается с другими материалами. В результате образуются сплавы.

  • Никель содержится в пище, земной коре, воде и даже в воздухе.
  • Никель имеет гранецентрированную кубическую решетку (а = 3,5236А). В обычном состоянии он представлен в форме β-модификации. При катодном распылении переходит в α-модификацию с гексагональной решеткой. Если далее нагреть никель до 200°C, то его решетка станет кубической.
  • У никеля недостроенная 3d-электронной оболочка, поэтому его относят к переходным металлам.
  • Элемент никель входит в состав самых важных магнитных сплавов и материалов, у которых коэффициент теплового расширения минимален.

Никель, не переработанный и добытый в природе, состоит из 5 стабильных изотопов. В периодической системе Менделеева за никелем числится номер 28. Этот элемент имеет атомную массу равную 58,70.

Свойства никеля

Плотность и масса

Никель относится к ряду тяжелых металлов. Его плотность в два раза больше, чем у металла титан, но равна по числовому значению плотности .

Численное значение удельной плотности никеля составляет 8902 кг/м3. Атомная масса никеля: 58,6934 а. е. м. (г/моль).

Механические характеристики

Никель обладает хорошей ковкостью и тягучестью. Благодаря этим характеристикам он легко подвергается прокату. Из него довольно просто получить тонкие листы и небольшие трубы.

При температуре от 0 до 631 К никель становится ферромагнитным. Происходит этот процесс благодаря особенному строению внешних оболочек атома никеля.

Известны следующие механические характеристики никеля:

  • Повышенная прочность.
  • Предел прочности равный 450 МПа.
  • Высокопластичность материала.
  • Коррозионная стойкость.
  • Высокая температура плавления.
  • Высокая каталитическая способность.

Механические характеристики описываемого металла зависят от наличия примесей. Самыми опасными и вредными считается сера, висмут, и сурьма. Если никель насытить газами, то его механические свойства станут хуже.

Тепло- и электропроводность

  • Металл никель имеет следующую теплопроводность: 90,1 Вт/(м·К) (при температуре 25°C).
  • Электропроводность никеля равна 11 500 000 Сим/м.

Коррозионная стойкость

Под коррозионной стойкостью понимается способность металла при воздействии на него агрессивной среды противостоять разрушению. Никель относиться к материалам с высокой стойкостью к коррозии.

Никель не покрывается ржавчиной в нижеперечисленных средах:

  • Окружающая атмосфера. Никель обладает хорошей устойчивостью к высоким температурам. Если никель находится в условиях промышленной атмосферы, то он всегда покрывается тонкой пленкой, которая приводит к потускнению никеля.
  • Щелочи в горячем и холодном виде, а так же их расплавленные состояния.
  • Органические кислоты.
  • Неорганические кислоты.

Кроме этого, ржавчиной никель не покрывается в горячих спиртах и жирных кислотах. Благодаря этому этот металл широко используют в пищевой промышленности.

Химическая промышленность то же широко использует никель. Это происходит благодаря коррозионной стойкости никеля к воздействию высокой температуры и большой концентрации растворов.

Никель подвержен коррозии при следующих окружающих его условиях:

  • Морская вода.
  • Щелочные растворы гипохлоритов.
  • Сера или любая среда, содержащая серу.
  • Растворы окислительных солей.
  • Гидрат аммиака и аммиачная вода.

Токсичность никеля рассмотрена ниже.

Температуры

Известны следующие термодинамические свойства никеля:

  • Температура плавления никеля: 1726 K или 2647 °F или 1453 °C.
  • Температура кипения никеля: 3005 K или 4949 °F или 2732 °C.
  • Температура литья: 1500-1575 °C.
  • Температура отжига: 750 — 900 °C.

Токсичность и экологичность

В больших количествах никель оказывает токсичное действие на организм. Если речь идет о приеме его с пищей, то повышенное содержание этого элемента обязательно вызовет угрозу для здоровья.

Часто встречающие негативное последствие от переизбытка никеля – это аллергия. Так же при воздействии этого металла (в больших количествах) на организм возникают расстройства желудка и кишечника, обязательно повышается содержание эритроцитов. Никель может вызвать хронический бронхит, почечный стресс и нарушение работы легких. Переизбыток никеля провоцирует рак легкого.

Если вода для питья содержит 250 частиц никеля на миллион частиц воды, то такое содержание может вызвать болезнь крови и проблемы с почками. Однако это довольно редко явление.

Никель содержится в табачном дыме. Вдыхание этого дыма или пыли с содержанием никеля приводит к бронхиту и нарушению функционирования легких. Получить это вещество возможно в условиях или в неблагоприятных экологически районах.

Токсичность никеля представляет собой опасность только в случае попадания в организм человека в больших количествах. Если никель используется в промышленности и в строительных делах, то он не опасен.

Другие характеристики

Еще никель имеет следующие характеристики:

  • Удельное электрическое сопротивление никеля равное 68,8 ном·м.
  • В химическом плане никель схож с железом, кобальтом, купрумом и некоторыми благородными металлами.
  • Никель взаимодействует с кислородом при температуре в 500 С.
  • Если никель переходит в мелкодисперсное состояние, то он может самовоспламениться.
  • Никель не реагирует с азотом даже при условии очень высокой температуры.
  • Никель медленнее чем железо растворяется в кислотах.

Данный металл серебристо-серого цвета относится к переходным - он обладает и щелочными, и кислотными свойствами. Основными достоинствами металла считаются ковкость, пластичность, а также высокие антикоррозийные показатели. Где и каким образом используется никель - читайте ниже.

Благодаря присутствию оксидной пленки на поверхности, металл наделен способностью отлично противостоять коррозии. К тому же покрытие из данного металла надежно защищает от окисления детали и предметы, изготовленные из других материалов. Именно поэтому никель широко используется в современной промышленности.

К тому же, элемент имеет не только антикоррозийные свойства. Он отлично противостоит воздействию различных щелочей. Благодаря этому, его применяют для защиты всевозможных алюминиевых, железных и чугунных деталей, предназначенных для эксплуатации в агрессивных средах. В том числе для изготовления самолетных лопастей, цистерн для перевозки опасных веществ и другого оборудования для химической промышленности.

Если говорить о других сферах нашей жизни, где использование никеля сегодня поставлено на широкую ногу, то стоит упомянуть производство:

  • протезов и брекетов для нужд медицины;
  • аккумуляторов;
  • химических реактивов;
  • "белого золота" в ювелирной промышленности;
  • обмотки для струн музыкальных инструментов.

Сплавы

Благодаря антикоррозийным свойствам, элемент повсеместно применяется для производства различных сплавов из железа, меди, титана, олова, молибдена и т. д. На это расходуется свыше 80 процентов от общего объема добываемого во всем мире Ni, месторождения которого находятся на территории России (Урал, Мурманская и Воронежская области, Норильский район) ЮАР, Канады, Греции, Албании и других государств. Ni применяется для изготовления нержавеющей стали. Сплавы с железом используются практически во всех отраслях современной промышленности, а также при строительстве любых гражданских или промышленных объектов.

В результате различного процентного сочетания с медью получают сплавы монели, константин и другие. Они применяются для изготовления монет, резервуаров для хранения серной, хлорной или фосфорной кислоты, запасных частей и деталей машин (клапанов, теплообменников, втулок, пружин, лопастей крыльчаток), предназначенных для использования в режиме повышенных нагрузок.

Сплавы с добавлением хрома - нихромы - жаропрочны поэтому используются для изготовления конструктивных элементов газовых турбин, деталей реактивных двигателей, оборудования для ядерных реакторов.

В процессе добавления молибдена получают сплавы, стойкие к воздействию кислот и других агрессивных составов (сухому хлору).

Сплавы с участием алюминия, железа, меди и кобальта - алник и магнико - обладают свойствами постоянных магнитов и применяются при изготовлении различных радиоизмерительных приборов и электротехники.

Изделия из инвара - сплава с добавлением железа (Ni - 35 процентов, Fe - 65%) обладают свойством практически не растягиваться при нагревании.

Другие области применения

Одной из наиболее распространенных областей, где сегодня используется никель в промышленности, является никелирование, то есть нанесение тонкого слоя никеля (толщина варьируется от 12 до 36 микрометров) на поверхность других металлов при помощи гальванического метода. Таким способом проходит антикоррозийная обработка:

  • металлических труб;
  • посуды;
  • столовых предметов;
  • смесителей и кранов для кухни или ванной комнаты;
  • мебельной фурнитуры и других декоративных изделий.

Обработанные таким образом предметы будут в течение продолжительного срока надежно защищены от воздействия влаги, а также, благодаря не тускнеющему со временем серебристому покрытию, сохранят презентабельный внешний вид.